254 research outputs found

    Lysophosphatidic acid-3 receptor-mediated feed-forward production of lysophosphatidic acid: an initiator of nerve injury-induced neuropathic pain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We previously reported that intrathecal injection of lysophosphatidylcholine (LPC) induced neuropathic pain through activation of the lysophosphatidic acid (LPA)-1 receptor, possibly via conversion to LPA by autotaxin (ATX).</p> <p>Results</p> <p>We examined <it>in vivo </it>LPA-induced LPA production using a biological titration assay with B103 cells expressing LPA<sub>1 </sub>receptors. Intrathecal administration of LPC caused time-related production of LPA in the spinal dorsal horn and dorsal roots, but not in the dorsal root ganglion, spinal nerve or sciatic nerve. LPC-induced LPA production was markedly diminished in ATX heterozygotes, and was abolished in mice that were deficient in LPA<sub>3</sub>, but not LPA<sub>1 </sub>or LPA<sub>2 </sub>receptors. Similar time-related and LPA<sub>3 </sub>receptor-mediated production of LPA was observed following intrathecal administration of LPA. In an <it>in vitro </it>study using spinal cord slices, LPA-induced LPA production was also mediated by ATX and the LPA<sub>3 </sub>receptor. Intrathecal administration of LPA, in contrast, induced neuropathic pain, which was abolished in mice deficient in LPA<sub>1 </sub>or LPA<sub>3 </sub>receptors.</p> <p>Conclusion</p> <p>These findings suggest that feed-forward LPA production is involved in LPA-induced neuropathic pain.</p

    Cyclic Behavior of HPFRCC Coupling Beams with Bundled Diagonal Bars

    Get PDF
    Coupled shear walls are efficient in resisting lateral forces induced by winds and earthquakes. However, it is difficult to construct coupled shear walls particularly because current design codes require complex reinforcing details within coupling beams. The objective of this study was to develop simple reinforcement details for diagonally reinforced coupling beams; reducing transverse steel by use of high-performance fiber-reinforced cementitious composites (HPFRCCs) and bundling diagonal bars are explored. Four coupling beam specimens with length-to-depth aspect ratios of 2.0 or 3.5 were fabricated and tested under cyclic lateral displacements. The test results revealed that HPFRCC coupling beams with bundled diagonal bars and widely spaced transverse reinforcement (one-half the amount of reinforcement required by current seismic codes) exhibited excellent seismic performance compared with ordinary concrete coupling beams having code-required distributed diagonal reinforcement and transverse reinforcement

    Redox evolution of a degassing magma rising to the surface.

    No full text
    Volatiles carried by magmas, either dissolved or exsolved, have a fundamental effect on a variety of geological phenomena, such as magma dynamics1–5 and the composition of the Earth's atmosphere 6. In particular, the redox state of volcanic gases emanating at the Earth's surface is widely believed to mirror that of the magma source, and is thought to have exerted a first-order control on the secular evolution of atmospheric oxygen6,7. Oxygen fugacity (fO2 ) estimated from lava or related gas chemistry, however, may vary by as much as one log unit8–10, and the reason for such differences remains obscure. Here we use a coupled chemical–physical model of conduit flow to show that the redox state evolution of an ascending magma, and thus of its coexisting gas phase, is strongly dependent on both the composition and the amount of gas in the reservoir. Magmas with no sulphur show a systematic fO2 increase during ascent, by as much as 2 log units. Magmas with sulphur show also a change of redox state during ascent, but the direction of change depends on the initial fO2 in the reservoir. Our calculations closely reproduce the H2S/SO2 ratios of volcanic gases observed at convergent settings, yet the difference between fO2 in the reservoir and that at the exit of the volcanic conduit may be as much as 1.5 log units. Thus, the redox state of erupted magmas is not necessarily a good proxy of the redox state of the gases they emit. Our findings may require re-evaluation of models aimed at quantifying the role of magmatic volatiles in geological processes

    Effectiveness, cost-effectiveness and cost-benefit of a single annual professional intervention for the prevention of childhood dental caries in a remote rural Indigenous community

