109 research outputs found

    Kinematics of the New Zealand plate boundary: Relative motion by GPS across networks of 1000 km and 50 km spacing

    Get PDF
    The NASA/DOSE 'Kinematics of the New Zealand Plate Boundary' experiment is a four-year cooperative Global Positioning System (GPS) experiment involving 6 universities and institutions in New Zealand and the United States. The investigation covers two scales, the first on the scale of plates (approximately 1000 km) and the second is on the scale of the plate boundary zone (approximately 50 km). In the first portion of the experiment, phase A, the objective is to make direct measurements of tectonic plate motion between the Australian and Pacific plates using GPS in order to determine the Euler vector of this plate pair. The phase A portion of this experiment was initiated in December 1992 with the first-epoch baseline measurements on the large scale network. The network will be resurveyed two years later to obtain velocities. The stations which were observed for phase A are shown and listed. Additional regional stations which will be used for this study are listed and are part of either CIGNET or other global tracking networks. The phase A portion of the experiment is primarily the responsibility of the UNAVCO investigators. Therefore, this report concentrates on phase A. The first year of NASA funding for phase A included only support for the field work. Processing and analysis will take place with the second year of funding. The second part of the experiemnt measured relative motion between the Australian and Pacific plates across the pate boundary zone between Hokitika and Christchurch on the South Island of New Zealand. The extent and rate of deformation will be determined by comparisons with historical, conventional surveys and by repeated GPS measurements to be made in two years. This activity was the emphasis of the LDGO portion of the study. An ancillary experiment, phase C, concentrated on plate boundary deformation in the vicinity of Wellington and was done as part of training during the early portion of the field campaign. Details of the objectives of the field investigations are given in the appendix. An overview of the 1992 GPS field program is also given in the appendix

    Constraining the long-term evolution of the slip rate for a major extensional fault system in the central Aegean, Greece, using thermochronology

    Get PDF
    The brittle/ductile transition is a major rheologic boundary in the crust yet little is known about how or if rates of tectonic processes are influenced by this boundary. In this study we examine the slip history of the large-scale Naxos/Paros extensional fault system (NPEFS), Cyclades, Greece, by comparing published slip rates for the ductile crust with new thermochronological constraints on slip rates in the brittle regime. Based on apatite and zircon fission-track (AFT and ZFT) and (U–Th)/He dating we observe variable slip rates across the brittle/ductile transition on Naxos. ZFT and AFT ages range from 11.8 ± 0.8 to 9.7 ± 0.8 Ma and 11.2 ± 1.6 to 8.2 ± 1.2 Ma and (U–Th)/He zircon and apatite ages are between 10.4 ± 0.4 to 9.2 ± 0.3 Ma and 10.7 ± 1.0 to 8.9 ± 0.6 Ma, respectively. On Paros, ZFT and AFT ages range from 13.1 ± 1.4 Ma to 11.1 ± 1.0 Ma and 12.7 ± 2.8 Ma to 10.5 ± 2.0 Ma while the (U–Th)/He zircon ages are slightly younger between 8.3 ± 0.4 Ma and 9.8 ± 0.3 Ma. All ages consistently decrease northwards in the direction of hanging wall transport. Most of our new thermochronological results and associated thermal modeling more strongly support the scenario of an identical fault dip and a constant or slightly accelerating slip rate of 6–8 km Myr− 1 on the NPEFS across the brittle/ductile transition. Even the intrusion of a large granodiorite body into the narrowing fault zone at 12 Ma on Naxos does not seem to have affected the thermal structure of the area in a way that would significantly disturb the slip rate. The data also show that the NPEFS accomplished a minimum total offset of 50 km between 16 and 8 Ma

