8 research outputs found

    ConsĂ©quences des interactions entre les virus entĂ©riques humains et la matiĂšre organique sur la persistance virale, l’efficacitĂ© de traitements de dĂ©sinfection et l’évolution des populations virales

    No full text
    Human enteric viruses are one of the main causes of waterborne gastro-enteritis. They are shed in the feces in large quantities and are not efficiently removed in wastewater treatment plants, which are the major source of contamination of water resources. These resources are sometimes used to produce drinking water. Enteric viruses can withstand disinfecting treatments and have sometimes been detected in drinking water. Recently, it has been shown that interactions with the microbiota in the human gut promote the infectivity, pathogenicity and stability of some enteric viruses (enterovirus, norovirus). In surface water, viruses get close to many biotic or abiotic components, whether particulate or dissolved, which could impact their behavior.This work sheds a new light on the consequences of interactions between organic matter and enteric viruses on their persistence in water and the efficiency of inactivating treatments. The effect of several microbial compounds on the inactivation of four enterovirus serotypes was investigated. High protective effects were shown regarding treatments targeting the capsid (heat, chlorine), depending on the serotype. Then, we showed that hydrophobic dissolved organic matters from surface water confer Coxsackievirus B5 a protection against heat through the capsid stabilization. Finally, an experimental evolution assay under thermal selective pressure showed virus’ interactions with their environment influence the dynamic of viral species evolution by promoting genetic stability. Indeed, interaction with lipopolysaccharide countered the selective pressure exerted by temperature, thus limiting the selection of mutations that improve the thermal resistance and that could reduce the replicative fitness.All our results state that the ability of enteroviruses to interact with some organic compounds can increase their persistence in water and during disinfecting treatments, which could give them a selective advantage. The current estimated rates of viral inactivation during water disinfection may underestimate the effective virus removal and should be updated to take into account these interactions.Les virus entĂ©riques sont l’une des premiĂšres causes de gastro-entĂ©rites d’origine hydrique. Ils sont excrĂ©tĂ©s en grand nombre dans les selles et ne sont pas Ă©liminĂ©s par les stations de traitement des eaux usĂ©es, dont les effluents sont la principale source de contamination des ressources hydriques, qui sont parfois utilisĂ©es pour la production d’eau potable. Ces virus sont particuliĂšrement rĂ©sistants aux traitements de dĂ©sinfection, et leur gĂ©nome est parfois dĂ©tectĂ© dans l’eau potable produite. Il a rĂ©cemment Ă©tĂ© dĂ©montrĂ© que des interactions avec le microbiote intestinal au sein de l’hĂŽte favorisent l’infectivitĂ©, pathogenĂšse et la stabilitĂ© de certains virus entĂ©riques (entĂ©rovirus, norovirus). Dans les milieux hydriques, ils peuvent se retrouver au voisinage d’une grande diversitĂ© d’élĂ©ments biotiques ou abiotiques, particulaires ou dissous, qui pourraient avoir des consĂ©quences sur leur survie. Ces travaux apportent de nouveaux Ă©lĂ©ments de rĂ©flexion concernant les consĂ©quences des interactions entre la matiĂšre organique et les virus entĂ©riques sur leur persistance dans les environnements hydriques et l’efficacitĂ© de traitements d’inactivation. L’impact de plusieurs composants microbiens sur l’inactivation de quatre sĂ©rotypes d’entĂ©rovirus a Ă©tĂ© analysĂ©. D’importants effets protecteurs, ont Ă©tĂ© mis en Ă©vidence dans le cas des traitements d’inactivation ciblant la capside virale (chaleur, chlore). Un effet sĂ©rotype-dĂ©pendant a de plus Ă©tĂ© dĂ©montrĂ©. Dans un deuxiĂšme temps, il a Ă©tĂ© montrĂ© que la matiĂšre organique dissoute hydrophobe des eaux de surface confĂšre au Coxsackievirus B5 une protection vis-Ă -vis de la chaleur en stabilisant la capside. La persistance des interactions avec la matiĂšre organique dissoute s’est rĂ©vĂ©lĂ©e ĂȘtre liĂ©e Ă  son hydrophobicitĂ©. Enfin, une expĂ©rience d’évolution virale sous pression de sĂ©lection thermique a rĂ©vĂ©lĂ© que les interactions des virus avec leur environnement participent Ă  la dynamique d’évolution des espĂšces virales en favorisant leur stabilitĂ© gĂ©nomique. Ainsi l’interaction avec le lipopolysaccharide entraine une levĂ©e de la pression de sĂ©lection exercĂ©e par la tempĂ©rature. L’ensemble des rĂ©sultats indique que la capacitĂ© des entĂ©rovirus Ă  interagir avec certains types de matiĂšres organiques est susceptible d’augmenter leur persistance dans les milieux hydriques et au cours des traitements de dĂ©sinfection, leur confĂ©rant dans certaines conditions un avantage sĂ©lectif. Les connaissances acquises sur l’inactivation virale en milieu hydrique pourraient donc surestimer les abattements viraux rĂ©els, et nĂ©cessiteraient peut-ĂȘtre d’ĂȘtre revisitĂ©es en prenant en compte l’existence de telles interactions

