36 research outputs found

    Finding optimal alternatives based on efficient comparative preference inference

    Get PDF
    Choosing the right or the best option is often a demanding and challenging task for the user (e.g., a customer in an online retailer) when there are many available alternatives. In fact, the user rarely knows which offering will provide the highest value. To reduce the complexity of the choice process, automated recommender systems generate personalized recommendations. These recommendations take into account the preferences collected from the user in an explicit (e.g., letting users express their opinion about items) or implicit (e.g., studying some behavioral features) way. Such systems are widespread; research indicates that they increase the customers' satisfaction and lead to higher sales. Preference handling is one of the core issues in the design of every recommender system. This kind of system often aims at guiding users in a personalized way to interesting or useful options in a large space of possible options. Therefore, it is important for them to catch and model the user's preferences as accurately as possible. In this thesis, we develop a comparative preference-based user model to represent the user's preferences in conversational recommender systems. This type of user model allows the recommender system to capture several preference nuances from the user's feedback. We show that, when applied to conversational recommender systems, the comparative preference-based model is able to guide the user towards the best option while the system is interacting with her. We empirically test and validate the suitability and the practical computational aspects of the comparative preference-based user model and the related preference relations by comparing them to a sum of weights-based user model and the related preference relations. Product configuration, scheduling a meeting and the construction of autonomous agents are among several artificial intelligence tasks that involve a process of constrained optimization, that is, optimization of behavior or options subject to given constraints with regards to a set of preferences. When solving a constrained optimization problem, pruning techniques, such as the branch and bound technique, point at directing the search towards the best assignments, thus allowing the bounding functions to prune more branches in the search tree. Several constrained optimization problems may exhibit dominance relations. These dominance relations can be particularly useful in constrained optimization problems as they can instigate new ways (rules) of pruning non optimal solutions. Such pruning methods can achieve dramatic reductions in the search space while looking for optimal solutions. A number of constrained optimization problems can model the user's preferences using the comparative preferences. In this thesis, we develop a set of pruning rules used in the branch and bound technique to efficiently solve this kind of optimization problem. More specifically, we show how to generate newly defined pruning rules from a dominance algorithm that refers to a set of comparative preferences. These rules include pruning approaches (and combinations of them) which can drastically prune the search space. They mainly reduce the number of (expensive) pairwise comparisons performed during the search while guiding constrained optimization algorithms to find optimal solutions. Our experimental results show that the pruning rules that we have developed and their different combinations have varying impact on the performance of the branch and bound technique

    Preference Elicitation and Reasoning While Smart Shifting of Home Appliances

    Get PDF
    AbstractA crucial part of the total electricity demand is energy consumption in the residential sector. In parallel to optimizing energy consumption within houses, user comfort is still an essential success criterion for automated solutions used within the house. Choosing the most comfortable appliance schedule is often a challenging task for the members of the house. To bring focus on this challenge, residential customer involvement is enhanced by a trend towards automation of appliances. This trend is reflected by pilot projects such as Linear which uses automated smart appliances at the demand side to attain more flexibility in the electricity system. Moreover, industrial interest from the Telecom, energy and household appliance sector to promote smart schedules for appliances is growing. To meet this trend, this paper describes new ways to model and reason with the user preferences when scheduling appliances in a household under dynamic pricing schemes given different user preferences. These methods have been proven to be efficient in eliciting and computing the user preferences to increase the user comfort in the house

    Comparative preferences induction methods for conversational recommenders

    Get PDF
    In an era of overwhelming choices, recommender systems aim at recommending the most suitable items to the user. Preference handling is one of the core issues in the design of recommender systems and so it is important for them to catch and model the user’s preferences as accurately as possible. In previous work, comparative preferences-based patterns were developed to handle preferences deduced by the system. These patterns assume there are only two values for each feature. However, real-world features can be multi-valued. In this paper, we develop preference induction methods which aim at capturing several preference nuances from the user feedback when features have more than two values. We prove the efficiency of the proposed methods through an experimental study

    Fatty acids and triacylglycerols composition from Tunisian Acacia species seed oil

    Get PDF
    AbstractRecently, plant seeds that have not been enough explored and exploited are cheap sources of a lot of natural molecules for industrial applications. The aim of the present study was to evaluate for the first time the composition of fatty acids and triacylglycerols (TAG) of mature unexploited seeds of some Acacia species (Acacia cyclops, Acacia ligulata and Acacia salicina) harvested in Tunisia in order to reveal their potential for human consumption.Results showed that, Acacia seed oils were mainly unsaturated (more than 71%). The polyunsaturated fatty acids were the major fractions (52–68%) with the linoleic acid as the major fatty acid (more than 52%), followed by oleic acid (15–27%) as monounsaturated fatty acid. The TAG composition was significantly different among the three Acacia species. PLL, PLO, LnLO, OLL, OOL, and OOO were the major forms. Acacia seed oil could be used as potential source of oil with high industrial value; nevertheless in vivo tests are essential to confirm its safety before use

