
Swarming behaviour in elite race bunch cycling: a case 
study

1. Introduction

There has been a recent emergence of complex systems theory within sports performance 

analysis literature. Of particular note is that of dynamic patterning, principally based upon the 

conceptual framework provided by previous authors such as Haken (1983) and, subsequently, 

the  model  posited  by  Haken  et  al.  (1985).  This  relates  to  the  somewhat  controversial 

supposition (see Lebed, 2006) that spatio-temporal patterns may characterise a sports contest 

as a  self-organising dynamic system, within which the system’s elements (players/athletes) 

demonstrate periods of co-operative interaction (McGarry et al. 2002). The seminal work of 

McGarry and co-authors (McGarry,  et al. 1999; McGarry  et al., 2002; McGarry and Perl, 

2004; McGarry, 2006) has realised the potential of the sports contest as a dynamical system, 

commonly illustrated by way of racket sports such as squash and, more recently, tennis (Palut 

and  Zanone,  2005).  As  such,  the  classical  ‘In-Phase’ and  ‘Anti-Phase’ patterning  (stable 

attractor  states)  have  been  reported  in  racket  sport  dyads,  reflecting  the  spatio-temporal 

harmony of players’ coupled movements about the court surface (McGarry et al., 1999). The 

presence of a stable attractor state is considered to exist within dyadic sporting contests and 

describes the conformance of two competing opponents towards a co-ordinated movement 

pattern, matched in relative space and corresponding time frames. Such patterns are referred 

to as ‘self organising’ since these emerge independent of external instruction.  Patterns are 

thought to maintain stability until perturbed by some destabilising event, otherwise known as 

a  ‘perturbation’  (Hughes  et  al.,  1998;  Hughes  et  al.,  2001;  McGarry  et  al.,  2006). 

Consequently, dyadic sports are widely considered to be more than the sum of two competing 

separate entities, rather, the product of a reciprocal interactive system that is drawn towards 

reaching stable attractor states, at least for transient periods during match play.      

Within the general context of complex systems theory, reports from previous research have 

been instrumental in realising the value of understanding specific in-game behaviours which 

can be associated with perturbations (Hughes et al., 1998; Hughes et al., 2001). A perturbation 
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is an event which serves to disrupt the reciprocal rhythm and subsequent stability of a system 

(i.e. two interacting players or teams). The attainment of such information is desirable since it 

may greatly reduce the amount of data derived from an analysed performance (Hughes, 2004; 

Lames and McGarry, 2007; McGarry, 2009) by identifying the potential causes of instability 

leading to critical incidents (Hughes et al., 1998; Hughes et al., 2001). For example, Hughes 

et  al. (1998)  reported  upon the  effect  of  perturbations,  identified  from incidents  such  as 

intercepting  tackles  or  penetrating  passes  leading to  a  goal  scoring  opportunity in  soccer 

(referred to as critical incidents). Any incident that changes the state of a systems’ stability 

represents a perturbation, which may or may not result in a critical outcome. 

More recently, some authors have supplemented research pertaining to dynamical systems in 

sport, theorising models of increased complexity, characterised by highly intricate interactions 

at the team level. For example, Reed and Hughes (2006) suggested an alternative approach to 

dynamical systems enquiry, describing the notion of ‘momentum’ and the associated ‘rate of 

change’ in the momentum of successful behaviours as a method of demonstrating collective 

stability  within  a  rugby  match.  Such  research  has  laid  a  foundation  for  mapping  the 

continuum  of  stability-instability  within  team  sport,  moving  away  from  traditional 

‘reductionist’ accounts of dynamical systems (Grehaigne et al., 2005). Reed and Hughes were 

able to demonstrate the influence of perturbing incidents on changes in game momentum, 

highlighting the value of novel approaches to dynamic systems research.  

