1,453 research outputs found

    Expansion opportunities for the New Hampshire poultry meat industry, Station Bulletin, no.395

    Get PDF
    The Bulletin is a publication of the New Hampshire Agricultural Experiment Station, College of Life Sciences and Agriculture, University of New Hampshire, Durham, New Hampshire

    Ultrastructural elastic deformation of cortical bone tissue probed by NIR Raman spectroscopy

    Get PDF
    Raman spectroscopy is used as a probe of ultrastructural (molecular) changes in both the mineral and matrix (protein and glycoprotein, predominantly type I collagen) components of murine cortical bone as it responds to loading in the elastic regime. At the ultrastructural level, crystal structure and protein secondary structure distort as the tissue is loaded. These structural changes are followed as perturbations to tissue spectra. We load tissue in a custom-made dynamic mechanical tester that fits on the stage of a Raman microprobe and can accept hydrated tissue specimens. As the specimen is loaded in tension and/or compression, the shifts in mineral P-O4v 1 and relative band heights in the Amide III band envelope are followed with the microprobe. Average load is measured using a load cell while the tissue is loaded under displacement control. Changes occur in both the mineral and matrix components of bone as a response to elastic deformation. We propose that the mineral apatitic crystal lattice is deformed by movement of calcium and other ions. The matrix is proposed to respond by deformation of the collagen backbone. Raman microspectroscopy shows that bone mineral is not a passive contributor to tissue strength. The mineral active response to loading may function as a local energy storage and dissipation mechanism, thus helping to protect tissue from catastrophic damage

    Development of a histopathology scoring system for the pulmonary complications of organophosphorus insecticide poisoning in a pig model

    Get PDF
    Organophosphorus (OP) insecticide self-poisoning causes over 100,000 global deaths annually. Around a third of patients are intubated and up to half of these can die. Post-mortem analysis of OP poisoned patients' lungs reveals consolidation, edema and hemorrhage, suggesting that direct or indirect lung damage may contribute to mortality. The lung injury caused by these formulated agricultural preparations is poorly characterised in humans, and a valid histopathology scoring system is needed in a relevant animal model to further investigate the disease and potential treatments. We conducted two pilot studies in anesthetized minipigs, which are commonly used for toxicological studies. In the first, pigs were given 2.5 mL/kg of either OP (n = 4) or saline (n = 2) by gavage and compared with positive controls (iv oleic acid n = 2). The second study simulated ingestion followed by gastric content aspiration: mixtures of OP (n = 3) or saline (n = 2) (0.63-0.71mL/kg) were placed in the stomach, and then small volumes of the gastric content were placed in the lung. At post-mortem examination, lungs were removed and inflation-fixed with 10% neutral buffered formalin. Samples (n = 62) were taken from cranial and caudal regions of both lungs. Two experienced lung histopathologists separately scored these samples using 8 proposed features of damage and their scores related (Kendall rank order). Two elements had small and inconsistent scores. When these were removed, the correlation increased from 0.74 to 0.78. Eight months later, a subset of samples (n = 35) was re-scored using the modified system by one of the previous histopathologists, with a correlation of 0.88. We have developed a reproducible pulmonary histopathology scoring system for OP poisoning in pigs which will assist future toxicological research and improve understanding and treatment of human OP poisoning

    MicroMAPS CO Measurements over North America and Europe during Summer-Fall 2004

    Get PDF
    The MicroMAPS instrument is a nadir-viewing, gas filter-correlated radiometer which operating in the 4.67 micrometer fundamental band of carbon monoxide. Originally designed and built for a space mission, this CO remote sensor is being flown in support of satellite validation and science instrument demonstrations for potential UAV applications. The MicroMAPS instrument system, as flown on Proteus, was designed by a senior student design project in the Aerospace Engineering Department, Virginia Tech, in Blacksburg, VA. and then revised by Systems Engineers at NASA Langley. The final instrument system was integrated and tested at NASA LaRC, in partnership with Scaled Composites and Virginia Space Grant Consortium (VSGC). VSGC supervised the fabrication of the nacelle that houses the instrument system on the right rear tail boom of Proteus. Full system integration and flight testing was performed at Scaled Composites, in Mojave, in June 2004. Its successful performance enabled participation in four international science missions on Proteus: in 2004, INTEX -NA over eastern North America in July, ADRIEX over the Mediterranean region and EAQUATE over the United Kingdom region in September,and TWP-ICE over Darwin, Australia and the surrounding oceans in Jan-Feb 2006. These flights resulted in nearly 300 hours of data. In parallel with the engineering developments, theoretical radiative transfer models were developed specifically for the MicroMAPS instrument system at the University of Virginia, Mechanical Engineering Department by a combined undergraduate and graduate student team. With technical support from Resonance Ltd. in June 2005, the MicroMAPS instrument was calibrated for the conditions under which the Summer-Fall 2004 flights occurred. The analyses of the calibration data, combined with the theoretical radiative transfer models, provide the first data reduction for the science flights reported here. These early results and comparisons with profile data from the NASA DC-8, the coincident AIRS CO retrievals, and selected CO measurements from the MOZAIC program will be presented