    ConsĂ©quences des interactions entre les virus entĂ©riques humains et la matiĂšre organique sur la persistance virale, l’efficacitĂ© de traitements de dĂ©sinfection et l’évolution des populations virales

    No full text
    Human enteric viruses are one of the main causes of waterborne gastro-enteritis. They are shed in the feces in large quantities and are not efficiently removed in wastewater treatment plants, which are the major source of contamination of water resources. These resources are sometimes used to produce drinking water. Enteric viruses can withstand disinfecting treatments and have sometimes been detected in drinking water. Recently, it has been shown that interactions with the microbiota in the human gut promote the infectivity, pathogenicity and stability of some enteric viruses (enterovirus, norovirus). In surface water, viruses get close to many biotic or abiotic components, whether particulate or dissolved, which could impact their behavior.This work sheds a new light on the consequences of interactions between organic matter and enteric viruses on their persistence in water and the efficiency of inactivating treatments. The effect of several microbial compounds on the inactivation of four enterovirus serotypes was investigated. High protective effects were shown regarding treatments targeting the capsid (heat, chlorine), depending on the serotype. Then, we showed that hydrophobic dissolved organic matters from surface water confer Coxsackievirus B5 a protection against heat through the capsid stabilization. Finally, an experimental evolution assay under thermal selective pressure showed virus’ interactions with their environment influence the dynamic of viral species evolution by promoting genetic stability. Indeed, interaction with lipopolysaccharide countered the selective pressure exerted by temperature, thus limiting the selection of mutations that improve the thermal resistance and that could reduce the replicative fitness.All our results state that the ability of enteroviruses to interact with some organic compounds can increase their persistence in water and during disinfecting treatments, which could give them a selective advantage. The current estimated rates of viral inactivation during water disinfection may underestimate the effective virus removal and should be updated to take into account these interactions.Les virus entĂ©riques sont l’une des premiĂšres causes de gastro-entĂ©rites d’origine hydrique. Ils sont excrĂ©tĂ©s en grand nombre dans les selles et ne sont pas Ă©liminĂ©s par les stations de traitement des eaux usĂ©es, dont les effluents sont la principale source de contamination des ressources hydriques, qui sont parfois utilisĂ©es pour la production d’eau potable. Ces virus sont particuliĂšrement rĂ©sistants aux traitements de dĂ©sinfection, et leur gĂ©nome est parfois dĂ©tectĂ© dans l’eau potable produite. Il a rĂ©cemment Ă©tĂ© dĂ©montrĂ© que des interactions avec le microbiote intestinal au sein de l’hĂŽte favorisent l’infectivitĂ©, pathogenĂšse et la stabilitĂ© de certains virus entĂ©riques (entĂ©rovirus, norovirus). Dans les milieux hydriques, ils peuvent se retrouver au voisinage d’une grande diversitĂ© d’élĂ©ments biotiques ou abiotiques, particulaires ou dissous, qui pourraient avoir des consĂ©quences sur leur survie. Ces travaux apportent de nouveaux Ă©lĂ©ments de rĂ©flexion concernant les consĂ©quences des interactions entre la matiĂšre organique et les virus entĂ©riques sur leur persistance dans les environnements hydriques et l’efficacitĂ© de traitements d’inactivation. L’impact de plusieurs composants microbiens sur l’inactivation de quatre sĂ©rotypes d’entĂ©rovirus a Ă©tĂ© analysĂ©. D’importants effets protecteurs, ont Ă©tĂ© mis en Ă©vidence dans le cas des traitements d’inactivation ciblant la capside virale (chaleur, chlore). Un effet sĂ©rotype-dĂ©pendant a de plus Ă©tĂ© dĂ©montrĂ©. Dans un deuxiĂšme temps, il a Ă©tĂ© montrĂ© que la matiĂšre organique dissoute hydrophobe des eaux de surface confĂšre au Coxsackievirus B5 une protection vis-Ă -vis de la chaleur en stabilisant la capside. La persistance des interactions avec la matiĂšre organique dissoute s’est rĂ©vĂ©lĂ©e ĂȘtre liĂ©e Ă  son hydrophobicitĂ©. Enfin, une expĂ©rience d’évolution virale sous pression de sĂ©lection thermique a rĂ©vĂ©lĂ© que les interactions des virus avec leur environnement participent Ă  la dynamique d’évolution des espĂšces virales en favorisant leur stabilitĂ© gĂ©nomique. Ainsi l’interaction avec le lipopolysaccharide entraine une levĂ©e de la pression de sĂ©lection exercĂ©e par la tempĂ©rature. L’ensemble des rĂ©sultats indique que la capacitĂ© des entĂ©rovirus Ă  interagir avec certains types de matiĂšres organiques est susceptible d’augmenter leur persistance dans les milieux hydriques et au cours des traitements de dĂ©sinfection, leur confĂ©rant dans certaines conditions un avantage sĂ©lectif. Les connaissances acquises sur l’inactivation virale en milieu hydrique pourraient donc surestimer les abattements viraux rĂ©els, et nĂ©cessiteraient peut-ĂȘtre d’ĂȘtre revisitĂ©es en prenant en compte l’existence de telles interactions

