258 research outputs found

    Swarming behaviour in elite race bunch cycling: a case study

    Get PDF
    The current study undertook a dynamical systems analysis of race bunch cycling, considering the 'sports contest' as a dynamical, self organising system (McGarry et al., 2002). Data from one international track racing event was used to analyse a potential non-linear aggregation theory of 'swarming' in the 'points race', with two objectives; 1) To identify a race profile of a basic swarm mentality within the points race; 2) To identify system stability and the possible perturbation of stability in relation to successful and unsuccessful breakaways. Stability was based upon a 'normal' profile of race behaviours, measured by three separate dependent measures, namely; Absolute Difference, Rate of Change and Phase Duration. Results showed; 1) The points race exhibits the quintessential 'attract and repel' elements that characterise the swarm mentality 2) One-way ANOVA revealed that breakaways of both successful (3.3±1.2 half laps) and unsuccessful (3.1±1.5 half laps) conditions tend to differ from the race 'norm' (2.1±1.3 half laps) in terms of phase duration (F(2, 228)=18.4, P<0.05), suggesting that breakaways perturb the system through longer attract and repel phases. Results are discussed in relation to the current and future effectiveness of describing race bunch cycling as a dynamical system

    The reliability of Functional Movement Screening (FMS) and in-season changes in physical function and performance among elite rugby league players

    Get PDF
    This is the authors' PDF post-print of an article accepted for publication in the Journal of Strenght and Conditioning Research. The definitive version is available at http://journals.lww.com/nsca-jscrThis is not the published version. The final version of the article is available at doi 10.1519/JSC.0000000000000270Functional Movement Screening (FMS) comprises seven tests that assess fundamental movement characteristics of athletes. However, the reliability of the FMS protocol and its sensitivity to changes in physical performance has not been appropriately investigated. Accordingly, this study aimed to assess the real-time reliability of the FMS protocol and to establish changes in both FMS and tests of physical performance throughout a season. The reliability of the FMS components (12 in total) were assessed via a non-parametric statistical approach, based on two trials, separated by one week. Score on the FMS, strength (3 RM full squat, 1 RM bench press), running speed (10 & 40 m) and jump height of 12 elite male under-19 rugby league players was monitored at pre-, mid- and late-season periods. There was no bias found between trials for the FMS, with the majority of components reaching 100% ‘perfect agreement’. There were no effects of season stage on any of the FMS components; however, an improvement in every performance test was apparent between the pre- and both mid- and late-season periods. Our findings demonstrate that the FMS can be reliably administered to elite rugby league players but question its sensitivity to systematic changes in athletic performance

    Efficacy of an 8-Week Concurrent Strength and Endurance Training Programme on Hand Cycling Performance

    Get PDF
    The aim of the present study was to investigate the effects of an 8-week concurrent strength and endurance training programme in comparison to endurance training only on several key determinants of hand cycling performance. Five H4 and five H3 classified hand cyclists with at least one year’s hand cycling training history consented to participate in the study. Subjects underwent a battery of tests to establish body mass, body composition, VO2peak, maximum aerobic power, gross mechanical efficiency, maximal upper body strength, and 30 km time trial performance. Subjects were matched into pairs based upon 30 km time trial performance and randomly allocated to either a concurrent strength and endurance or endurance training only, intervention group. Following an 8-week training programme based upon a conjugated block periodisation model, subjects completed a second battery of tests. A mixed model, 2-way analysis of variance (ANOVA) revealed no significant changes between groups. However, the calculation of effect sizes (ES) revealed that both groups demonstrated a positive improvement in most physiological and performance measures with subjects in the concurrent group demonstrating a greater magnitude of improvement in body composition (ES -0.80 vs. -0.22) maximal aerobic power (ES 0.97 vs. 0.28), gross mechanical efficiency (ES 0.87 vs. 0.63), bench press 1 repetition maximum (ES 0.53 vs. 0.33), seated row 1 repetition maximum (ES 1.42 vs. 0.43), and 30 km time trial performance (ES -0.66 vs. -0.30). In comparison to endurance training only, an 8-week concurrent training intervention based upon a conjugated block periodisation model appears to be a more effective training regime for improving the performance capabilities of hand cyclists

    A three-season comparison of match performances among selected and unselected elite youth rugby league players