The current paper sought to liken the dynamics of a bunch cycling race, namely the Points 

Race, to the emergent, self-organising theory of Swarming (Gazzi and Passino, 2004; Chu et  

al., 2006). Bunch race cycling is a generic term used to describe all cycling events in which a 

collective grouping of individual riders occurs,  often in a seemingly random fashion. The 

Points Race is an example of a bunch cycling event, comprising of a 40 km racing distance 

(Olympic and World Championship), taking place on a 250 m bevelled track. A sprint for 

points every 10 laps offers the event an additional higher intensity element. An intermittent 

convergence of  individual  riders  into the aforementioned bunch formation,  followed by a 

subsequent  divergence,  is  also  a  noteworthy characteristic  of  the  Points  Race.  Points  are 

awarded for finishing within the top four riders (1-5 points) upon every 10th lap (sprint lap) or, 

alternatively, lapping the field (20 points). Likewise, 20 points are deducted for being lapped 

by the leading bunch of the race. 



Within  the  Points  Race,  secondary  group  configurations  or  breakaways  are  frequently 

adopted, in which riders break-away from the main bunch often in a grouped linear formation, 

or  as  individuals,  seemingly perturbing the  stability  (normal  profile)  of  the  group.  These 

bunching tactics are collectively preferred by competitors as it enables a significant reduction 

of the individual drag coefficient (Cd) and, therefore, the work required to sustain a position in 

the  race  (Atkinson  et  al.,  2003;  Edwards,  2007).  The  comparison  of  the  Points  Race  to 

swarming  theory  appears  credible  since  the  central  concepts  that  characterise  a  swarm 

favourably correspond to the spatio-temporal dynamics of a bunch cycling race. 

In most biological swarms, for example flocks of birds or swarms of bees, a mobile central 

locus point is assumed to exist at the epicentre of interplay between a “long-term attraction” 

and a “short term repel” of the group towards and away from the group centre, respectively 

(Gazzi and Passino, 2004, pg. 1). Such ‘macro’ effects reside upon an environmental transfer 

of ‘micro’ information between agents of the swarm (Parish et al., 2002), for example, visual 

or audio cues. Thus, the constant attraction-repulsion of the collective group represents the 

normal, stable state of the swarm. It is theorised that this behaviour reflects both the perceived 

protection of the group centre and the coupled contrasting need to detach from the group in 

order to fulfil alternative singular roles (Parrish et al., 2002). Whilst the comparison of race 

bunch cycling to swarming theory may appear obscure, the same concept of serial aggregation 

may indeed apply to the riders of the points race, since the longer term attraction and short 

term repel of the group is explained by the paradoxical position a rider experiences. That is, 

the  long  term attraction  to  the  field,  which  is  required  to  achieve  the  energy reductions 

associated with group formations and, conversely, the short term repulsion from the bunch, 

which is demonstrated as a consequence of attempting to gain the most credible race position. 

From this perspective, much like the central premise of swarming behaviour, a Points Race 

cyclist  is  unable to  achieve the ultimate global  outcome without drawing upon the micro 

interactions occurring between swarming agents.     

There  remains  no  empirical  evidence  addressing  the  bunching  of  riders  in  competitive 

situations as a dynamical system and, subsequently, little quantitative data to inform coaches 

of the most effective tactical approaches to deploy within this form of racing. In order to 

describe  sports  competitions  involving mass  athlete  interaction  as  a  dynamical  system,  it 



appears feasible to look beyond the narrowing concepts currently provided within sports of a 

dyadic  nature.  Therefore,  to  develop  a  greater  understanding  of  the  internal  logic  that 

underpins points race configurations, behavioural analysis software was specifically adapted 

to,  firstly,  identify a  race profile  of  a  basic  swarm mentality within the Points  Race and 

secondly, to identify system stability and the possible perturbation of stability, in relation to 

successful and unsuccessful breakaways.

1. Method

2.1  Design 

A three stage design was adopted in which an initial intra-observer validation and subsequent 

identification  of  successful  and  unsuccessful  breakaways  was  undertaken  (see  statistical 

analyses section for details). Both the second and third stages were undertaken concurrently, 

with the second stage consisting of an analysis of the two previously identified performance 

breakaway  indicators  using  computerised  analysis  software  (Dartfish  TeamPro,  4.0.9.0, 

Switzerland). The third concurrent stage involved a dynamical systems investigation of the 

field of riders, utilising the swarming theory of serial aggregation. This was performed using 

identical analysis software (see following sections for procedures). 

