63 research outputs found

    Methylphenidate and \u3ci\u3eMemory and Attention Adaptation Training\u3c/i\u3e for persistent cognitive symptoms after traumatic brain injury: a randomized, placebo-controlled trial

    Get PDF
    The purpose of this multicenter, prospective, randomized, placebo-controlled study was to evaluate and compare the efficacy of two cognitive rehabilitation interventions (Memory and Attention Adaptation Training (MAAT) and Attention Builders Training (ABT)), with and without pharmacologic enhancement (i.e., with methylphenidate (MPH) or placebo), for treating persistent cognitive problems after traumatic brain injury (TBI). Adults with a history of TBI at least four months prior to study enrollment with either objective cognitive deficits or subjective cognitive complaints were randomized to receive MPH or placebo and MAAT or ABT, yielding four treatment combinations: MAAT/MPH (N=17), ABT/MPH (N=19), MAAT/placebo (N=17), and ABT/placebo (N=18). Assessments were conducted pre-treatment (baseline) and after six weeks of treatment (post-treatment). Outcome measures included scores on neuropsychological measures and subjective rating scales. Statistical analyses used linear regression models to predict post-treatment scores for each outcome variable by treatment type, adjusting for relevant covariates. Statistically significant (p\u3c0.05) treatment-related improvements in cognitive functioning were found for word list learning (MAAT/placebo\u3eABT/placebo), nonverbal learning (MAAT/MPH\u3eMAAT/placebo and MAAT/MPH\u3eABT/MPH), and auditory working memory and divided attention (MAAT/MPH\u3eABT/MPH). These results suggest that combined treatment with metacognitive rehabilitation (MAAT) and pharmacotherapy (MPH) can improve aspects of attention, episodic and working memory, and executive functioning after TBI

    Methylphenidate and Memory and Attention Adaptation Training for persistent cognitive symptoms after traumatic brain injury: a randomized, placebo-controlled trial

    Get PDF
    The purpose of this multicenter, prospective, randomized, placebo-controlled study was to evaluate and compare the efficacy of two cognitive rehabilitation interventions (Memory and Attention Adaptation Training (MAAT) and Attention Builders Training (ABT)), with and without pharmacological enhancement (ie, with methylphenidate (MPH) or placebo), for treating persistent cognitive problems after traumatic brain injury (TBI). Adults with a history of TBI at least 4 months before study enrollment with either objective cognitive deficits or subjective cognitive complaints were randomized to receive MPH or placebo and MAAT or ABT, yielding four treatment combinations: MAAT/MPH (N=17), ABT/MPH (N=19), MAAT/placebo (N=17), and ABT/placebo (N=18). Assessments were conducted pre-treatment (baseline) and after 6 weeks of treatment (post treatment). Outcome measures included scores on neuropsychological measures and subjective rating scales. Statistical analyses used linear regression models to predict post-treatment scores for each outcome variable by treatment type, adjusting for relevant covariates. Statistically significant (PABT/placebo), nonverbal learning (MAAT/MPH>MAAT/placebo and MAAT/MPH>ABT/MPH), and auditory working memory and divided attention (MAAT/MPH>ABT/MPH). These results suggest that combined treatment with metacognitive rehabilitation (MAAT) and pharmacotherapy (MPH) can improve aspects of attention, episodic and working memory, and executive functioning after TBI

    Methylphenidate and \u3ci\u3eMemory and Attention Adaptation Training\u3c/i\u3e for persistent cognitive symptoms after traumatic brain injury: a randomized, placebo-controlled trial

    Get PDF
    The purpose of this multicenter, prospective, randomized, placebo-controlled study was to evaluate and compare the efficacy of two cognitive rehabilitation interventions (Memory and Attention Adaptation Training (MAAT) and Attention Builders Training (ABT)), with and without pharmacologic enhancement (i.e., with methylphenidate (MPH) or placebo), for treating persistent cognitive problems after traumatic brain injury (TBI). Adults with a history of TBI at least four months prior to study enrollment with either objective cognitive deficits or subjective cognitive complaints were randomized to receive MPH or placebo and MAAT or ABT, yielding four treatment combinations: MAAT/MPH (N=17), ABT/MPH (N=19), MAAT/placebo (N=17), and ABT/placebo (N=18). Assessments were conducted pre-treatment (baseline) and after six weeks of treatment (post-treatment). Outcome measures included scores on neuropsychological measures and subjective rating scales. Statistical analyses used linear regression models to predict post-treatment scores for each outcome variable by treatment type, adjusting for relevant covariates. Statistically significant (p\u3c0.05) treatment-related improvements in cognitive functioning were found for word list learning (MAAT/placebo\u3eABT/placebo), nonverbal learning (MAAT/MPH\u3eMAAT/placebo and MAAT/MPH\u3eABT/MPH), and auditory working memory and divided attention (MAAT/MPH\u3eABT/MPH). These results suggest that combined treatment with metacognitive rehabilitation (MAAT) and pharmacotherapy (MPH) can improve aspects of attention, episodic and working memory, and executive functioning after TBI

    Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use

    Get PDF
    Tobacco and alcohol use are leading causes of mortality that influence risk for many complex diseases and disorders 1 . They are heritable 2,3 and etiologically related 4,5 behaviors that have been resistant to gene discovery efforts 6–11 . In sample sizes up to 1.2 million individuals, we discovered 566 genetic variants in 406 loci associated with multiple stages of tobacco use (initiation, cessation, and heaviness) as well as alcohol use, with 150 loci evidencing pleiotropic association. Smoking phenotypes were positively genetically correlated with many health conditions, whereas alcohol use was negatively correlated with these conditions, such that increased genetic risk for alcohol use is associated with lower disease risk. We report evidence for the involvement of many systems in tobacco and alcohol use, including genes involved in nicotinic, dopaminergic, and glutamatergic neurotransmission. The results provide a solid starting point to evaluate the effects of these loci in model organisms and more precise substance use measures

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    AVIATR—Aerial Vehicle for In-situ and Airborne Titan Reconnaissance

    Get PDF

    Linkages between environmental conditions and recreational king mackerel catch off west-central Florida

    Get PDF
    The objective of this study was to determine if fronts sustained up to three days will result in an aggregation of kingfish due to the anticipated accumulation of forage, increasing fishing success at these locations. Automated algorithms to detect frontal features in satellite-derived sea surface temperature, chlorophyll concentration, water clarity, and fluorescence images were successfully adapted for the coastal waters off west-central Florida. The surface ocean fronts were used to study the linkages between environmental conditions and recreational catch statistics of king mackerel (Scomberomorus cavalla) during 19 seasonal tournaments held in April to May and October to November of 2004 and 2005. The local winds estimated from a USF Coastal Ocean Monitoring and Prediction System observing station were analyzed with the frontal data to examine factors that influence oceanic frontal formation and stability. The front detection algorithms were also applied to high-r esolution bathymetry data which serves as a new technique for analyzing bottom topography. The spatial relationships between catch data collected through 415 angler interviews, frontal boundaries and stability, bathymetric gradients, bottom structure, and baitfish presence were identified using ESRI ArcGIS.Fishing success and fishing effort were highly variable regarding the distance of fishing activity to the nearest front. This was attributed to non-persistent winds. Intermediate water clarity (0.7 to 1.0 mW cm-2 microm-1 sr-1), the presence of baitfish, and the side of the front with relatively less chlorophyll showed the greatest influence on the king mackerel catch rates. Fishing success was found to be significantly higher at fishing locations where baitfish were reported present compared to where they were not reported. Concurrent with the 2005 harmful algal bloom event, a significant decrease in king mackerel catch occurred in the fall of 2005 (208 fish) compared to fall 20 04 (818) and spring 2005 (538). Additionally, fishing locations with baitfish present were observed about 15% less often during the fall of 2005 than the preceding seasons. From this, a model can be developed to diagnose the environmental conditions that can be used by resource managers to better understand variations in catch, which result from naturally occurring phenomena or man-induced overfishing

    Shelf-Scale Mapping of Sound Production by Fishes in the Eastern Gulf of Mexico, using Autonomous Glider Technology

    No full text
    Autonomous gliders are a relatively new technology for studying oceanography over large time and space scales. We integrated a hydrophone into the aft cowling of a glider and used it in a 1 wk, shelf-scale deployment on the West Florida Shelf to detect and map fish sounds in the ocean over a large spatial scale. In addition to red grouper and toadfish sounds, at least 3 unknown biological sounds suspected to be produced by fish were identified through manual analysis of the acoustic files. The biogeography of these fishes was identified by mapping the occurrence of sounds along the glider track. Sounds produced by red grouper and toadfish were detected throughout the day predominately in bottom depths \u3e 40 m. Conversely, the 3 unknown biological sounds were detected exclusively at night over varying bottom depths. Glider technology provides a reliable and relatively inexpensive method to collect acoustic and environmental data over large spatial scales while maintaining a high rate of successful retrieval
    corecore