6,003 research outputs found
Study of alumina-trichite reinforcement of a nickel-based matric by means of powder metallurgy
Research was conducted on reinforcing nickel based matrices with alumina trichites by using powder metallurgy. Alumina trichites previously coated with nickel are magnetically aligned. The felt obtained is then sintered under a light pressure at a temperature just below the melting point of nickel. The halogenated atmosphere technique makes it possible to incorporate a large number of additive elements such as chromium, titanium, zirconium, tantalum, niobium, aluminum, etc. It does not appear that going from laboratory scale to a semi-industrial scale in production would create any major problems
Effects of magnetic fields on radiatively overstable shock waves
We discuss high-resolution simulations of one-dimensional, plane-parallel
shock waves with mean speeds between 150 and 240 km/s propagating into gas with
Alfven velocities up to 40 km/s and outline the conditions under which these
radiative shocks experience an oscillatory instability in the cooling length,
shock velocity, and position of the shock front. We investigate two forms of
postshock cooling: a truncated single power law and a more realistic piecewise
power law. The degree of nonlinearity of the instability depends strongly on
the cooling power law and the Alfven Mach number: for power-law indices \alpha
< 0 typical magnetic field strengths may be insufficient either to stabilize
the fundamental oscillatory mode or to prevent the oscillations from reaching
nonlinear amplitudes.Comment: 11 text pages, LaTeX/AASTeX (aaspp4); 5 figures; accepted by Ap
The Spin Periods and Rotational Profiles of Neutron Stars at Birth
We present results from an extensive set of one- and two-dimensional
radiation-hydrodynamic simulations of the supernova core collapse, bounce, and
postbounce phases, and focus on the protoneutron star (PNS) spin periods and
rotational profiles as a function of initial iron core angular velocity, degree
of differential rotation, and progenitor mass. For the models considered, we
find a roughly linear mapping between initial iron core rotation rate and PNS
spin. The results indicate that the magnitude of the precollapse iron core
angular velocities is the single most important factor in determining the PNS
spin. Differences in progenitor mass and degree of differential rotation lead
only to small variations in the PNS rotational period and profile. Based on our
calculated PNS spins, at ~ 200-300 milliseconds after bounce, and assuming
angular momentum conservation, we estimate final neutron star rotation periods.
We find periods of one millisecond and shorter for initial central iron core
periods of below ~ 10 s. This is appreciably shorter than what previous studies
have predicted and is in disagreement with current observational data from
pulsar astronomy. After considering possible spindown mechanisms that could
lead to longer periods we conclude that there is no mechanism that can robustly
spin down a neutron star from ~ 1 ms periods to the "injection" periods of tens
to hundreds of milliseconds observed for young pulsars. Our results indicate
that, given current knowledge of the limitations of neutron star spindown
mechanisms, precollapse iron cores must rotate with periods around 50-100
seconds to form neutron stars with periods generically near those inferred for
the radio pulsar population.Comment: 31 pages, including 20 color figures. High-resolution figures
available from the authors upon request. Accepted to Ap
Radiative instabilities in simulations of spherically symmetric supernova blast waves
High-resolution simulations of the cooling regions of spherically symmetric
supernova remnants demonstrate a strong radiative instability. This
instability, whose presence is dependent on the shock velocity, causes
large-amplitude fluctuations in the shock velocity. The fluctuations begin
almost immediately after the radiative phase begins (upon shell formation) if
the shock velocity lies in the unstable range; they last until the shock slows
to speeds less than approximately 130 km/s. We find that shock-velocity
fluctuations from the reverberations of waves within the remnant are small
compared to those due to the instability. Further, we find (in plane-parallel
simulations) that advected inhomogeneities from the external medium do not
interfere with the qualitative nature of the instability-driven fluctuations.
