154 research outputs found
Development and Validation of eRADAR: A Tool Using EHR Data to Detect Unrecognized Dementia.
ObjectivesEarly recognition of dementia would allow patients and their families to receive care earlier in the disease process, potentially improving care management and patient outcomes, yet nearly half of patients with dementia are undiagnosed. Our aim was to develop and validate an electronic health record (EHR)-based tool to help detect patients with unrecognized dementia (EHR Risk of Alzheimer's and Dementia Assessment Rule [eRADAR]).DesignRetrospective cohort study.SettingKaiser Permanente Washington (KPWA), an integrated healthcare delivery system.ParticipantsA total of 16 665 visits among 4330 participants in the Adult Changes in Thought (ACT) study, who undergo a comprehensive process to detect and diagnose dementia every 2 years and have linked KPWA EHR data, divided into development (70%) and validation (30%) samples.MeasurementsEHR predictors included demographics, medical diagnoses, vital signs, healthcare utilization, and medications within the previous 2 years. Unrecognized dementia was defined as detection in ACT before documentation in the KPWA EHR (ie, lack of dementia or memory loss diagnosis codes or dementia medication fills).ResultsOverall, 1015 ACT visits resulted in a diagnosis of incident dementia, of which 498 (49%) were unrecognized in the KPWA EHR. The final 31-predictor model included markers of dementia-related symptoms (eg, psychosis diagnoses, antidepressant fills), healthcare utilization pattern (eg, emergency department visits), and dementia risk factors (eg, cerebrovascular disease, diabetes). Discrimination was good in the development (C statistic = .78; 95% confidence interval [CI] = .76-.81) and validation (C statistic = .81; 95% CI = .78-.84) samples, and calibration was good based on plots of predicted vs observed risk. If patients with scores in the top 5% were flagged for additional evaluation, we estimate that 1 in 6 would have dementia.ConclusionThe eRADAR tool uses existing EHR data to detect patients with good accuracy who may have unrecognized dementia. J Am Geriatr Soc 68:103-111, 2019
Complex modeling with detailed temporal predictors does not improve health records-based suicide risk prediction
Suicide risk prediction models can identify individuals for targeted intervention. Discussions of transparency, explainability, and transportability in machine learning presume complex prediction models with many variables outperform simpler models. We compared random forest, artificial neural network, and ensemble models with 1500 temporally defined predictors to logistic regression models. Data from 25,800,888 mental health visits made by 3,081,420 individuals in 7 health systems were used to train and evaluate suicidal behavior prediction models. Model performance was compared across several measures. All models performed well (area under the receiver operating curve [AUC]: 0.794-0.858). Ensemble models performed best, but improvements over a regression model with 100 predictors were minimal (AUC improvements: 0.006-0.020). Results are consistent across performance metrics and subgroups defined by race, ethnicity, and sex. Our results suggest simpler parametric models, which are easier to implement as part of routine clinical practice, perform comparably to more complex machine learning methods
Follow-up observations at 16 and 33 GHz of extragalactic sources from WMAP 3-year data: I - Spectral properties
We present follow-up observations of 97 point sources from the Wilkinson
Microwave Anisotropy Probe (WMAP) 3-year data, contained within the New
Extragalactic WMAP Point Source (NEWPS) catalogue between declinations of -4
and +60 degrees; the sources form a flux-density-limited sample complete to 1.1
Jy (approximately 5 sigma) at 33 GHz. Our observations were made at 16 GHz
using the Arcminute Microkelvin Imager (AMI) and at 33 GHz with the Very Small
Array (VSA). 94 of the sources have reliable, simultaneous -- typically a few
minutes apart -- observations with both telescopes. The spectra between 13.9
and 33.75 GHz are very different from those of bright sources at low frequency:
44 per cent have rising spectra (alpha < 0.0), where flux density is
proportional to frequency^-alpha, and 93 per cent have spectra with alpha <
0.5; the median spectral index is 0.04. For the brighter sources, the agreement
between VSA and WMAP 33-GHz flux densities averaged over sources is very good.