2.2 Sample

A case study was performed on 24 international track cyclists competing in a competitive 

points race World Championship event (2009). The race was performed on a standard sized 

wooden track (Indoor Velodrome, Poland) with a 250 metre internal radius, consisting of 160 

laps of the track. Twenty Four cyclists started the race, however, this number often fluctuated 

between  laps  (i.e.  23  or  22)  due  to  rider  injury  or  unforeseen  technical  problems.  Race 

duration reached 47 minutes and 39 seconds (based on the last rider). Ethical approval for this 

study was  acquired  from the  University  of  Chester  Ethics  Committee  for  the  Faculty  of 

Applied Health Sciences.

2.3 Identification of Performance Indicators (Independent Variable)

Initial  meetings  between  the  lead  researcher  (over  300  hours  experience  with  analysis 

systems)  and an experienced track cycling analyst  (5  years experience as  a  track cycling 



analyst)  were  held  in  which  the  consideration  of  breakaways  as  a  potential  cause  of 

perturbation was raised. The breakaway was considered as a suitable performance indicator 

given the clear advantages a cyclist may gain when co-existing within a group formation and 

the current dearth of performance analysis research in track cycling.        

  

Operational definitions for breakaways and the respective sub-types therein were created in 

the form of a definition dictionary (James  et al., 2005; Worsfold and MacBeth, 2009). This 

initially consisted of defining the ‘breakaway’ and was further refined into definitions for both 

successful and unsuccessful breakaways. For example; 

Breakaway – “The movement of an individual or a group away from the pre-formed race  

bunch, via the increase in velocity of the breaking group or a decrease in velocity of the  

original bunch. The initialisation of this  movement is  recognisable by a discernable time  

duration between the two formed bunches, judged to be outside of the average spacing of  

riders. This larger duration between riders must be maintained for a minimum of 5 seconds to  

be  considered  as  a  breakaway,  this  is  otherwise  considered as  a  minor  fluctuation.  The  

magnitude of distance between group bunches, velocity/accelerations of group bunches and  

time duration of a break may vary considerably. The membership of this break may also vary,  

with riders moving to and from the main bunch or breakaway bunches.”  

Both  successful  and  unsuccessful  breakaway  occurrences  were  identified  in  an  identical 

manner, deeming a breakaway as successful if the opportunity of scoring points came from 

the active involvement of a rider therein. A breakaway was otherwise deemed unsuccessful. 

Subsequently, breakaways were considered as the independent variable, comprising of two 

levels; unsuccessful and successful. The end of a breakaway was defined as the reforming of 

the front ‘breakaway’ group to the collective bunch, thus demonstrating no de-stabilisation of 

the race norm.   

2.4. Identification of Performance Indicators (Dependent Variables)

The numerical group centre (i.e. middle rider) of the riders was chosen as the epicentre of 

distribution around which long term attraction and short term repel phases would occur. Long 

term repulsion  was  defined as  the  development  of  distance  between riders  (as  a  whole), 

resulting in a larger average group spacing. Attraction was defined as the opposite effect, in 



which the continual reduction in the average distance between riders was demonstrated. This 

was deemed appropriate since, during the Points Race, the protective properties of the bunch 

are  well  established and recognised by competitors.  As  a  result,  two separate  groups are 

formed,  the  rear  and the  front  group,  each  containing  twelve  riders  (dependent  upon the 

complement of riders at that half lap). The average duration of each group of riders from the 

numerical group centre upon each half lap was then used to describe the state of interaction 

with the whole system at that given stage, reflecting the normal movement to and from the 

group centre (i.e. attract and repel phase). 

Three measures were created to profile the state of the swarm. These are abbreviated and 

herein referred to as;

1) Absolute Difference (AbDiff) – Combined value of the mean duration of riders 

in the front group from the numerical group centre and the mean duration of riders in the rear 

group from the numerical group centre. Consequently, the magnitude of field distribution can 

be averaged (mean).