Large-amplitude inhomogeneities may alter the phases of shock-velocity
fluctuations, but do not substantially reduce their amplitudes.Comment: 18 pages text, LaTeX/AASTeX (aaspp4); 10 figures; accepted by Ap
Improved Classification Using Hidden Markov Averaging From Multiple Observation Sequences
The enormous popularity of Hidden Markov models (HMMs) in spatio-temporal pattern recognition is largely due to the ability to 'learn' model parameters from observation sequences through the Baum-Welch and other re-estimation procedures. In this study, HMM parameters are estimated from an ensemble of models trained on individual observation sequences. The proposed methods are shown to provide superior classification performance to competing methods
Two-dimensional, Time-dependent, Multi-group, Multi-angle Radiation Hydrodynamics Test Simulation in the Core-Collapse Supernova Context
We have developed a time-dependent, multi-energy-group, and multi-angle
(S) Boltzmann transport scheme for radiation hydrodynamics simulations, in
one and two spatial dimensions. The implicit transport is coupled to both 1D
(spherically-symmetric) and 2D (axially-symmetric) versions of the explicit
Newtonian hydrodynamics code VULCAN. The 2D variant, VULCAN/2D, can be operated
in general structured or unstructured grids and though the code can address
many problems in astrophysics it was constructed specifically to study the
core-collapse supernova problem. Furthermore, VULCAN/2D can simulate the
radiation/hydrodynamic evolution of differentially rotating bodies. We
summarize the equations solved and methods incorporated into the algorithm and
present results of a time-dependent 2D test calculation. A more complete
description of the algorithm is postponed to another paper. We highlight a 2D
test run that follows for 22 milliseconds the immediate post-bounce evolution
of a collapsed core. We present the relationship between the anisotropies of
the overturning matter field and the distribution of the corresponding flux
vectors, as a function of energy group. This is the first 2D multi-group,
multi-angle, time-dependent radiation/hydro calculation ever performed in core
collapse studies. Though the transport module of the code is not gray and does
not use flux limiters (however, there is a flux-limited variant of VULCAN/2D),
it still does not include energy redistribution and most velocity-dependent
terms.Comment: 19 pages, plus 13 figures in JPEG format. Submitted to the
Astrophysical Journa
The Dynamics of Radiative Shock Waves: Linear and Nonlinear Evolution
The stability properties of one-dimensional radiative shocks with a power-law
cooling function of the form are the main
subject of this work. The linear analysis originally presented by Chevalier &
Imamura, is thoroughfully reviewed for several values of the cooling index
and higher overtone modes. Consistently with previous results, it is
shown that the spectrum of the linear operator consists in a series of modes
with increasing oscillation frequency. For each mode a critical value of the
cooling index, , can be defined so that modes with are unstable, while modes with
are stable. The perturbative analysis is complemented by several numerical
simulations to follow the time-dependent evolution of the system for different
values of . Particular attention is given to the comparison between
numerical and analytical results (during the early phases of the evolution) and
to the role played by different boundary conditions. It is shown that an
appropriate treatment of the lower boundary yields results that closely follow
the predicted linear behavior. During the nonlinear regime, the shock
oscillations saturate at a finite amplitude and tend to a quasi-periodic cycle.
The modes of oscillations during this phase do not necessarily coincide with
those predicted by linear theory, but may be accounted for by mode-mode
coupling.Comment: 33 pages, 12 figures, accepted for publication on the Astrophysical
Journa
Acid-sensing ion channel 3 decreases phosphorylation of extracellular signal-regulated kinases and induces synoviocyte cell death by increasing intracellular calcium.
