310 research outputs found

    Marginalising instrument systematics in HST WFC3 transit lightcurves

    Get PDF
    Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) infrared observations at 1.1-1.7μ\mum probe primarily the H2_2O absorption band at 1.4μ\mum, and has provided low resolution transmission spectra for a wide range of exoplanets. We present the application of marginalisation based on Gibson (2014) to analyse exoplanet transit lightcurves obtained from HST WFC3, to better determine important transit parameters such as Rp_p/R_*, important for accurate detections of H2_2O. We approximate the evidence, often referred to as the marginal likelihood, for a grid of systematic models using the Akaike Information Criterion (AIC). We then calculate the evidence-based weight assigned to each systematic model and use the information from all tested models to calculate the final marginalised transit parameters for both the band-integrated, and spectroscopic lightcurves to construct the transmission spectrum. We find that a majority of the highest weight models contain a correction for a linear trend in time, as well as corrections related to HST orbital phase. We additionally test the dependence on the shift in spectral wavelength position over the course of the observations and find that spectroscopic wavelength shifts δλ(λ)\delta_\lambda(\lambda), best describe the associated systematic in the spectroscopic lightcurves for most targets, while fast scan rate observations of bright targets require an additional level of processing to produce a robust transmission spectrum. The use of marginalisation allows for transparent interpretation and understanding of the instrument and the impact of each systematic evaluated statistically for each dataset, expanding the ability to make true and comprehensive comparisons between exoplanet atmospheres.Comment: 19 pages, 13 figures, 8 tables, Accepted to Ap

    High Temperature Condensate Clouds in Super-Hot Jupiter Atmospheres

    Get PDF
    Deciphering the role of clouds is central to our understanding of exoplanet atmo- spheres, as they have a direct impact on the temperature and pressure structure, and observational properties of the planet. Super-hot Jupiters occupy a temperature regime similar to low mass M-dwarfs, where minimal cloud condensation is expected. However, observations of exoplanets such as WASP-12b (Teq∼2500 K) result in a transmission spectrum indicative of a cloudy atmosphere. We re-examine the temperature and pressure space occupied by these super-hot Jupiter atmospheres, to explore the role of the initial Al- and Ti-bearing condensates as the main source of cloud material. Due to the high temperatures a majority of the more common refractory material is not depleted into deeper layers and would remain in the vapor phase. The lack of depletion into deeper layers means that these materials with relatively low cloud masses can become significant absorbers in the upper atmosphere. We provide condensation curves for the initial Al- and Ti-bearing condensates that may be used to provide quantitative estimates of the effect of metallicity on cloud masses, as planets with metal-rich hosts potentially form more opaque clouds because more mass is available for condensation. Increased metallicity also pushes the point of condensation to hotter, deeper layers in the planetary atmosphere further increasing the density of the cloud. We suggest that planets around metal-rich hosts are more likely to have thick refractory clouds, and discuss the implication on the observed spectra of WASP-12b

    Optical to near-infrared transmission spectrum of the warm sub-Saturn HAT-P-12b

    Get PDF
    We present the transmission spectrum of HAT-P-12b through a joint analysis of data obtained from the Hubble Space Telescope Space Telescope Imaging Spectrograph (STIS) and Wide Field Camera 3 (WFC3) and Spitzer, covering the wavelength range 0.3-5.0 μ\mum. We detect a muted water vapor absorption feature at 1.4 μ\mum attenuated by clouds, as well as a Rayleigh scattering slope in the optical indicative of small particles. We interpret the transmission spectrum using both the state-of-the-art atmospheric retrieval code SCARLET and the aerosol microphysics model CARMA. These models indicate that the atmosphere of HAT-P-12b is consistent with a broad range of metallicities between several tens to a few hundred times solar, a roughly solar C/O ratio, and moderately efficient vertical mixing. Cloud models that include condensate clouds do not readily generate the sub-micron particles necessary to reproduce the observed Rayleigh scattering slope, while models that incorporate photochemical hazes composed of soot or tholins are able to match the full transmission spectrum. From a complementary analysis of secondary eclipses by Spitzer, we obtain measured depths of 0.042%±0.013%0.042\%\pm0.013\% and 0.045%±0.018%0.045\%\pm0.018\% at 3.6 and 4.5 μ\mum, respectively, which are consistent with a blackbody temperature of 89070+60890^{+60}_{-70} K and indicate efficient day-night heat recirculation. HAT-P-12b joins the growing number of well-characterized warm planets that underscore the importance of clouds and hazes in our understanding of exoplanet atmospheres.Comment: 25 pages, 19 figures, accepted for publication in AJ, updated with proof correction