    Global Surveillance of Emerging Influenza Virus Genotypes by Mass Spectrometry

    Get PDF
    Effective influenza surveillance requires new methods capable of rapid and inexpensive genomic analysis of evolving viral species for pandemic preparedness, to understand the evolution of circulating viral species, and for vaccine strain selection. We have developed one such approach based on previously described broad-range reverse transcription PCR/electrospray ionization mass spectrometry (RT-PCR/ESI-MS) technology.Analysis of base compositions of RT-PCR amplicons from influenza core gene segments (PB1, PB2, PA, M, NS, NP) are used to provide sub-species identification and infer influenza virus H and N subtypes. Using this approach, we detected and correctly identified 92 mammalian and avian influenza isolates, representing 30 different H and N types, including 29 avian H5N1 isolates. Further, direct analysis of 656 human clinical respiratory specimens collected over a seven-year period (1999-2006) showed correct identification of the viral species and subtypes with >97% sensitivity and specificity. Base composition derived clusters inferred from this analysis showed 100% concordance to previously established clades. Ongoing surveillance of samples from the recent influenza virus seasons (2005-2006) showed evidence for emergence and establishment of new genotypes of circulating H3N2 strains worldwide. Mixed viral quasispecies were found in approximately 1% of these recent samples providing a view into viral evolution.Thus, rapid RT-PCR/ESI-MS analysis can be used to simultaneously identify all species of influenza viruses with clade-level resolution, identify mixed viral populations and monitor global spread and emergence of novel viral genotypes. This high-throughput method promises to become an integral component of influenza surveillance

    Exceptionally Preserved Jellyfishes from the Middle Cambrian

    Get PDF
    Cnidarians represent an early diverging animal group and thus insight into their origin and diversification is key to understanding metazoan evolution. Further, cnidarian jellyfish comprise an important component of modern marine planktonic ecosystems. Here we report on exceptionally preserved cnidarian jellyfish fossils from the Middle Cambrian (∼505 million years old) Marjum Formation of Utah. These are the first described Cambrian jellyfish fossils to display exquisite preservation of soft part anatomy including detailed features of structures interpreted as trailing tentacles and subumbrellar and exumbrellar surfaces. If the interpretation of these preserved characters is correct, their presence is diagnostic of modern jellyfish taxa. These new discoveries may provide insight into the scope of cnidarian diversity shortly after the Cambrian radiation, and would reinforce the notion that important taxonomic components of the modern planktonic realm were in place by the Cambrian period

    Emplotment as Epic in Archaeological Writing: The Site Monograph as Narrative

    Full text link
    To emplot a narrative as epic is to present a story of vast scope and multiple plots as a legitimate member of a tradition of other such stories. This article argues that emplotment as epic is the broadest of three levels of plot in archaeological writings. At that level, the site monograph emerges as a characteristically archaeological form of narrative, fundamental to archaeology as a discipline and a source of chronic anxiety for archaeologists. The ‘stories’ told in site monographs are epic in length, diversity of materials covered and multiplicity of themes, plots and authors. Indeed, the more complexities of that sort the better, since those are features that help to emplot the work as good archaeology

    Iron-Containing Cells in the Honey Bee (Apis mellifera)

    Get PDF
    Honey bees are sensitive to earth strength magnetic fields and are reported to contain magnetite (Fe3O4) in their abdomens. We report bands of cells around each abdominal segment that contain numerous electron-opaque, iron-containing granules. The iron is principally in the form of hydrous iron oxides

