111 research outputs found
CROP RESIDUE EFFECTS ON SOIL ENVIRONMENT AND DRYLAND MAIZE AND SOYA BEAN PRODUCTION
The research reported here provides data on the effects of crop residues on the surface of no-till soil upon the soil environment and resulting biological activity, including crop growth. For maize (Zea mays L.) and soya bean [Glycine max (L.) Merr.] production in eastern Nebraska, U.S.A. (4 years of data), increasing crop residue rate decreased maximum soil temperatures at the soil surface by at least 5°C, and generally increased soil water storage by at least 50 mm. Availability and uptake of nitrogen from the soil organic matter and applied fertilizers (and for soya bean from decomposition of crop residues) were increased by increasing the crop residue rate from 0 to 150% of the quantity left after grain harvest of the previous crop. Hardly any of the nitrogen in maize residues was used by the next crop. These changes in the soil environment resulted in less stress on crops produced on residue-covered soil than for those on bare soil. Consequently, each Mg ha-1 of crop residues on the soil surface increased grain and stover production by approximately 120 and 270 kg ha-1 for maize, and 90 and 300 kg ha-1 for soya bean, respectively. Results show that there are major direct crop growth benefits from leaving crop residues on the soil surface, in addition to cumulative benefits that may result from reduced erosion losses and enhanced soil organic-matter contents
Succinate Dehydrogenase Is a Direct Target of Sirtuin 3 Deacetylase Activity
BACKGROUND: Sirtuins (SIRT1-7) are a family of NAD-dependent deacetylases and/or ADP-ribosyltransferases that are involved in metabolism, stress responses and longevity. SIRT3 is localized to mitochondria, where it deacetylates and activates a number of enzymes involved in fuel oxidation and energy production. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we performed a proteomic screen to identify SIRT3 interacting proteins and identified several subunits of complex II and V of the electron transport chain. Two subunits of complex II (also known as succinate dehydrogenase, or SDH), SDHA and SDHB, interacted specifically with SIRT3. Using mass spectrometry, we identified 13 acetylation sites on SDHA, including six novel acetylated residues. SDHA is hyperacetylated in SIRT3 KO mice and SIRT3 directly deacetylates SDHA in a NAD-dependent manner. Finally, we found that SIRT3 regulates SDH activity both in cells and in murine brown adipose tissue. CONCLUSIONS/SIGNIFICANCE: Our study identifies SDHA as a binding partner and substrate for SIRT3 deacetylase activity. SIRT3 loss results in decreased SDH enzyme activity, suggesting that SIRT3 may be an important physiological regulator of SDH activity
Learned Generosity? A Field Experiment with Parents and Their Children
An active area of research within the social sciences concerns the underlying motivation for sharing scarce resources and engaging in other pro-social actions. We develop a theoretical framework that sheds light on the developmental origins of social preferences by providing mechanisms through which parents transmit preferences for generosity to their children. Then, we conduct a field experiment with nearly 150 3-5 year old children and their parents, measuring (1) whether child and parent generosity is correlated, (2) whether children are influenced by their parents when making sharing decisions and (3) whether parents model generosity to children. We observe no correlation of independently measured parent and child sharing decisions at this young age. Yet, we find that apart from those choosing an equal allocation of resources between themselves and another child, children adjust their behaviors to narrow the gap with their parent's or other adult's choice. We find that fathers, and parents of initially generous children, increase their sharing when informed that their child will be shown their choice
F-Spondin/spon1b Expression Patterns in Developing and Adult Zebrafish
F-spondin, an extracellular matrix protein, is an important player in embryonic morphogenesis and CNS development, but its presence and role later in life remains largely unknown. We generated a transgenic zebrafish in which GFP is expressed under the control of the F-spondin (spon1b) promoter, and used it in combination with complementary techniques to undertake a detailed characterization of the expression patterns of F-spondin in developing and adult brain and periphery. We found that F-spondin is often associated with structures forming long neuronal tracts, including retinal ganglion cells, the olfactory bulb, the habenula, and the nucleus of the medial longitudinal fasciculus (nMLF). F-spondin expression coincides with zones of adult neurogenesis and is abundant in CSF-contacting secretory neurons, especially those in the hypothalamus. Use of this new transgenic model also revealed F-spondin expression patterns in the peripheral CNS, notably in enteric neurons, and in peripheral tissues involved in active patterning or proliferation in adults, including the endoskeleton of zebrafish fins and the continuously regenerating pharyngeal teeth. Moreover, patterning of the regenerating caudal fin following fin amputation in adult zebrafish was associated with F-spondin expression in the blastema, a proliferative region critical for tissue reconstitution. Together, these findings suggest major roles for F-spondin in the CNS and periphery of the developing and adult vertebrate
Environmental chemical stressors as epigenome modifiers:a new horizon in assessment of toxicological effects
In eukaryotic cells, chromatin transformation from euchromatin into heterochromatin as a means of controlling gene expression and replication has been known as the ?accessibility hypothesis?. The interplay of epigenetic changes including histone modifications, DNA methylation, RNA interference (RNAi) and other functional epigenetic components are intricate. It is believed that these changes are well-programmed, inherited and can be modified by environmental contaminant stressors. Environmentally-driven epigenetic alterations during development, e.g. embryonic, foetal or neonatal stage, may influence disease susceptibility in adulthood. Therefore, understanding how epigenome modifications develop in response to environmental chemicals and, how epigenetic-xenobiotic interactions influence human health will shed new insights into gene-environment interactions in the epidemiology of several diseases including cancer. In this review, we consider studies of chemical modifiers including nutritional and xenobiotic effects on epigenetic components in vitro or in vivo. By examining the most-studied epigenome modifications and how their respective roles are interlinked, we highlight the central role of xenbiotic-modified epigenetic mechanisms. A major requirement will be to study and understand effects following environmentally-relevant exposures. We suggest that the study of epigenetic toxicology will open up new opportunities to devise strategies for the prevention or treatment of at-risk populations
- …