    HST/WFC3 transmission spectroscopy of the cold rocky planet TRAPPIST-1h

    Full text link
    TRAPPIST-1 is a nearby ultra-cool dwarf star transited by seven rocky planets. We observed three transits of its outermost planet, TRAPPIST-1h, using the G141 grism of the Wide Field Camera 3 instrument aboard the Hubble Space Telescope to place constraints on its potentially cold atmosphere. In order to deal with the effect of stellar contamination, we model TRAPPIST-1 active regions as portions of a cooler and a hotter photosphere, and generate multi-temperature models that we compare to the out-of-transit spectrum of the star. Using the inferred spot parameters, we produce corrected transmission spectra for planet h under five transit configurations and compare these data to planetary atmospheric transmission models using the forward model CHIMERA. Our analysis reveals that TRAPPIST-1h is unlikely to host an aerosol-free H/He-dominated atmosphere. While the current data precision limits the constraints we can put on the planetary atmosphere, we find that the likeliest scenario is that of a flat, featureless transmission spectrum in the WFC3/G141 bandpass due to a high mean molecular weight atmosphere (>1000x solar), no atmosphere, or an opaque aerosol layer, all in absence of stellar contamination. This work outlines the limitations of modeling active photospheric regions with theoretical stellar spectra, and those brought by our lack of knowledge of the photospheric structure of ultracool dwarf stars. Further characterization of the planetary atmosphere of TRAPPIST-1h would require higher precision measurements over wider wavelengths, which will be possible with the James Webb Space Telescope

    HST hot Jupiter transmission spectral survey: evidence for aerosols and lack of TiO in the atmosphere of WASP-12b

    Get PDF
    We present HST optical transmission spectra of the transiting hot Jupiter WASP-12b, taken with the STIS instrument. From the transmission spectra, we are able to decisively rule out prominent absorption by TiO in the exoplanet's atmosphere. Strong pressure-broadened Na and K absorption signatures are also excluded, as are significant metal-hydride features. We compare our combined broadband spectrum to a wide variety of existing aerosol-free atmospheric models, though none are satisfactory fits. However, we do find that the full transmission spectrum can be described by models which include significant opacity from aerosols: including Rayleigh scattering, Mie scattering, tholin haze, and settling dust profiles. The transmission spectrum follows an effective extinction cross section with a power-law of index alpha, with the slope of the transmission spectrum constraining the quantity alphaT = -3528+/-660 K, where T is the atmospheric temperature. Rayleigh scattering (alpha=-4) is among the best fitting models, though requires low terminator temperatures near 900 K. Sub-micron size aerosol particles can provide equally good fits to the entire transmission spectrum for a wide range of temperatures, and we explore corundum as a plausible dust aerosol. The presence of atmospheric aerosols also helps to explain the modestly bright albedo implied by Spitzer observations, as well as the near black body nature of the emission spectrum. Ti-bearing condensates on the cooler night-side is the most natural explanation for the overall lack of TiO signatures in WASP-12b, indicating the day/night cold-trap is an important effect for very hot Jupiters. These finding indicate that aerosols can play a significant atmospheric role for the entire wide range of hot-Jupiter atmospheres, potentially affecting their overall spectrum and energy balance.(abridged)Comment: 19 pages, 14 figures, 5 tables. Accepted for publication in MNRA