2) Rate of Change (ROC) – The rate at which the group changes from one state of 

absolute difference to another within a given phase (see overleaf). 

         AbDiff (x)+ AbDiff (y)

                Phase DUR    

     

Where  AbDiff (x)= initial absolute difference;  AbDiff (y)= final absolute difference;  DUR= 

the number of half laps completed during that phase. 

3)  Phase Duration (DUR) – Number of half laps completed in a phase 

2.5 Analysis Procedure

A three camera synchronised recording of the race was utilised in order to detect breakaways 

throughout the field of cyclists at any time in the race. The race was analysed post event using 

the tagging function on the computerised software. A template was designed in which, firstly, 

the ‘breakaway’ performance indicators (successful/unsuccessful) were recorded (stage 2 of 



design). A continuous event button was used to denote the event of a breakaway, with the 

feature of a ‘successful’ or ‘unsuccessful’ outcome assigned as an additional value. If an event 

was judged to be unclear or missed by the analyst, the event was replayed and re-analysed 

until a breakaway was deemed successful or unsuccessful. 

In order to perform the second stage of analysis (stage 3 of design), the swarming of the group 

was analysed by using the continuous event option on the pre-designed template. The group 

was numerically divided in to two equal halves (12 riders each side), denoting the front and 

rear of the swarm. Under even numbers, the point of equal time duration between the twelfth 

and thirteenth rider was chosen to reflect group centre. Upon each half lap, denoted by the 

intersection of the lead rider’s wheel with the half way lines (back and home straight), a time 

split between each member of the respective groups (front or rear) was recorded. The split of 

a rider was, again, identified by the intersection of the leading wheel with the half way lines.  

Computations  of  the  time  duration  of  each  rider  from the  numerical  group  centre  were 

subsequently  carried  out  on  Microsoft  Excel  (2003).  Further  computations  were  used  to 

produce the average time duration between each rider at  each half lap interval. The three 

dependent  measures  (absolute  difference,  rate  of  change  and  phase  duration)  were  then 

sourced from this information.           

2.5. Statistical Analyses 

Intra-observer reliability was measured using Cohen’s Kappa coefficient (K) to provide a level 

of agreement with regards to the outcome of the breakaway (i.e. successful or unsuccessful). 

O’Donoghue (2007) suggests an interpretation of; 0.4 – 0.6 = moderate strength, 0.6 – 0.8 = 

good agreement and > 0.8 = very good agreement. Results from K suggested a ‘very good 

agreement’ of intra-observer reliability for break outcome (K = 0.891). This is important since 

the concurrent  second and third stages of testing resided upon attaining a  strong level  of 

agreement. 

Data comparisons were performed on each of the three dependent variables (AbDiff, ROC 

and DUR) using separate one way analyses of variance (ANOVA) with repeated measures. 



The independent  variable  consisted  of  three  levels  (Successful,  Unsuccessful  and ‘Norm’ 

(race mean)). The assumptions of normality (Shapiro Wilk; >0.05) and sphericity (Mauchly's; 

>0.05) were verified for all  data sets. The mean of each of the three dependent measures 

(AbDiff, DUR and ROC) for the race was used as a reference for the normal race profile 

(norm). Significant differences above or below the race mean or ‘norm’ is suggestive of a 

swarm status  that  is  outside  of  the  norm and,  thus,  perceived  to  be  in  a  larger  state  of 

instability (in response to perturbation). Post-hoc Tukey HSD tests were applied in order to 

identify significant differences. Statistical significance was set at P<0.05 throughout.

2. Results

Figure 1 demonstrates the aggregated movement of the field of riders upon each half lap. An 

attract  and  repel  phasing  is  evident,  with  each  plot  of  both  rear  and front  group  timing 

demonstrating a consistent movement towards and away from the group centre. Throughout, 

such aggregative effects appear in an almost uniform fashion. On the basis of the race profile 

shown in figure 1, AbDiff, ROC and DUR were calculated. 

