583 research outputs found

    Nano-scale behavior of irradiated nano-structured alloys

    Get PDF
    Future fast neutron fusion and fission nuclear systems will be subjected to levels of radiation damage from fast neutrons which is significantly higher than the current generation of nuclear power stations. This will require innovative materials solutions to allow long term mechanical stability of reactors. One proposed class of materials are nanostructured alloys where the large number of interfaces allow for recombination defects and reduce the degree of radiation hardening seen. However their response under irradiation has not thoroughly been studied. In this work, two irradiated nanostructured alloys have been studied W-5%Re in both a nanostructured and annealed variant and a novel Hf-Ti-Ta-V-Zr high entropy alloy. I will outline the benefits nanostructured materials offer under irradiation and some of the problems and challenges in measuring their mechanical properties after irradiation and relating this to the nano-structure using XRD, TEM, HR-EBSD and atom probe tomography. Rolled tungsten 5 wt% rhenium sheet was studied in two microstructural variants: (a) as received with a high dislocation density (mean value of 1.4×1014lines/m2), measured using HR-EBSD, and pancake shaped grains with a thickness of≈200nm and (b) annealed at 1400oC for 24 hours to produce equiaxed grains with average grain size of ≈90 ”m and low dislocation density (with a mean value of 4.8×1013 lines/m2). Both materials were ion implanted with 2MeV W+ ions at 300oC to damage levels from 0.07, to 33 displacements per atom (dpa). Nanoindentation was used to measure the change in hardness after implantations. Irradiation induced hardening saturated in the as-received material at an increase of 0.4dpa from the unimplanted hardness of 8GPa at 0.4dpa. In the annealed material saturation does not occur by 13dpa and the hardness change of 1.3GPa from the unimplanted hardness of 6.2GPa was over four times higher. At 33dpa both material types showed a further increase in hardening. In these samples Atom probe tomography showed clustering of Re in ≈4nm precipitates with a rhenium concentration of ≈11%. In both cases the number density and volume fraction are similar at ≈3100 x1000/”m3 and volume fraction of ≈13%. These differences in radiation response are likely to be due to the high damage sink density in the as-received microstructure in the form of dislocation networks, as even in the as-received material the average grain size is too large to provide sufficient sinks. Initially this provides a large sink network for radiation damage resulting in less hardening in the rolled material. However at 33dpa the formation of rhenium clusters occurs at similar levels in both material conditions. These dominate the hardening mechanisms and result in secondary hardening at high damage levels. The difficulties in extracting hardness values from 200nm deep ion implanted layers will be discussed, with reference to minimizing the influence of the substrate material and how changes in pile up effects in irradiated materials can change mechanical responses, and proposed methods to minimize these. High entropy alloys have been proposed as potential nuclear materials as high configurational entropy may provide resistance to radiation damage. We have produced a novel high entropy alloy (Hf-Ti-Ta-V-Zr) in which is single phase on casting but two high entropy phases (one bcc and one hcp) are produced during heat treatment. This material then has a nano-lamella structure with an average lamella thickness of 200nm. Samples of the as cast single phase material, the dual phase high entropy alloy and single crystal vanadium were ion irradiated with V+ ions at 300oC to a dose of 5e14 ions/cm2. In the vanadium control samples the hardness as measured using CSM-nanoindentation was seen to increase from 2GPa in the unimplanted condition to 3.5GPa in the ion irradiated condition. The high entropy alloy in both the as cast and heat treated condition showed no increase in hardness after irradiation, demonstrating the intrinsic resistance to radiation damage of HEA’s. These studies show the ability of nanostructured alloys to have improved irradiation hardening resistance over conventional alloys. However challenges still remain in the production of large scale engineering components in such materials

    Adsorption of the Endocrine-Active Compound Estrone on Microfiltration Hollow Fiber Membranes

