556 research outputs found

    Investigating Habituation to Premonitory Urges in Behavior Therapy for Tic Disorders

    Get PDF
    Behavior therapy is effective for Persistent Tic Disorders (PTDs), but behavioral processes facilitating tic reduction are not well understood. One process, habituation, is thought to create tic reduction through decreases in premonitory urge severity. The current study tested whether premonitory urges decreased in youth with PTDs (N = 126) and adults with PTDs (N = 122) who participated in parallel randomized clinical trials comparing behavior therapy to psychoeducation and supportive therapy (PST). Trends in premonitory urges, tic severity, and treatment outcome were analyzed according to the predictions of a habituation model, whereby urge severity would be expected to decrease in those who responded to behavior therapy. Although adults who responded to behavior therapy showed a significant trend of declining premonitory urge severity across treatment, results failed to demonstrate that behavior therapy specifically caused changes in premonitory urge severity. In addition, reductions in premonitory urge severity in those who responded to behavior therapy were significant greater than those who did not respond to behavior therapy but no different than those who responded or did not respond to PST. Children with PTDs failed to show any significant changes in premonitory urges. Reductions in premonitory urge severity did not mediate the relationship between treatment and outcome in either adults or children. These results cast doubt on the notion that habituation is the therapeutic process underlying the effectiveness of behavior therapy, which has immediate implications for the psychoeducation and therapeutic rationale presented in clinical practice. Moreover, there may be important developmental changes in premonitory urges in PTDs, and alternative models of therapeutic change warrant investigation

    Temperature suppression of STM-induced desorption of hydrogen on Si(100) surfaces

    Full text link
    The temperature dependence of hydrogen (H) desorption from Si(100) H-terminated surfaces by a scanning tunneling microscope (STM) is reported for negative sample bias. It is found that the STM induced H desorption rate (RR) decreases several orders of magnitude when the substrate temperature is increased from 300 K to 610 K. This is most noticeable at a bias voltage of -7 V where RR decreases by a factor of ~200 for a temperature change of 80 K, whilst it only decreases by a factor of ~3 at -5 V upon the same temperature change. The experimental data can be explained by desorption due to vibrational heating by inelastic scattering via a hole resonance. This theory predicts a weak suppression of desorption with increasing temperature due to a decreasing vibrational lifetime, and a strong bias dependent suppression due to a temperature dependent lifetime of the hole resonance.Comment: 5 pages, RevTeX, epsf files. Accepted for surface science letter

    STM induced hydrogen desorption via a hole resonance

    Get PDF
    We report STM-induced desorption of H from Si(100)-H(2×1\times1) at negative sample bias. The desorption rate exhibits a power-law dependence on current and a maximum desorption rate at -7 V. The desorption is explained by vibrational heating of H due to inelastic scattering of tunneling holes with the Si-H 5σ\sigma hole resonance. The dependence of desorption rate on current and bias is analyzed using a novel approach for calculating inelastic scattering, which includes the effect of the electric field between tip and sample. We show that the maximum desorption rate at -7 V is due to a maximum fraction of inelastically scattered electrons at the onset of the field emission regime.Comment: 4 pages, 4 figures. To appear in Phys. Rev. Let

    Testing of quantum phase in matter wave optics

    Full text link
    Various phase concepts may be treated as special cases of the maximum likelihood estimation. For example the discrete Fourier estimation that actually coincides with the operational phase of Noh, Fouge`res and Mandel is obtained for continuous Gaussian signals with phase modulated mean.Since signals in quantum theory are discrete, a prediction different from that given by the Gaussian hypothesis should be obtained as the best fit assuming a discrete Poissonian statistics of the signal. Although the Gaussian estimation gives a satisfactory approximation for fitting the phase distribution of almost any state the optimal phase estimation offers in certain cases a measurable better performance. This has been demonstrated in neutron--optical experiment.Comment: 8 pages, 4 figure