Figure 1. Swarming trace of the attraction and repel of the front and rear group about the 

numerical group centre as a function of race time.  NB:  Black dashes represent the average  

duration of the twelve riders of that group (front) from the numerical group centre upon each  

half lap. Open circles represent the rear group average (these are not negative values but  

have been assigned as such for presentation purposes). Black triangles represent the position  

of the lead rider upon each sprint lap.



Results from the 3 x one-way ANOVA’s demonstrated no significant effect for any of the 

comparisons  of  ROC  (F(2,  228)=3.976,  P>0.05)  and  AbDiff  (F(2,  228)=3.289,  P>0.05) 

between  successful,  unsuccessful  and  norm conditions.  However,  there  was  a  significant 

effect  found  for  DUR (F(2,  228)=18.4,  P<0.05).  Tukey HSD post-hoc  analysis  revealed 

differences between the race norm (2.1±1.3 half laps) and the successful (3.3 ± 1.2 half laps) 

and unsuccessful (3.1 ± 1.5 half laps) DUR of phases. This suggests a larger phase duration of 

either  attracting or repelling compared to normal  race values.  All  other values were non-

significant  (P>0.05).  See  figures  2,  3  and  4  for  graphical  representations  of  the  mean 

comparison results and associated standard deviations. 

Figure 2.  Comparison of mean Absolute Difference of successful and unsuccessful 

break opportunities against the race norm  



           

 Figure  3.  Comparison  of  mean  Rate  of  Change  of  successful  and  unsuccessful  break 

opportunities against the race norm  

Figure  4.  Comparison  of  mean  Phase  Duration  of  successful  and  unsuccessful  break 

opportunities against the race norm. NB: * = statistically significant from norm at P<0.05 

4. Discussion



The initial aim of the current study was to create a system using generic performance analysis 

software that could demonstrate a race profile of the dynamics of the Points Race in reference 

to the swarm mentality. Although addressing this question remains somewhat descriptive, that 

figure 1 shows the field  distribution  as  a  function of  race time provides  evidence of  the 

constant attract and repel phasing of the field, demonstrating a ‘normal’ rhythm to the race 

with potential  areas of disturbance.  The results  were used to establish the stability of the 

system, producing figures 2, 3 and 4 and the associated ‘norms’ for each dependent variable. 

It is likely that there are alternative ways to interpret the swarming mentality demonstrated in 

figure 1, nonetheless, the results offer a basis with which to perform the current study and are 

a clearly attractive prospect for future research. 

One way ANOVA comparisons between the race norm and both successful and unsuccessful 

breakaways demonstrated no differences (P>0.05) with regard to whole field distribution of 

the swarm, represented by AbDiff (see figure 3).  The same was true for ROC, where no 

significant difference (P>0.05) from the race norm was reported (see figure 4). Consequently, 

for any breakaway period (on average), neither the whole field distribution (Abdiff) or the rate 

at which the field moves from phase to phase (ROC) was statistically different from the race 

norm (mean for that race). This suggests no clear perturbation of the system in terms of these 

two properties during a breakaway. However, the DUR for both successful and unsuccessful 

breakaways  demonstrated  a  significantly  larger  value  (P<0.05)  than  the  race  norm,  with 

results showing phases of attract and repel to be over 3 half laps on average (see figure 5) 

compared to the race norm of 2.1 ± 1.3 half laps. This suggests that system instability in both 

successful and unsuccessful breaks is caused in terms of the length of attract and repel phases 

of the swarm, meaning that the field of riders tends to move together or apart for a longer 

duration (DUR) when a breakaway is occurring. 

The  findings  from  DUR  comparisons  provide  interesting  results  since  it  appears  that  a 

breakaway causes some disturbance outside the ‘norm’, suggesting that there may be some 

perturbation  to  the  system when  a  breakaway occurs.  This  further  suggests  that  when  a 

possible perturbation occurs, as a result of a breakaway, the aggregated field diverges for a 

longer period of time, outside the norm, without any associated change in the rate at which 

field distribution expands and without any initial difference in absolute field distribution. This 



is representative of a large informational transfer (i.e. visual) between the agents of the system 

(riders), producing a non-linear effect which serves to lock the swarm into an on-going repel 

phase. Conversely, under ‘normal’ race conditions the phase is likely to maintain an attractor 

state  which,  in  this  case,  is  an  almost  constant  and  statistically  briefer  attract  and  repel 

rhythm.  