    Radial neck fracture in children: anatomic and functional results of Metaizeau technique

    Get PDF
    Fractures of the radial neck accounts for 1% of all childhood fractures and 5% to 10% of childhood traumatic lesions involving the elbow. Intramedullary percutaneous nail reduction (Metaizeau technique) is considered the most effective surgical technique. The purpose of this study was to identify the main clinical features of radial neck fracture in children and to evaluate the anatomical and functional results of the Metaizeau technique. In this retrospective study, we evaluated 22 patients under the age of 16 who were treated for radial neck fracture at the orthopedic and trauma surgery department of Sahloul University Hospital in Sousse over a period of 16 years from January 2001 to April 2017. Authors used Metaizeau classification. Functional results were evaluated by Mayo elbow performance score (MEPS) and the radiological evaluation was based on standard images with measurement of the residual rocker. The average age was 8.6 years (5-13 years). Seven fracture were grade III injuries and three grade IV. In the immediate postoperative period, radiological measurements showed a residual rocker less than 20° in 86.3% and more than 20° in 13.7% of cases. At an average follow-up of 13 months and a half, the MEPS score was excellent and good for 17 patients. Four types of complications were found: necrosis of the radial head in 1 case, pseudarthrosis in 1 case, periarticular calcification in 2 cases and stiff-ness of the elbow in 3 cases. Despite the small number of patients in our series, we believe that the elastic stable intramedullary pinning according to the Metaizeau technique is the treatment of choice for displaced radial neck fractures in children

    Effects of stitching on delamination of satin weave carbon-epoxy laminates under mode I, mode II and mixed-mode I/II loadings

    Get PDF
    The objective of the present study is to characterize the effect of modified chain stitching on the delamination growth under mixed-mode I/II loading conditions. Delamination toughness under mode I is experimentally determined, for unstitched and stitched laminates, by using untabbed and tabbed double cantilever beam (TDCB) tests. The effect of the reinforcing tabs on mode I toughness is investigated. Stitching improves the energy release rate (ERR) up to 4 times in mode I. Mode II delamination toughness is evaluated in end-notched flexure (ENF) tests. Different geometries of stitched specimens are tested. Crack propagation occurs without any failure of stitching yarns. The final crack length attains the mid-span or it stops before and the specimen breaks in bending. The ERR is initially low and gradually increases with crack length to very high values. The mixedmode delamination behaviour is investigated using a mixed-mode bending (MMB) test. For unstitched specimens, a simple mixed-mode criterion is identified. For stitched specimens, stitching yarns do not break during 25% of mode I ratio tests and the ERR increase is relatively small compared to unstitched values. For 70% and 50% of mode I ratios, failures of yarns are observed during crack propagation and tests are able to capture correctly the effect of the stitching: it clearly improves the ERR for these two mixed modes, as much as threefold

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Software Development Process Improvement in Datacom Platform

    Get PDF
    Ericsson Mobile Platform (EMP) is responsible of the development of a software platform and also to some extend responsible for related hardware parts. EMP is developing the data communication parts of the platform which is used by EMP customers. The platform development is done in large development programs and each program span over a quite a long time period. However, as we see every day in the shops mobile phone manufactures are launching new models more or less every month. EMP has many different mobile phone manufactures on its customer list and in order to meet their requirements/wishes, they need to add new functionality to the platform. The platforms are going to be released in the very near future or are half way in the development or in the start up process. The simple image that summarizes the problem is that adding new functionality to projects, which are in the conclusion phase, is not easy without delaying the project. Thus, our intention in this thesis is to study how new functionalities in datacom platform could be added without jeopardizing the existing architecture of the running development projects of Ericsson. A solution that achieves fast process with high quality output and handles a customer requirement (CR) has been proposed in an efficient way. This is done by looking into current processes, working methods, tools, etc... Afterwards, a new mechanism has been investigated based on Test-Driven Development (TDD) as a main practice in Extreme Programming (XP). TDD is a method that recommends writing the tests at the same time, or even before the function to be tested. Verification of the proposed solution that explores an improvement in software development process is done by analysing, designing and implementing a new functionality related to Wireless Local Area Network (WLAN). The performance has been demonstrated first by spending less time in development phase. Thus, customer satisfaction can be reached with reducing time to market. In addition, writing high quality code within minor errors and bugs has been noticed. Consequently, improving product quality and reducing the cost of project can be achieved
    corecore