    Surface Screening Charge and Effective Charge

    Full text link
    The charge on an atom at a metallic surface in an electric field is defined as the field-derivative of the force on the atom, and this is consistent with definitions of effective charge and screening charge. This charge can be found from the shift in the potential outside the surface when the atoms are moved. This is used to study forces and screening on surface atoms of Ag(001) c(2×2)(2\times 2) -- Xe as a function of external field. It is found that at low positive (outward) fields, the Xe with a negative effective charge of -0.093 e|{e}| is pushed into the surface. At a field of 2.3 V \AA1^{-1} the charge changes sign, and for fields greater than 4.1 V \AA1^{-1} the Xe experiences an outward force. Field desorption and the Eigler switch are discussed in terms of these results.Comment: 4 pages, 1 figure, RevTex (accepted by PRL

    Mapping the unconventional orbital texture in topological crystalline insulators

    Get PDF
    The newly discovered topological crystalline insulators (TCIs) harbor a complex band structure involving multiple Dirac cones. These materials are potentially highly tunable by external electric field, temperature or strain and could find future applications in field-effect transistors, photodetectors, and nano-mechanical systems. Theoretically, it has been predicted that different Dirac cones, offset in energy and momentum-space, might harbor vastly different orbital character, a unique property which if experimentally realized, would present an ideal platform for accomplishing new spintronic devices. However, the orbital texture of the Dirac cones, which is of immense importance in determining a variety of materials properties, still remains elusive in TCIs. Here, we unveil the orbital texture in a prototypical TCI Pb1x_{1-x}Snx_xSe. By using Fourier-transform (FT) scanning tunneling spectroscopy (STS) we measure the interference patterns produced by the scattering of surface state electrons. We discover that the intensity and energy dependences of FTs show distinct characteristics, which can directly be attributed to orbital effects. Our experiments reveal the complex band topology involving two Lifshitz transitions and establish the orbital nature of the Dirac bands in this new class of topological materials, which could provide a different pathway towards future quantum applications

    Coulomb Explosion and Thermal Spikes

    Full text link
    A fast ion penetrating a solid creates a track of excitations. This can produce displacements seen as an etched track, a process initially used to detect energetic particles but now used to alter materials. From the seminal papers by Fleischer et al. [Phys. Rev. 156, 353 (1967)] to the present [C. Trautmann, S. Klaumunzer and H. Trinkaus, Phys. Rev. Lett. 85, 3648 (2000)], `Coulomb explosion' and thermal spike models are treated as conflicting models for describing ion track effects. Here molecular dynamics simulations of electronic-sputtering, a surface manifestation of ion track formation, show that `Coulomb explosion' produces a `heat' spike so that these are early and late aspects of the same process. Therefore, differences in scaling are due to the use of incomplete spike models.Comment: Submitted to PRL. 4 pages, 3 figures. For related movies see: http://dirac.ms.virginia.edu/~emb3t/coulomb/coulomb.html PACS added in new versio

    Atomic Tunneling from a STM/AFM tip: Dissipative Quantum Effects from Phonons

    Full text link
    We study the effects of phonons on the tunneling of an atom between two surfaces. In contrast to an atom tunneling in the bulk, the phonons couple very strongly, and qualitatively change the tunneling behavior. This is the first example of {\it ohmic} coupling from phonons for a two-state system. We propose an experiment in which an atom tunnels from the tip of an STM, and show how its behavior would be similar to the Macroscopic Quantum Coherence behavior predicted for SQUIDS. The ability to tune and calculate many parameters would lead to detailed tests of the standard theories. (For a general intro to this work on the on the World-Wide-Web: http://www.lassp.cornell.edu. Click on ``Entertaining Science Done Here'' and ``Quantum Tunneling of Atoms'')Comment: 12 pages, ReVTex3.0, two figures (postscript). This is a (substantially) revised version of cond-mat/9406043. More info (+ postscript text) at : http://www.lassp.cornell.edu/ardlouis/publications.htm
    corecore