    Enhanced Antifibrinolytic Efficacy of a Plasmin-Specific Kunitz-Inhibitor (60-Residue Y11T/L17R with C-Terminal IEK) of Human Tissue Factor Pathway Inhibitor Type-2 Domain1

    Get PDF
    Current antifibrinolytic agents reduce blood loss by inhibiting plasmin active sites (e.g., aprotinin) or by preventing plasminogen/tissue plasminogen activator (tPA) binding to fibrin clots (e.g., ε-aminocaproic acid and tranexamic acid); however, they have adverse side effects. Here, we expressed 60-residue (NH2NAE . . . IEKCOOH) Kunitz domain1 (KD1) mutants of human tissue factor pathway inhibitor type-2 that inhibit plasmin as well as plasminogen activation. A single (KD1-L17R-KCOOH) and a double mutant (KD1-Y11T/L17R- KCOOH) were expressed in Escherichia coli as His-tagged constructs, each with enterokinase cleavage sites. KD1-Y11T/L17R-KCOOH was also expressed in Pichia pastoris. KD1-Y11T/L17R-KCOOH inhibited plasmin comparably to aprotinin and bound to the kringle domains of plasminogen/plasmin and tPA with Kd of ~50 nM and ~35 nM, respectively. Importantly, compared to aprotinin, KD1-L17R-KCOOH and KD1-Y11T/L17R-KCOOH did not inhibit kallikrein. Moreover, the antifibrinolytic potential of KD1-Y11T/L17R-KCOOH was better than that of KD1-L17R-KCOOH and similar to that of aprotinin in plasma clot-lysis assays. In thromboelastography experiments, KD1-Y11T/L17R-KCOOH was shown to inhibit fibrinolysis in a dose dependent manner and was comparable to aprotinin at a higher concentration. Further, KD1-Y11T/L17R-KCOOH did not induce cytotoxicity in primary human endothelial cells or fibroblasts. We conclude that KD1-Y11T/L17R-KCOOH is comparable to aprotinin, the most potent known inhibitor of plasmin and can be produced in large amounts using Pichia

    Ligand Trap of the Activin Receptor Type IIA Inhibits Osteoclast Stimulation of Bone Remodeling in Diabetic Mice with Chronic Kidney Disease

    Get PDF
    Dysregulation of skeletal remodeling is a component of renal osteodystrophy. Previously, we showed that activin receptor signaling is differentially affected in various tissues in chronic kidney disease (CKD). We tested whether a ligand trap for the activin receptor type 2A (RAP-011) is an effective treatment of the osteodystrophy of the CKD-mineral bone disorder. With a 70% reduction in the glomerular filtration rate, CKD was induced at 14 weeks of age in the ldlr−/− high fat-fed mouse model of atherosclerotic vascular calcification and diabetes. Twenty mice with CKD, hyperphosphatemia, hyperparathyroidism, and elevated activin A were treated with RAP-011, wherease 19 mice were given vehicle twice weekly from week 22 until the mice were killed at 28 weeks of age. The animals were then evaluated by skeletal histomorphometry, micro-computed tomography, mechanical strength testing, and ex vivo bone cell culture. Results in the CKD groups were compared with those of the 16 sham-operated ldlr−/− high fat-fed mice. Sham-operated mice had low-turnover osteodystrophy and skeletal frailty. CKD stimulated bone remodeling with significant increases in osteoclast and osteoblast numbers and bone resorption. Compared with mice with CKD and sham-operated mice, RAP-011 treatment eliminated the CKD-induced increase in these histomorphometric parameters and increased trabecular bone fraction. RAP-011 significantly increased cortical bone area and thickness. Activin A-enhanced osteoclastogenesis was mediated through p-Smad2 association with c-fos and activation of nuclear factor of activated T cells c1 (NFATc1). Thus, an ActRIIA ligand trap reversed CKD-stimulated bone remodeling, likely through inhibition of activin-A induced osteoclastogenesis
    • …
    corecore