6 research outputs found

    Supramolecular nanoarchitectures based on cyclodextrin host-guest interactions

    Get PDF
    La química supramolecular s'ha convertit en una eina molt poderosa en la construcció de noves arquitectures de mida nanomètrica amb propietats singulars. La combinació de modificacions covalents amb una àmplia gamma d'interaccions no covalents permet l'ajust de les propietats dels nanomaterials i la creació de materials innovadors i avançats amb aplicacions diverses. L'objectiu principal d'aquest treball és explorar la possibilitat de combinar les propietats úniques de les ciclodextrines amb materials polimèrics per crear noves nanoarquitectures. La present tesi descriu el desenvolupament d'una nova classe de nanomaterials polimèrics basats en interaccions supramoleculars. Aquests nanomaterials es van preparar d'una manera controlada per deposició capa a capa en solucions aquoses i es van aplicar amb èxit en biosensors per millorar el senyal anaítica i també podrien ser utilitzats per a diferents aplicacions biomèdiques. A més, s'han preparat nanocebes de carboni altament solubles basades en nanoestructures polimèriques, la qual cosa obre noves possibilitats en diverses aplicacions com l'energia fotovoltaica o l'electrònica molecular, on la dispersió de molècules acceptores té un paper important en la fabricació i el rendiment del dispositiu.La química supramolecular se ha convertido en una herramienta muy poderosa en la construcción de nuevas arquitecturas de tamaño nanométrico con propiedades singulares. La combinación de la modificación covalente con una amplia gama de interacciones no covalentes permite el ajuste de las propiedades de los nanomateriales y la creación de materiales innovadores y avanzados con aplicaciones diversas. El objetivo principal de este trabajo es explorar la posibilidad de combinar las propiedades únicas de las ciclodextrinas con materiales poliméricos para crear nuevas nanoarquitecturas . La presente tesis describe el desarrollo de una nueva clase de nanomateriales poliméricos basados en interacciones supramoleculares. Estos nanomateriales se prepararon de una manera controlada por deposición capa a capa en soluciones acuosas y se aplicarion con éxito en biosensores para mejorar la señal anaítica y también podrían ser utilizados para diferentes aplicaciones biomédicas. Además, se han preparado nanocebollas de carbono altamente solubles basadas en nanoestructuras poliméricas. lo cual abre nuevas posibilidades en diversas aplicaciones tales como la energía fotovoltaica o la electrónica molecular, donde la dispersión de moléculas aceptoras juega un papel importante en la fabricación y el rendimiento del dispositivo.Supramolecular chemistry has emerged as a very powerful tool in the construction of novel nanometer-sized architectures with remarkable properties. The combination of covalent modification with a wide range of non-covalent interactions allows the fine tuning of nanomaterial properties and the creation of innovative and advanced materials with distinct applications. The main objective of this work it to explore the possibility to combine the unique guest-complexing properties of cyclodextrins with polymeric materials to create novel nanoarchitectures. The present thesis describes the development of a new class of polymeric nanomaterials based on supramolecular host-guest interactions. These well-organized nanomaterials were prepared in a controlled manner by simple layer-by-layer deposition technique in aqueous solutions. They were successfully implemented in enzyme-encapsulating particle-based signal enhancement tools in biosensors and also could be used for different biomedical applications. Moreover, the prepared highly soluble carbon based polymeric nanostructures opens up new possibilities for many other applications such as photovoltaics or molecular electronics where the dispersion of acceptor molecules plays an important role in device fabrication and performance

    Quantitative Mid-Infrared Plasmonic Biosensing on Scalable Graphene Nanostructures

    No full text
    Graphene nanostructures, exhibiting tunable and nanoscale-confined mid-infrared (mid-IR) plasmons, prevail as a powerful spectroscopic platform for novel surface-enhanced molecular identification. Particularly, graphene shows exciting opportunities for biosensing applications due to its versatile functionalization methods with different biomolecular building blocks (e.g., enzymes, proteins, and DNA). Here, a quantitative bioassay based on the mid-IR localized surface plasmon resonance (LSPR) modulation in functionalized graphene nanostructures is demonstrated. Specifically, vitamin B12 (vB12) using the specific recognition elements on modified graphene nanoribbons (i.e., pyrene linkers via π − π stacking + anti-vB12 antibody fragments via amide bond) is detected. Different concentrations of vB12 spotted on an arrayed panel of a single chip are quantified by the graphene LSPR shifts, where a limit of detection (LOD) of 53.5 ng mL−1 is obtained. The upscaling potential of the bioassay using large area nanostructured graphene films produced by nanoimprinting 2D hole arrays is illustrated. The integration of quantitative bioassay with scalable graphene nanostructures shows promising routes of graphene-based mid-IR platforms toward prospective industrial applications.N.B. and E.W. contributed equally to this work. Tuula Kuurila and Salla Pentikäinen from VTT were thanked for technical assistance in antibody production and purification. Harri Siitari was thanked for support as a project manager during the anti-vB12 antibody development. The authors thank Daniel Martinez for help with AFM measurements. The research leading to these results has received funding from the H2020 Programme under Grant Agreement No. 881603 (Graphene Flagship). This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 754510. This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 665884. The authors acknowledge financial support from the Spanish Ministry of Economy and Competitiveness through the ‘Severo Ochoa’ Programme for Centres of Excellence in R&D (CEX2019-000910-S and CEX2019-000917-S) and project TUNA-SURF (PID2019-106892RB-I00) and PID2019-106860GB-I00 (HIGHN), Fundació Mir-Puig, and from Generalitat de Catalunya through the CERCA program, from AGAUR 2017 SGR 1634 and the Beatriu de Pinos-3 Postdoctoral Programme (BP3) under grant agreement ID 801370. This work was partially funded by CEX2019-000910-S [MCIN/ AEI/10.13039/501100011033], Fundació Cellex, Fundació Mir-Puig, and Generalitat de Catalunya through CERCA. Antibody discovery was funded by VTT Technical Research Centre of Finland and Development6 -project funded by Turku Science Park Oy, City of Turku, Turku Bio Valley Ltd.With funding from the Spanish government through the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000917-S).Peer reviewe
    corecore