    Consequences of the interactions between human enteric viruses and organic matter on virus persistence, disinfection treatments efficiency and the evolution of viral populations

    No full text
    Les virus entĂ©riques sont l’une des premiĂšres causes de gastro-entĂ©rites d’origine hydrique. Ils sont excrĂ©tĂ©s en grand nombre dans les selles et ne sont pas Ă©liminĂ©s par les stations de traitement des eaux usĂ©es, dont les effluents sont la principale source de contamination des ressources hydriques, qui sont parfois utilisĂ©es pour la production d’eau potable. Ces virus sont particuliĂšrement rĂ©sistants aux traitements de dĂ©sinfection, et leur gĂ©nome est parfois dĂ©tectĂ© dans l’eau potable produite. Il a rĂ©cemment Ă©tĂ© dĂ©montrĂ© que des interactions avec le microbiote intestinal au sein de l’hĂŽte favorisent l’infectivitĂ©, pathogenĂšse et la stabilitĂ© de certains virus entĂ©riques (entĂ©rovirus, norovirus). Dans les milieux hydriques, ils peuvent se retrouver au voisinage d’une grande diversitĂ© d’élĂ©ments biotiques ou abiotiques, particulaires ou dissous, qui pourraient avoir des consĂ©quences sur leur survie. Ces travaux apportent de nouveaux Ă©lĂ©ments de rĂ©flexion concernant les consĂ©quences des interactions entre la matiĂšre organique et les virus entĂ©riques sur leur persistance dans les environnements hydriques et l’efficacitĂ© de traitements d’inactivation. L’impact de plusieurs composants microbiens sur l’inactivation de quatre sĂ©rotypes d’entĂ©rovirus a Ă©tĂ© analysĂ©. D’importants effets protecteurs, ont Ă©tĂ© mis en Ă©vidence dans le cas des traitements d’inactivation ciblant la capside virale (chaleur, chlore). Un effet sĂ©rotype-dĂ©pendant a de plus Ă©tĂ© dĂ©montrĂ©. Dans un deuxiĂšme temps, il a Ă©tĂ© montrĂ© que la matiĂšre organique dissoute hydrophobe des eaux de surface confĂšre au Coxsackievirus B5 une protection vis-Ă -vis de la chaleur en stabilisant la capside. La persistance des interactions avec la matiĂšre organique dissoute s’est rĂ©vĂ©lĂ©e ĂȘtre liĂ©e Ă  son hydrophobicitĂ©. Enfin, une expĂ©rience d’évolution virale sous pression de sĂ©lection thermique a rĂ©vĂ©lĂ© que les interactions des virus avec leur environnement participent Ă  la dynamique d’évolution des espĂšces virales en favorisant leur stabilitĂ© gĂ©nomique. Ainsi l’interaction avec le lipopolysaccharide entraine une levĂ©e de la pression de sĂ©lection exercĂ©e par la tempĂ©rature. L’ensemble des rĂ©sultats indique que la capacitĂ© des entĂ©rovirus Ă  interagir avec certains types de matiĂšres organiques est susceptible d’augmenter leur persistance dans les milieux hydriques et au cours des traitements de dĂ©sinfection, leur confĂ©rant dans certaines conditions un avantage sĂ©lectif. Les connaissances acquises sur l’inactivation virale en milieu hydrique pourraient donc surestimer les abattements viraux rĂ©els, et nĂ©cessiteraient peut-ĂȘtre d’ĂȘtre revisitĂ©es en prenant en compte l’existence de telles interactions.Human enteric viruses are one of the main causes of waterborne gastro-enteritis. They are shed in the feces in large quantities and are not efficiently removed in wastewater treatment plants, which are the major source of contamination of water resources. These resources are sometimes used to produce drinking water. Enteric viruses can withstand disinfecting treatments and have sometimes been detected in drinking water. Recently, it has been shown that interactions with the microbiota in the human gut promote the infectivity, pathogenicity and stability of some enteric viruses (enterovirus, norovirus). In surface water, viruses get close to many biotic or abiotic components, whether particulate or dissolved, which could impact their behavior.This work sheds a new light on the consequences of interactions between organic matter and enteric viruses on their persistence in water and the efficiency of inactivating treatments. The effect of several microbial compounds on the inactivation of four enterovirus serotypes was investigated. High protective effects were shown regarding treatments targeting the capsid (heat, chlorine), depending on the serotype. Then, we showed that hydrophobic dissolved organic matters from surface water confer Coxsackievirus B5 a protection against heat through the capsid stabilization. Finally, an experimental evolution assay under thermal selective pressure showed virus’ interactions with their environment influence the dynamic of viral species evolution by promoting genetic stability. Indeed, interaction with lipopolysaccharide countered the selective pressure exerted by temperature, thus limiting the selection of mutations that improve the thermal resistance and that could reduce the replicative fitness.All our results state that the ability of enteroviruses to interact with some organic compounds can increase their persistence in water and during disinfecting treatments, which could give them a selective advantage. The current estimated rates of viral inactivation during water disinfection may underestimate the effective virus removal and should be updated to take into account these interactions