    Get PDF
    Background The aim of the study is to reduce the high prevalence of tooth decay in children in a remote, rural Indigenous community in Australia, by application of a single annual dental preventive intervention. The study seeks to (1) assess the effectiveness of an annual oral health preventive intervention in slowing the incidence of dental caries in children in this community, (2) identify the mediating role of known risk factors for dental caries and (3) assess the cost-effectiveness and cost-benefit of the intervention. Methods/design The intervention is novel in that most dental preventive interventions require regular re-application, which is not possible in resource constrained communities. While tooth decay is preventable, self-care and healthy habits are lacking in these communities, placing more emphasis on health services to deliver an effective dental preventive intervention. Importantly, the study will assess cost-benefit and cost-effectiveness for broader implementation across similar communities in Australia and internationally. Discussion There is an urgent need to reduce the burden of dental decay in these communities, by implementing effective, cost-effective, feasible and sustainable dental prevention programs. Expected outcomes of this study include improved oral and general health of children within the community; an understanding of the costs associated with the intervention provided, and its comparison with the costs of allowing new lesions to develop, with associated treatment costs. Findings should be generalisable to similar communities around the world. The research is registered with the Australian New Zealand Clinical Trials Registry (ANZCTR), registration number ACTRN12615000693527; date of registration: 3rd July 2015

    Melt Inclusion Vapour Bubbles: The Hidden Reservoir for Major and Volatile Elements

    Get PDF
    Olivine-hosted melt inclusions (MIs) provide samples of magmatic liquids and their dissolved volatiles from deep within the plumbing system. Inevitable post-entrapment modifications can lead to significant compositional changes in the glass and/or any contained bubbles. Re-heating is a common technique to reverse MI crystallisation; however, its effect on volatile contents has been assumed to be minor. We test this assumption using crystallised and glassy basaltic MIs, combined with Raman spectroscopy and 3D imaging, to investigate the changes in fluid and solid phases in the bubbles before and after re-heating. Before re-heating, the bubble contains CO2&nbsp;gas and anhydrite (CaSO4) crystallites. The rapid diffusion of major and volatile elements from the melt during re-heating creates new phases within the bubble: SO2, gypsum, Fe-sulphides. Vapour bubbles hosted in naturally glassy MIs similarly contain a plethora of solid phases (carbonates, sulphates, and sulphides) that account for up to 84% of the total MI sulphur, 80% of CO2, and 14% of FeO. In both re-heated and naturally glassy MIs, bubbles sequester major and volatile elements that are components of the total magmatic budget and represent a “loss” from the glass. Analyses of the glass alone significantly underestimates the original magma composition and storage parameters

    Graphene Photonics and Optoelectronics

    Full text link
    The richness of optical and electronic properties of graphene attracts enormous interest. Graphene has high mobility and optical transparency, in addition to flexibility, robustness and environmental stability. So far, the main focus has been on fundamental physics and electronic devices. However, we believe its true potential to be in photonics and optoelectronics, where the combination of its unique optical and electronic properties can be fully exploited, even in the absence of a bandgap, and the linear dispersion of the Dirac electrons enables ultra-wide-band tunability. The rise of graphene in photonics and optoelectronics is shown by several recent results, ranging from solar cells and light emitting devices, to touch screens, photodetectors and ultrafast lasers. Here we review the state of the art in this emerging field.Comment: Review Nature Photonics, in pres

    Molecular analysis of Mycobacterium isolates from extrapulmonary specimens obtained from patients in Mexico

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Little information is available on the molecular epidemiology in Mexico of <it>Mycobacterium </it>species infecting extrapulmonary sites in humans. This study used molecular methods to determine the <it>Mycobacterium </it>species present in tissues and body fluids in specimens obtained from patients in Mexico with extrapulmonary disease.</p> <p>Methods</p> <p>Bacterial or tissue specimens from patients with clinical or histological diagnosis of extrapulmonary tuberculosis were studied. DNA extracts from 30 bacterial cultures grown in Löwenstein Jensen medium and 42 paraffin-embedded tissues were prepared. Bacteria were cultured from urine, cerebrospinal fluid, pericardial fluid, gastric aspirate, or synovial fluid samples. Tissues samples were from lymph nodes, skin, brain, vagina, and peritoneum. The DNA extracts were analyzed by PCR and by line probe assay (INNO-LiPA MYCOBACTERIA v2. Innogenetics NV, Gent, Belgium) in order to identify the <it>Mycobacterium </it>species present. DNA samples positive for <it>M. tuberculosis </it>complex were further analyzed by PCR and line probe assay (INNO-LiPA Rif.TB, Innogenetics NV, Gent, Belgium) to detect mutations in the <it>rpo</it>B gene associated with rifampicin resistance.</p> <p>Results</p> <p>Of the 72 DNA extracts, 26 (36.1%) and 23 (31.9%) tested positive for <it>Mycobacterium species </it>by PCR or line probe assay, respectively. In tissues, <it>M. tuberculosis </it>complex and <it>M. genus </it>were found in lymph nodes, and <it>M. genus </it>was found in brain and vagina specimens. In body fluids, <it>M. tuberculosis </it>complex was found in synovial fluid. <it>M. gordonae</it>, <it>M. smegmatis</it>, <it>M. kansasii</it>, <it>M. genus</it>, <it>M. fortuitum/M. peregrinum </it>complex and <it>M. tuberculosis </it>complex were found in urine. <it>M. chelonae/M. abscessus </it>was found in pericardial fluid and <it>M. kansasii </it>was found in gastric aspirate. Two of <it>M. tuberculosis </it>complex isolates were also PCR and LiPA positive for the <it>rpo</it>B gene. These two isolates were from lymph nodes and were sensitive to rifampicin.</p> <p>Conclusion</p> <p>1) We describe the <it>Mycobacterium </it>species diversity in specimens derived from extrapulmonary sites in symptomatic patients in Mexico; 2) Nontuberculous mycobacteria were found in a considerable number of patients; 3) Genotypic rifampicin resistance in <it>M. tuberculosis </it>complex infections in lymph nodes was not found.</p