However, for the fainter sources, the VSA tends to measure lower values for the
flux densities than WMAP. We suggest that the main cause of this effect is
Eddington bias arising from variability.Comment: 12 pages, 13 figures, submitted to MNRA
Exploring hypotheses of the actions of TGF-beta 1 in epidermal wound healing using a 3D computational multiscale model of the human epidermis
In vivo and in vitro studies give a paradoxical picture of the actions of the key regulatory factor TGF-beta 1 in epidermal wound healing with it stimulating migration of keratinocytes but also inhibiting their proliferation. To try to reconcile these into an easily visualized 3D model of wound healing amenable for experimentation by cell biologists, a multiscale model of the formation of a 3D skin epithelium was established with TGF-beta 1 literature-derived rule sets and equations embedded within it. At the cellular level, an agent-based bottom-up model that focuses on individual interacting units ( keratinocytes) was used. This was based on literature-derived rules governing keratinocyte behavior and keratinocyte/ECM interactions. The selection of these rule sets is described in detail in this paper. The agent-based model was then linked with a subcellular model of TGF-beta 1 production and its action on keratinocytes simulated with a complex pathway simulator. This multiscale model can be run at a cellular level only or at a combined cellular/subcellular level. It was then initially challenged ( by wounding) to investigate the behavior of keratinocytes in wound healing at the cellular level. To investigate the possible actions of TGF-beta 1, several hypotheses were then explored by deliberately manipulating some of these rule sets at subcellular levels. This exercise readily eliminated some hypotheses and identified a sequence of spatial-temporal actions of TGF-beta 1 for normal successful wound healing in an easy-to-follow 3D model. We suggest this multiscale model offers a valuable, easy-to-visualize aid to our understanding of the actions of this key regulator in wound healing, and provides a model that can now be used to explore pathologies of wound healing
Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions : (RECONCILE) ; activities and results
The international research project RECONCILE has addressed central questions regarding polar ozone depletion, with the objective to quantify some of the most relevant yet still uncertain physical and chemical processes and thereby improve prognostic modelling capabilities to realistically predict the response of the ozone layer to climate change. This overview paper outlines the scope and the general approach of RECONCILE, and it provides a summary of observations and modelling in 2010 and 2011 that have generated an in many respects unprecedented dataset to study processes in the Arctic winter stratosphere. Principally, it summarises important outcomes of RECONCILE including (i) better constraints and enhanced consistency on the set of parameters governing catalytic ozone destruction cycles, (ii) a better understanding of the role of cold binary aerosols in heterogeneous chlorine activation, (iii) an improved scheme of polar stratospheric cloud (PSC) processes that includes heterogeneous nucleation of nitric acid trihydrate (NAT) and ice on non-volatile background aerosol leading to better model parameterisations with respect to denitrification, and (iv) long transient simulations with a chemistry-climate model (CCM) updated based on the results of RECONCILE that better reproduce past ozone trends in Antarctica and are deemed to produce more reliable predictions of future ozone trends. The process studies and the global simulations conducted in RECONCILE show that in the Arctic, ozone depletion uncertainties in the chemical and microphysical processes are now clearly smaller than the sensitivity to dynamic variability
Agent based modelling helps in understanding the rules by which fibroblasts support keratinocyte colony formation
Background: Autologous keratincoytes are routinely expanded using irradiated mouse fibroblasts and bovine serum for clinical use. With growing concerns about the safety of these xenobiotic materials, it is desirable to culture keratinocytes in media without animal derived products. An improved understanding of epithelial/mesenchymal interactions could assist in this.
Methodology/Principal Findings: A keratincyte/fibroblast o-culture model was developed by extending an agent-based keratinocyte colony formation model to include the response of keratinocytes to both fibroblasts and serum. The model was validated by comparison of the in virtuo and in vitro multicellular behaviour of keratinocytes and fibroblasts in single and co-culture in Greens medium. To test the robustness of the model, several properties of the fibroblasts were changed to investigate their influence on the multicellular morphogenesis of keratinocyes and fibroblasts. The model was then used to generate hypotheses to explore the interactions of both proliferative and growth arrested fibroblasts with keratinocytes. The key predictions arising from the model which were confirmed by in vitro experiments were that 1) the ratio of fibroblasts to keratinocytes would critically influence keratinocyte colony expansion, 2) this ratio needed to be optimum at the beginning of the co-culture, 3) proliferative fibroblasts would be more effective than irradiated cells in expanding keratinocytes and 4) in the presence of an adequate number of fibroblasts, keratinocyte expansion would be independent of serum.