IntroductionAcid-sensing ion channel 3 (ASIC3) is expressed in synoviocytes, activated by decreases in pH, and reduces inflammation in animal models of inflammatory arthritis. The purpose of the current study was to characterize potential mechanisms underlying the control of inflammation by ASIC3 in fibroblast-like synoviocytes (FLS).MethodsExperiments were performed in cultured FLS from wild-type (WT) and ASIC3-/- mice, ASIC1-/- mice, and people with rheumatoid arthritis. We assessed the effects of acidic pH with and without interleukin-1β on FLS and the role of ASICs in modulating intracellular calcium [Ca(2+)](i), mitogen activated kinase (MAP kinase) expression, and cell death. [Ca(2+)](i) was assessed by fluorescent calcium imaging, MAP kinases were measured by Western Blots; ASIC, cytokine and protease mRNA expression were measured by quantitative PCR and cell death was measured with a LIVE/DEAD assay.ResultsAcidic pH increased [Ca(2+)](i) and decreased p-ERK expression in WT FLS; these effects were significantly smaller in ASIC3-/- FLS and were prevented by blockade of [Ca(2+)]i. Blockade of protein phosphatase 2A (PP2A) prevented the pH-induced decreases in p-ERK. In WT FLS, IL-1β increases ASIC3 mRNA, and when combined with acidic pH enhances [Ca(2+)](i), p-ERK, IL-6 and metalloprotienase mRNA, and cell death. Inhibitors of [Ca(2+)](i) and ERK prevented cell death induced by pH 6.0 in combination with IL-1β in WT FLS.ConclusionsDecreased pH activates ASIC3 resulting in increased [Ca(2+)](i), and decreased p-ERK. Under inflammatory conditions, acidic pH results in enhanced [Ca(2+)](i) and phosphorylation of extracellular signal-regulated kinase that leads to cell death. Thus, activation of ASIC3 on FLS by acidic pH from an inflamed joint could limit synovial proliferation resulting in reduced accumulation of inflammatory mediators and subsequent joint damage
RTKN2 induces NF-KappaB dependent resistance to intrinsic apoptosis in HEK cells and REgulates BCL-2 genes in human CD4+ lymphocytes
The gene for Rhotekin 2 (RTKN2) was originally identified in a promyelocytic cell line resistant to oxysterol-induced apoptosis. It is differentially expressed in freshly isolated CD4+ T-cells compared with other hematopoietic cells and is down-regulated following activation of the T-cell receptor. However, very little is known about the function of RTKN2 other than its homology to Rho-GTPase effector, rhotekin, and the possibility that they may have similar roles. Here we show that stable expression of RTKN2 in HEK cells enhanced survival in response to intrinsic apoptotic agents; 25-hydroxy cholesterol and camptothecin, but not the extrinsic agent, TNFα. Inhibitors of NF-KappaB, but not MAPK, reversed the resistance and mitochondrial pro-apoptotic genes, Bax and Bim, were down regulated. In these cells, there was no evidence of RTKN2 binding to the GTPases, RhoA or Rac2. Consistent with the role of RTKN2 in HEK over-expressing cells, suppression of RTKN2 in primary human CD4+ T-cells reduced viability and increased sensitivity to 25-OHC. The expression of the pro-apoptotic genes, Bax and Bim were increased while BCL-2 was decreased. In both cell models RTKN2 played a role in the process of intrinsic apoptosis and this was dependent on either NF-KappaB signaling or expression of downstream BCL-2 genes. As RTKN2 is a highly expressed in CD4+ T-cells it may play a role as a key signaling switch for regulation of genes involved in T-cell survival.<br /
Luminosity- and morphology-dependent clustering of galaxies
How does the clustering of galaxies depend on their inner properties like
morphological type and luminosity? We address this question in the mathematical
framework of marked point processes and clarify the notion of luminosity and
morphological segregation. A number of test quantities such as conditional
mark-weighted two-point correlation functions are introduced. These descriptors
allow for a scale-dependent analysis of luminosity and morphology segregation.
Moreover, they break the degeneracy between an inhomogeneous fractal point set
and actual present luminosity segregation. Using the Southern Sky Redshift
Survey~2 (da Costa et al. 1998, SSRS2) we find both luminosity and
morphological segregation at a high level of significance, confirming claims by
previous works using these data (Benoist et al. 1996, Willmer et al. 1998).
Specifically, the average luminosity and the fluctuations in the luminosity of
pairs of galaxies are enhanced out to separations of 15Mpc/h. On scales smaller
than 3Mpc/h the luminosities on galaxy pairs show a tight correlation. A
comparison with the random-field model indicates that galaxy luminosities
depend on the spatial distribution and galaxy-galaxy interactions. Early-type
galaxies are also more strongly correlated, indicating morphological
segregation. The galaxies in the PSCz catalog (Saunders et al. 2000) do not
show significant luminosity segregation. This again illustrates that mainly
early-type galaxies contribute to luminosity segregation. However, based on
several independent investigations we show that the observed luminosity
segregation can not be explained by the morphology-density relation alone.Comment: aastex, emulateapj5, 20 pages, 13 figures, several clarifying
comments added, ApJ accepte
- …