    Biparental inheritance of plastidial and mitochondrial DNA and hybrid variegation in Pelargonium

    Get PDF
    Plastidial (pt) and mitochondrial (mt) genes usually show maternal inheritance. Non-Mendelian, biparental inheritance of plastids was first described by Baur (Z Indukt Abstamm Vererbungslehre 1:330–351, 1909) for crosses between Pelargonium cultivars. We have analyzed the inheritance of pt and mtDNA by examining the progeny from reciprocal crosses of Pelargoniumzonale and P. inquinans using nucleotide sequence polymorphisms of selected pt and mt genes. Sequence analysis of the progeny revealed biparental inheritance of both pt and mtDNA. Hybrid plants exhibited variegation: our data demonstrate that the inquinans chloroplasts, but not the zonale chloroplasts bleach out, presumably due to incompatibility of the former with the hybrid nuclear genome. Different distribution of maternal and paternal sequences could be observed in different sectors of the same leaf, in different leaves of the same plant, and in different plants indicating random segregation and sorting-out of maternal and paternal plastids and mitochondria in the hybrids. The substantial transmission of both maternal and paternal mitochondria to the progeny turns Pelargonium into a particular interesting subject for studies on the inheritance, segregation and recombination of mt genes

    Sodium channel Nav1.6 accumulates at the site of infraorbital nerve injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sodium channel (NaCh) expressions change following nerve and inflammatory lesions and this change may contribute to the activation of pain pathways. In a previous study we found a dramatic increase in the size and density of NaCh accumulations, and a remodeling of NaChs at intact and altered myelinated sites at a location just proximal to a combined partial axotomy and chromic suture lesion of the rat infraorbital nerve (ION) with the use of an antibody that identifies all NaCh isoforms. Here we evaluate the contribution of the major nodal NaCh isoform, Na<sub>v</sub>1.6, to this remodeling of NaChs following the same lesion. Sections of the ION from normal and ION lesioned subjects were double-stained with antibodies against Na<sub>v</sub>1.6 and caspr (contactin-associated protein; a paranodal protein to identify nodes of Ranvier) and then z-series of optically sectioned images were captured with a confocal microscope. ImageJ (NIH) software was used to quantify the average size and density of Na<sub>v</sub>1.6 accumulations, while additional single fiber analyses measured the axial length of the nodal gap, and the immunofluorescence intensity of Na<sub>v</sub>1.6 in nodes and of caspr in the paranodal region.</p> <p>Results</p> <p>The findings showed a significant increase in the average size and density of Na<sub>v</sub>1.6 accumulations in lesioned IONs when compared to normal IONs. The results of the single fiber analyses in caspr-identified typical nodes showed an increased axial length of the nodal gap, an increased immunofluorescence intensity of nodal Na<sub>v</sub>1.6 and a decreased immunofluorescence intensity of paranodal caspr in lesioned IONs when compared to normal IONs. In the lesioned IONs, Na<sub>v</sub>1.6 accumulations were also seen in association with altered caspr-relationships, such as heminodes.</p> <p>Conclusion</p> <p>The results of the present study identify Na<sub>v</sub>1.6 as one isoform involved in the augmentation and remodeling of NaChs at nodal sites following a combined partial axotomy and chromic suture ION lesion. The augmentation of Na<sub>v</sub>1.6 may result from an alteration in axon-Schwann cell signaling mechanisms as suggested by changes in caspr expression. The changes identified in this study suggest that the participation of Na<sub>v</sub>1.6 should be considered when examining changes in the excitability of myelinated axons in neuropathic pain models.</p
    corecore