Conclusions: A closely associated computational and biological approach is a powerful tool for understanding complex biological systems such as the interactions between keratinocytes and fibroblasts. The key outcome of this study is the finding that the early addition of a critical ratio of proliferative fibroblasts can give rapid keratinocyte expansion without the use of irradiated mouse fibroblasts and bovine serum
UNICORN Babies: Understanding Circulating and Cerebral Creatine Levels of the Preterm Infant. An Observational Study Protocol
Creatine is an essential metabolite for brain function, with a fundamental role in cellular (ATP) energy homeostasis. It is hypothesized that preterm infants will become creatine deplete in the early postnatal period, due to premature delivery from a maternal source of creatine and a limited supply of creatine in newborn nutrition. This potential alteration to brain metabolism may contribute to, or compound, poor neurological outcomes in this high-risk population. Understanding Creatine for Neurological Health in Babies (UNICORN) is an observational study of circulating and cerebral creatine levels in preterm infants. We will recruit preterm infants at gestational ages 23+0–26+6, 27+0–29+6, 30+0–32+6, 33+0–36+6, and a term reference group at 39+0–40+6 weeks of gestation, with 20 infants in each gestational age group. At birth, a maternal capillary blood sample, as well as a venous cord blood sample, will be collected. For preterm infants, serial infant plasma (heel prick), urine, and nutrition samples [total parenteral nutrition (TPN), breast milk, or formula] will be collected between birth and term “due date.” Key fetomaternal information, including demographics, smoking status, and maternal diet, will also be collected. At term corrected postnatal age (CPA), each infant will undergo an MRI/1H-MRS scan to evaluate brain structure and measure cerebral creatine content. A general movements assessment (GMA) will also be conducted. At 3 months of CPA, infants will undergo a second GMA as well as further neurodevelopmental evaluation using the Developmental Assessment of Young Children – Second Edition (DAYC-2) assessment tool. The primary outcome measures for this study are cerebral creatine content at CPA and plasma and urine creatine and guanidinoacetate (creatine precursor) concentrations in the early postnatal period. We will also determine associations between (1) creatine levels at term CPA and neurodevelopmental outcomes (MRI, GMA, and DAY-C); (2) dietary creatine intake and circulating and cerebral creatine content; and (3) creatine levels and maternal characteristics. Novel approaches are needed to try and improve preterm-associated brain injury. Inclusion of creatine in preterm nutrition may better support ex utero brain development through improved cerebral cellular energy availability during a period of significant brain growth and development.Ethics Ref: HDEC 18/CEN/7 New Zealand.ACTRN: ACTRN12618000871246
Survey of Period Variations of Superhumps in SU UMa-Type Dwarf Novae
We systematically surveyed period variations of superhumps in SU UMa-type
dwarf novae based on newly obtained data and past publications. In many
systems, the evolution of superhump period are found to be composed of three
distinct stages: early evolutionary stage with a longer superhump period,
middle stage with systematically varying periods, final stage with a shorter,
stable superhump period. During the middle stage, many systems with superhump
periods less than 0.08 d show positive period derivatives. Contrary to the
earlier claim, we found no clear evidence for variation of period derivatives
between superoutburst of the same object. We present an interpretation that the
lengthening of the superhump period is a result of outward propagation of the
eccentricity wave and is limited by the radius near the tidal truncation. We
interpret that late stage superhumps are rejuvenized excitation of 3:1
resonance when the superhumps in the outer disk is effectively quenched. Many
of WZ Sge-type dwarf novae showed long-enduring superhumps during the
post-superoutburst stage having periods longer than those during the main
superoutburst. The period derivatives in WZ Sge-type dwarf novae are found to
be strongly correlated with the fractional superhump excess, or consequently,
mass ratio. WZ Sge-type dwarf novae with a long-lasting rebrightening or with
multiple rebrightenings tend to have smaller period derivatives and are
excellent candidate for the systems around or after the period minimum of
evolution of cataclysmic variables (abridged).Comment: 239 pages, 225 figures, PASJ accepte
Interaction between non-executive and executive directors in English National Health Service trust boards: an observational study
Research funded by Burdett FoundationBackground National Health Service (NHS) trusts, which provide the majority of hospital and community health services to the English NHS, are increasingly adopting a ‘public firm’ model with a board consisting of executive directors who are trust employees and external non-executives chosen for their experience in a range of areas such as finance, health care and management. In this paper we compare the non-executive directors’ roles and interests in, and contributions to, NHS trust boards’ governance activities with those of executive directors; and examine non-executive directors’ approach to their role in board meetings. Methods Non-participant observations of three successive trust board meetings in eight NHS trusts (primary care trusts, foundation trusts and self-governing (non-foundation) trusts) in England in 2008–9. The observational data were analysed inductively to yield categories of behaviour reflecting the perlocutionary types of intervention which non-executive directors made in trust meetings. Results The observational data revealed six main perlocutionary types of questioning tactic used by non-executive directors to executive directors: supportive; lesson-seeking; diagnostic; options assessment; strategy seeking; and requesting further work. Non-executive board members’ behaviours in holding the executive team to account at board meetings were variable. Non-executive directors were likely to contribute to finance-related discussions which suggests that they did see financial challenge as a key component of their role. Conclusions The pattern of behaviours was more indicative of an active, strategic approach to governance than of passive monitoring or ‘rubber-stamping’. Nevertheless, additional means of maintaining public accountability of NHS trusts may also be required
- …