    Get PDF
    This is an author's accepted manuscript of an article published in Journal of Sports Sciences, 28 February 2014, available online: http:www.tandfonline.com/10.1080/02640414.2014.889838This study compared technical actions, movements, heart rates and perceptual responses of selected and unselected youth rugby league players during matches (under-15 to under-17). The players’ movements and heart rates were assessed using 5 Hz Global Positioning Systems (GPS), while their technical actions were analysed using video analysis. The maturity of each player was predicted before each season for statistical control. There were no differences (P > 0.05) between selected and unselected players in the under-15 or the under-17 age groups for any variables. However, in the under-16 group, the selected players (57.1 ± 11.9 min) played for longer than the unselected players (44.1 ± 12.3 min; P = 0.017; ES = 1.08 ± CI = 0.87), and covered more distance (5,181.0 ± 1063.5 m cf. 3942.6 ± 1,108.6m, respectively; P = 0.012; ES = 1.14 ± CI = 0.88) and high intensity distance (1,808.8 ± 369.3 m cf. 1,380.5 ± 367.7 m, respectively; P = 0.011; ES = 1.16 ± CI = 0.88). Although successful carries per minute was higher in the selected under-15 group, there were no other differences (P > 0.05) in match performance relative to playing minutes between groups. Controlling for maturity, the less mature, unselected players from the under-16 group performed more high-intensity running (P < 0.05). Our findings question the use of match- related measurements in differentiating between selected and unselected players, showing that later maturing players were unselected, even when performing greater high-intensity running during matches

    A longitudinal analysis of performance, growth and maturation in youth rugby league players: Implications for talent identification and development

    Get PDF
    This study monitored a cohort of youth rugby league players from one professional club in England, across three competitive seasons (under-15 to under-17 age group). The aims were to establish which dimensions of growth and performance characterized players who were either coach-selected or unselected each season and to evaluate annual developments in growth and performance. It was also necessary to establish the credibility of various measurement techniques that are implicated in the talent identification process. In the assessment of sprint performance, GPS measurements systematically underestimated both distance and timing gate speed but can be used to reliably evaluate sprint performance, particularly for measurements of peak speed (95% Limits of Agreement (LoA) = 0.00 ± 0.8 km·h-1; CV = 0.78%). Using a larger sample of youth team sport players (n = 60), multiple linear regression analysis, incorporating mean and peak GPS speeds as predictors of timing gate speed, yielded a prediction model that was able to provide a valid alternative to timing gates in the assessment of sprint performance over 30 m. With regards to the reliability of assessments of sport-specific skill in youth rugby league players, no comparisons met the pre-determined analytical goal of ‘perfect agreement’, meaning that up to 56% of players’ skill could be misinterpreted. The credibility of such assessments should be questioned and alternative tests considered. In the period between the under-15 and under-16 group, there were large annual increments in speed (5.02 Δ%), force (13.82 Δ%) and power (19.85 Δ%) generated over 10 m sprint intervals and predicted vertical jumping power (13.02 Δ%), with concomitant developments in body mass (5.14 Δ%), lean body mass (3.20 Δ%) and predicted muscle of the quadriceps (10.12 Δ%). A discriminant function analysis also highlighted 30 m force and 10 m acceleration as significant predictors of selected players in the under-15 group and under-16 group, explaining 47.3% and 40.7% of the between-group variance, respectively – which was the case independent of age at peak maturity. However, there were 5 no differences between selected and unselected players in the under-17 group. During match time, there were differences between selected (57.1 ± 11.9 min) and unselected (44.1 ± 12.3 min) players for average playing interval in the under-16 group. In turn, selected players covered more total distance (5181.0 ± 1063.5 m c.f. 3942.6 ± 1108.6 m, respectively; P = 0.012) and high intensity distance (1808.8 ± 369.3 m c.f. 1380.5 ± 367.7 m, respectively; P = 0.011) than unselected players. When age at peak height velocity (PHV) was statistically controlled, only distance in zone 3 and summated-HR remained higher in the selected players of the under-16 group. Conversely, higher values amongst the unselected under-16 players for total and relative distance in zone 4, 5 and high intensity were revealed. There was a relationship in the under-15 group (R = 0.702, P < 0.001), under-16 group (R = 0.607, P < 0.001) and under-17 group (R = 0.671, P < 0.006) between the number of successful ball carries and 10 m sprinting force, thus supporting the use of 10 m sprinting force as a predictor of match performance. The relationship (r = 0.51, P = 0.044) between aerobic capacity and HIT·min-1 in the under-17 group also provides preliminary evidence of aerobic endurance as a potential predictor of match running intensity. It was concluded that players who are coach-selected are not characterized by match related performance variables but are offered greater match exposure during the under-16 age group, resulting in larger running distances. Unselected players are unrewarded for higher intensity running during matches when maturational age is statistically controlled and are also equally effective in regard to tackling and ball carrying outcomes. These results collectively indicate the inability of match performance measurements to contribute to talent identification processes in players of this type. The changes in growth and performance should be used to guide talent development practices of rugby league coaches. In particular, the assessment of force (i.e. the product of acceleration and body mass) should be considered as an important factor in differentiating between higher and lower ability players, as well as relating to match performance

    Quantitative Trait Loci (QTL) for Forage Traits in Intermediate Wheatgrass When Grown as Spaced-Plants versus Monoculture and Polyculture Swards