Figure 1 also demonstrates the position of the eventual race winner upon each sprint lap of the 

entire race. A notable trend for the repulsion of the group to increase concurrent with the race 

winners position at the front of the race would appear to show some influence of individual 

decisions upon the swarm mentality. Therefore, when such potentially influential riders make 

the decision to break-away from the main bunch, the chaotic effect is demonstrated through 

prolonged  repulsive  phases.  Such  knowledge  is  potentially  valuable  to  a  Points  Race 

competitor where the desire may be to plan an effective tactical approach, basing the racing 

strategy upon  favoured  riders  who  it  seems  may exert  an  influence  on  the  overall  field 

mentality.  The  continuing  search  for  perturbation  in  race  bunch  cycling  may  also  be 

supplemented by information such as the decision making of individuals  within the race. 

Future  investigations  should  attempt  to  elucidate  the  relationship  between the  analysis  of 

perturbation and the swarming mentality in contexts such as race bunch cycling or alternative 

sporting events that involve similar group patterning. 

Whilst it is clear that the decisions of individual riders may influence the field of riders, a 

limitation of the current paper is the failure to establish a more refined cause of perturbation. 

Although a breakaway appears to cause a perturbation, and this exact point is determinable 

(see  reliability  section),  a  more  detailed  analysis  of  the  breakaway  may  provide  further 

information  regarding  the  exact  actions  required  to  change  the  stability  of  the  race.  For 

example,  further  analysis  of  the  membership  or  position  of  breakaways  provide  potential 

avenues  for  future  investigation.  The attainment  of  such results  would  bring this  type  of 

systemic enquiry closer to that of previous research (McGarry et al., 1999; McGarry, 2006) 

where  the  relationship  between  perturbation  and  key  tactical  behaviours  can  be  more 

accurately realised. 



The application of the ‘swarm mentality’ within race bunch cycling remains within its infancy 

and,  consequently,  making  accurate  conclusions  and  inferences  regarding  racing  tactics 

remains a distant objective. For example, it may be crude to identify instability as a significant 

different value of AbDiff, ROC or DUR from the race mean. Indeed, the lack of difference in 

the chosen dependent variables may merely reflect this potential limitation. An alternative 

method may be to identify the status of instability (or otherwise) as a scaled continuum, with 

stable and unstable conditions at opposing extremes. In turn, a profiling method similar in 

concept to Reed and Hughes (2006), where percentile ranks were used to denote movement 

outside of a pre-conceived range, may provide greater flexibility in showing stability and the 

associated variability of a normal race profile. In the current case, a significant difference 

away from the norm may be too harsh of a measure to detect instability accurately. 

5. Conclusion

In conclusion, the current study confirmed the theory that a mass aggregation effect occurs 

with the Points Race, theoretically as a consequence of an informational transfer between 

individual  riders,  causing  a  non-linear  ‘macro’  effect  which  can  be  described  using 

computerised  analysis  software. Although  linking  tactical  implementations  to  the  current 

analysis  remain  a  distant  aspiration  at  present,  the  preliminary  findings  suggest  that  the 

breakaway causes disruptions to race stability and that the decisions of individual riders may 

influence such an occurrence. The correct application of future research may provide points 

race cyclists’ and coaches with useful  information regarding the exact  actions required to 

initiate a successful breakaway, ultimately serving to cause perturbations and the resultant 

occurrence of a ‘critical  incident’ within a given race (Hughes  et al.,  1998). It  should be 

remembered  that  the  current  paper  is  prototypal,  designed  to  explore  the  possibilities  of 

dynamic  system enquiry in  sport  at  the  level  of  mass  aggregation,  namely the  swarming 

effect. As such, the current paper provides a clear methodological basis with which to perform 

future research in  race bunch cycling or,  indeed,  any sport  which is  characterised by the 

apparent non-linear aggregation (self organisation) of singular agents, forming an otherwise 

unattainable ‘macro’ end result.
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