    Structure and Petrology of the Red Hill Complex, Nelson

    No full text
    The Red Hill Complex is an essentially concordant ultramafic body enclosed in Upper Paleozoic flysch facies sediments which include Pelorus Group (oldest), Lee River Group and Maitai Group. The Pelorus Group contains rare submarine lavas and is largely derived from spilitic volcanics. The Lee River Group consists of spilitic pillow lavas, volcanic breccias and spilitic basalts and dolerites. The Maitai Group consists of limestone, sandstone and argillite; an extensive conglomerate lens in the argillites is largely composed of andesitic pebbles. The Red Hill Complex is a 12,000 ft. thick lens and is part of a sheet of peridotites which may extend 40 miles northward to Dun Mountain. The Complex is divided into a 3000 ft thick Basal Zone of massive harzburgite and a 9000 ft thick Upper Zone of layered harzburgite and dunite with minor variants, feldspathic-peridotite, eucrite, lherzolite, wehrlite and pyroxenite. The bulk composition of both zones is approximately the same but the Upper Zone contains about 0.2 per cent feldspar not present in the Basal Zone. There is no significant regional change in mineral chemistry throughout the Complex and the average composition is about; olivine Fo91, 70 per cent; orthopyroxene, En88, 22 per cent; clinopyroxene, 5 per cent; feldspar An96, less than 0.2 per cent; spinel 2 per cent. Layering and foliation are common in the top of the Upper Zone. Layering is of at least two generations of which at least one is of metamorphic origin. Metamorphic layering was formed by metasomatic replacement probably along subhorizontal shear planes during intrusion of the ultramafic sheet. Pyroxene pegmatites formed after flow ceased. The diversity of rock types in the top of the Upper Zone is considered by the writer to have been caused by metamorphic differentiation of parent material the same composition as the Basal Zone. The preferred orientation of olivine in lineated, foliated, laminated and layered rocks has the same pattern suggesting a close genetic relationship between those structures. Evidence strongly supports a tectonic origin for the preferred orientation. Rocks in the Upper Zone are xenomorphic-granular in texture and those in the Basal Zone are typically protoclastic. Xenomorphic-granular textures are derived in part from protoclastic by post-deformational recrystallization. The ultramafic rocks are cut by a number of dykes composed of hornblende-labradorite, hypersthene-augite-bytownite assemblages or minor variants of these. The dykes were intruded shortly after emplacement of the ultramafic rocks. The Red Hill Complex is considered to have been emplaced as a sheet at shallow depths which intruded superficial deposits on the ocean floor and was later overlain by volcanic

    Structure and Petrology of the Red Hill Complex, Nelson

    No full text
    The Red Hill Complex is an essentially concordant ultramafic body enclosed in Upper Paleozoic flysch facies sediments which include Pelorus Group (oldest), Lee River Group and Maitai Group. The Pelorus Group contains rare submarine lavas and is largely derived from spilitic volcanics. The Lee River Group consists of spilitic pillow lavas, volcanic breccias and spilitic basalts and dolerites. The Maitai Group consists of limestone, sandstone and argillite; an extensive conglomerate lens in the argillites is largely composed of andesitic pebbles. The Red Hill Complex is a 12,000 ft. thick lens and is part of a sheet of peridotites which may extend 40 miles northward to Dun Mountain. The Complex is divided into a 3000 ft thick Basal Zone of massive harzburgite and a 9000 ft thick Upper Zone of layered harzburgite and dunite with minor variants, feldspathic-peridotite, eucrite, lherzolite, wehrlite and pyroxenite. The bulk composition of both zones is approximately the same but the Upper Zone contains about 0.2 per cent feldspar not present in the Basal Zone. There is no significant regional change in mineral chemistry throughout the Complex and the average composition is about; olivine Fo91, 70 per cent; orthopyroxene, En88, 22 per cent; clinopyroxene, 5 per cent; feldspar An96, less than 0.2 per cent; spinel 2 per cent. Layering and foliation are common in the top of the Upper Zone. Layering is of at least two generations of which at least one is of metamorphic origin. Metamorphic layering was formed by metasomatic replacement probably along subhorizontal shear planes during intrusion of the ultramafic sheet. Pyroxene pegmatites formed after flow ceased. The diversity of rock types in the top of the Upper Zone is considered by the writer to have been caused by metamorphic differentiation of parent material the same composition as the Basal Zone. The preferred orientation of olivine in lineated, foliated, laminated and layered rocks has the same pattern suggesting a close genetic relationship between those structures. Evidence strongly supports a tectonic origin for the preferred orientation. Rocks in the Upper Zone are xenomorphic-granular in texture and those in the Basal Zone are typically protoclastic. Xenomorphic-granular textures are derived in part from protoclastic by post-deformational recrystallization. The ultramafic rocks are cut by a number of dykes composed of hornblende-labradorite, hypersthene-augite-bytownite assemblages or minor variants of these. The dykes were intruded shortly after emplacement of the ultramafic rocks. The Red Hill Complex is considered to have been emplaced as a sheet at shallow depths which intruded superficial deposits on the ocean floor and was later overlain by volcanic
    corecore