    Get PDF
    It has been hypothesized that the genetic control of forage traits, especially biomass, for grass plants growing as spaced-plants versus swards is different. Likewise, the genetic control of compatibility in grass–legume polyculture mixtures is assumed to be different than for forage production in a grass monoculture. However, these hypotheses are largely unvalidated, especially at the DNA level. This study used an intermediate wheatgrass mapping population to examine the effect of three competition environments (spaced-plants, polyculture, and monoculture) on classical quantitative genetic parameters and quantitative trait loci (QTL) identification for biomass, morphology, and forage nutritive value. Moderate to high heritable variation was observed for biomass, morphological traits, and nutritive value within all three environments (H ranged from 0.50 to 0.87). Genetic correlations (rG) among environments for morphology and nutritive value were predominantly high, however, were moderately-low (0.30 to 0.48) for biomass. Six biomass QTL were identified, including three on linkage groups (LG) 1, 6, and 15 that were only expressed in the monoculture environment. Moreover, three biomass QTL on LG 10, 14, and 15 exhibited significant QTL by environment interactions. This study verified that the genetic control of grass biomass in a monoculture versus a grass–legume mixture is only partially the same, with additional genes expressed in monoculture, and that biomass in widely spaced-plants versus swards is predominantly under different genetic control. These results indicate that selection for improved grass biomass will be most successful when conducted within the targeted monoculture or polyculture sward environment per se

    Can Modus Vivendi Save Liberalism from Moralism? A Critical Assessment of John Gray’s Political Realism

    Get PDF
    This chapter assesses John Gray’s modus vivendi-based justification for liberalism. I argue that his approach is preferable to the more orthodox deontological or teleological justificatory strategies, at least because of the way it can deal with the problem of diversity. But then I show how that is not good news for liberalism, for grounding liberal political authority in a modus vivendi undermines liberalism’s aspiration to occupy a privileged normative position vis-à-vis other kinds of regimes. So modus vivendi can save liberalism from moralism, but at cost many liberals will not be prepared to pay

    RNA:protein ratio of the unicellular organism as a characteristic of phosphorous and nitrogen stoichiometry and of the cellular requirement of ribosomes for protein synthesis

    Get PDF
    Background Mean phosphorous:nitrogen (P:N) ratios and relationships of P:N ratios with the growth rate of organisms indicate a surprising similarity among and within microbial species, plants, and insect herbivores. To reveal the cellular mechanisms underling this similarity, the macromolecular composition of seven microorganisms and the effect of specific growth rate (SGR) on RNA:protein ratio, the number of ribosomes, and peptide elongation rate (PER) were analyzed under different conditions of exponential growth. Results It was found that P:N ratios calculated from RNA and protein contents in these particular organisms were in the same range as the mean ratios reported for diverse organisms and had similar positive relationships with growth rate, consistent with the growth-rate hypothesis. The efficiency of protein synthesis in microorganisms is estimated as the number of active ribosomes required for the incorporation of one amino acid into the synthesized protein. This parameter is calculated as the SGR:PER ratio. Experimental and theoretical evidence indicated that the requirement of ribosomes for protein synthesis is proportional to the RNA:protein ratio. The constant of proportionality had the same values for all organisms, and was derived mechanistically from the characteristics of the protein-synthesis machinery of the cell (the number of nucleotides per ribosome, the average masses of nucleotides and amino acids, the fraction of ribosomal RNA in the total RNA, and the fraction of active ribosomes). Impairment of the growth conditions decreased the RNA:protein ratio and increased the overall efficiency of protein synthesis in the microorganisms. Conclusion Our results suggest that the decrease in RNA:protein and estimated P:N ratios with decrease in the growth rate of the microorganism is a consequence of an increased overall efficiency of protein synthesis in the cell resulting from activation of the general stress response and increased transcription of cellular maintenance genes at the expense of growth related genes. The strong link between P:N stoichiometry, RNA:protein ratio, ribosomal requirement for protein synthesis, and growth rate of microorganisms indicated by the study could be used to characterize the N and P economy of complex ecosystems such as soils and the oceans

    Copper(0)-mediated radical polymerisation in a self-generating biphasic system

    Get PDF
    Herein, we demonstrate the synthesis of well-defined poly(n-alkyl acrylate)s via copper(0)-mediated radical polymerisation in a self-generating biphasic system. During the polymerisation of n-butyl acrylate in DMSO, the polymer phase separates to yield a polymer-rich layer with very low copper content (ICP-MS analysis: 0.016 wt%). The poly(n-butyl acrylate) has been characterized by a range of techniques, including GPC, NMR and MALDI-TOF, to confirm both the controlled character of the polymerisation and the end group fidelity. Moreover, we have successfully chain extended poly(n-butyl acrylate) in this biphasic system several times with n-butyl acrylate to high conversion without intermediate purification steps. A range of other alkyl acrylates have been investigated and the control over the polymerisation is lost as the hydrophobicity of the polymer increases due to the increase in alkyl chain length indicating that it is important for the monomer to be soluble in the polar solvent
    • …
    corecore