    Substitution of parabens in cosmetic products: what impacts for the aquatic environment?

    No full text
    International audienceParabens used as preservatives in the formulation of most personal care products (PCPs) are found ubiquitously in surface waters worldwide. These substances are of increasing concern due to their wide utilization, and their potential negative effect on aquatic ecosystems as endocrine disruptors. Parabens have been the subject of an alert following a 2004 publication, which reported a potential link between parabens and breast cancer. Growing consumer awareness led cosmetic industry to start shifting away from parabens, by the development of increasingly popular " paraben free " or " organic " products, and by switching to alternatives substances in their formulations, processes and packaging. Key unanswered questions include to identify which products used in the formulations need to be substituted, and to avoid replacing them with other potentially harmful substances. The objectives of our study were (i) to determine which chemicals replace parabens; and (ii) to assess the impact of the substitution on the ecotoxicity of domestic greywater using bioassays. Based on a bibliography survey, phenoxyethanol (PE), methylisothiazolinone (MIT), chlorphenesin (CPN)... were identified as frequently used methylparaben (MEP) substitutes. Importantly, this bibliography review highlighted the hypothesis that substitutes may have a potentially hazardous effect on aquatic organisms, but also underlined that little attention had been paid to their occurrence in receiving water. We then evaluated and compared their impact on the development, and survival of zebra fish larvae (until up to 8 dpf), alone or in combination. We showed that whereas PE had no effect, MEP, and its substitutes MIT and CPN, affected both the development and survival of the larvae. LD50 were determined for each of the compounds. Developmental defects included oedema, weak heart beats, red blood cell aggregates, and curved tail. Furthermore, when PE was used in combination with MEP, survival was increased compared to MEP alone, and important developmental abnormalities like head malformation, deflated swimbladder unseen for MEP alone, were observed, providing evidence of synergistic effects. Finally, bioassays were applied to synthetic greywater, generated to be representative of three consumption practices: cosmetics with or without parabens, and organic cosmetics. The most frequently used PCPs were chosen: shower gel, toothpaste and skin cream for body. With respect to the daily consumption of both PCPs and that of water, raw PCPs were dissolved in a given water volume to be representative of the level found in domestic greywater. While bioassays have not shown a clear trend in function of consumption practices, our key results show that organic PCPs have also potential negative effects on aquatic organisms. These original results clearly connect the domestic consumption practices with potential ecotoxic discharges in receiving water and raise questions about the substitution after regulation. In this context, our work highlights the need to quantify these substitution substances in wastewater and surface water. Acknowledgments This study is part of the Cosmet'eau project which is funded within the framework of a French call for project about " Micropollutants: innovation and changes of practices " launched in 2013 by the French Ministry of Environment, The French Agency for Biodiversity (AFB) and a French water agency (Agence de l'Eau Seine-Normandie)
    corecore