    HST hot-Jupiter transmission spectral survey: Haze in the atmosphere of WASP-6b

    Get PDF
    We report Hubble Space Telescope (HST) optical to near-infrared transmission spectroscopy of the hot Jupiter WASP-6b, measured with the Space Telescope Imaging Spectrograph (STIS) and Spitzer's InfraRed Array Camera (IRAC). The resulting spectrum covers the range 0.294.5μ0.29-4.5\,\mum. We find evidence for modest stellar activity of WASP-6b and take it into account in the transmission spectrum. The overall main characteristic of the spectrum is an increasing radius as a function of decreasing wavelength corresponding to a change of Δ(Rp/R)=0.0071\Delta (R_p/R_{\ast})=0.0071 from 0.33 to 4.5μ4.5\,\mum. The spectrum suggests an effective extinction cross-section with a power law of index consistent with Rayleigh scattering, with temperatures of 973±144973\pm144 K at the planetary terminator. We compare the transmission spectrum with hot-Jupiter atmospheric models including condensate-free and aerosol-dominated models incorporating Mie theory. While none of the clear-atmosphere models is found to be in good agreement with the data, we find that the complete spectrum can be described by models that include significant opacity from aerosols including Fe-poor Mg2_2SiO4_4, MgSiO3_3, KCl and Na2_2S dust condensates. WASP-6b is the second planet after HD189733b which has equilibrium temperatures near 1200\sim1200 K and shows prominent atmospheric scattering in the optical.Comment: 18 pages, 15 figures, 7 table

    HST PanCET program: A Cloudy Atmosphere for the promising JWST target WASP-101b

    Get PDF
    We present results from the first observations of the Hubble Space Telescope (HST) Panchromatic Comparative Exoplanet Treasury (PanCET) program for WASP-101b, a highly inflated hot Jupiter and one of the community targets proposed for the James Webb Space Telescope (JWST) Early Release Science (ERS) program. From a single HST Wide Field Camera 3 (WFC3) observation, we find that the near-infrared transmission spectrum of WASP-101b contains no significant H2_2O absorption features and we rule out a clear atmosphere at 13{\sigma}. Therefore, WASP-101b is not an optimum target for a JWST ERS program aimed at observing strong molecular transmission features. We compare WASP-101b to the well studied and nearly identical hot Jupiter WASP-31b. These twin planets show similar temperature-pressure profiles and atmospheric features in the near-infrared. We suggest exoplanets in the same parameter space as WASP-101b and WASP-31b will also exhibit cloudy transmission spectral features. For future HST exoplanet studies, our analysis also suggests that a lower count limit needs to be exceeded per pixel on the detector in order to avoid unwanted instrumental systematics.Comment: 7 pages, 4 figures, 1 table, Accepted to ApJ

    Into the UV: A Precise Transmission Spectrum of HAT-P-41b Using Hubble’s WFC3/UVIS G280 Grism

    Get PDF
    The ultraviolet–visible wavelength range holds critical spectral diagnostics for the chemistry and physics at work in planetary atmospheres. To date, time-series studies of exoplanets to characterize their atmospheres have relied on several combinations of modes on the Hubble Space Telescope's STIS/COS instruments to access this wavelength regime. Here for the first time, we apply the Hubble WFC3/UVIS G280 grism mode to obtain exoplanet spectroscopy from 200 to 800 nm in a single observation. We test the G280 grism mode on the hot Jupiter HAT-P-41b over two consecutive transits to determine its viability for the characterization of exoplanet atmospheres. We obtain a broadband transit depth precision of 29–33 ppm and a precision of on average 200 ppm in 10 nm spectroscopic bins. Spectral information from the G280 grism can be extracted from both the positive and negative first-order spectra, resulting in a 60% increase in the measurable flux. Additionally, the first Hubble Space Telescope orbit can be fully utilized in the time-series analysis. We present detailed extraction and reduction methods for use by future investigations with this mode, testing multiple techniques. We find the results to be fully consistent with STIS measurements of HAT-P-41b from 310 to 800 nm, with the G280 results representing a more observationally efficient and precise spectrum. HAT-P-41b's transmission spectrum is best fit with a model with T eq = 2091 K, high metallicity, and significant scattering and cloud opacity. With these first-of-their-kind observations, we demonstrate that WFC3/UVIS G280 is a powerful new tool to obtain UV–optical spectra of exoplanet atmospheres, adding to the UV legacy of Hubble and complementing future observations with the James Webb Space Telescope
    corecore