    Get PDF
    Results of studies reported here show that adsorption could result in considerable accumulation of hormones on hydrophobic hollow fibre membrane surfaces during filtration of trace-hormone containing feed solutions with a linear adsorption isotherm applicable over the majority of the estrone concentration range examined (2.6 to 154 ng/L). Models based on both diffusion and surface reaction limitation were used to describe the kinetics of estrone adsorption to the membranes tested. Results indicate that the rate of adsorption of estrone to the hollow fibre membranes was limited principally by surface reaction rate rather than the rate of diffusive transport to membrane surface sites. Both adsorption and desorption kinetics were satisfactorily described by pseudo-first order expressions. These results are of environmental significance, especially in drinking water applications, where contaminants such as natural and synthetic hormones may accumulate on the membranes and desorb during backwashing and membrane cleaning

    Coal chemical industry membrane concentrates: characterisation and treatment by ozonation and catalytic ozonation processes

    Get PDF
    Rationale. The enactment of increasingly stringent regulations has prompted the implementation of membrane technologies such as reverse osmosis (RO) in the management of coal chemical industry (CCI) wastewaters with the goal of achieving zero liquid discharge (ZLD). However, this practice inevitably results in the production of high salinity concentrates containing refractory organic matter. Methodology. In this study, we characterised the organic composition of RO concentrates obtained from the CCI using a variety of methods including liquid chromatography– organic carbon/nitrogen detection (LC-OCND) and investigated the degradability of organic compounds present in these concentrates by ozonation and catalytic ozonation processes. Results and discussion. Organic analysis using LC-OCND revealed that humic-like substances and low molecular weight neutral compounds were the dominant constituents in the CCI concentrates examined. Measurement of degradability of the CCI concentrate by a pure ozona- tion process showed low treatment efficiency (~20% dissolved organic carbon (DOC) removal) as a result of the refractory nature of the organic compounds present in the wastewater. The degradation of these organics by a catalytic ozonation process employing a commercially available Fe-oxide based catalyst was higher than that observed by pure ozonation although the extent of organics removal (DOC removal ~47%) is still low due to the refractory nature of the organics as well as the influence of salts on the catalyst performance. Techno-economic analysis of the pure ozonation and catalytic ozonation processes indicated that the total cost of implementation of the ozonation processes (homogeneous or heterogeneous) for CCI concentrate treatment is negligible compared with the overall cost of the complete ZLD process

    The role of bacterial and algal exopolymeric substances in iron chemistry

    Full text link
    © 2015 Elsevier B.V. It is widely accepted that the complexation of iron (Fe) with organic compounds is the primary factor that regulates Fe reactivity and its bioavailability to phytoplankton in the open ocean. Despite considerable efforts to unravel the provenance of the many organic ligands present in the 'ligand soup' and their contribution to Fe chemistry, much of this pool remains largely unresolved. Bacteria and phytoplankton are known to release exopolymeric substances (EPS) for a variety of functions and it is known that this material has metal binding properties. However, the contribution that bacterial and algal EPS makes to Fe biogeochemistry is not well documented. This study revealed that both bacterial and algal EPS contain functional components known to bind Fe (uronic acid, saccharides) and details the molecular weight distribution of the EPS. It is also demonstrated that components of the EPS have a high affinity for Fe-binding, in some cases similar to that of bacterial siderophores (~KFe'L 1012) and that this material greatly enhances Fe solubility (and, possibly, Fe oxyhydroxide reactivity via prevention of aggregation) in seawater. However, EPS may also accelerate Fe(II) oxidation and thus Fe(II) removal from the system. Our findings indicate that, in remote ocean regions, bacterial and algal EPS could play a significant role in the biogeochemical cycling of Fe and their contribution should be considered to further our understanding of the dynamics of Fe-limited oceans

    Implication of Non-electrostatic Contribution to Deionization in Flow-Electrode CDI: Case Study of Nitrate Removal From Contaminated Source Waters

    Get PDF
    While flow-electrode capacitive deionization (FCDI) operated in short-circuited closed cycle (SCC) mode appears to hold promise for removal of salt from brackish source waters, there has been limited investigation on the removal of other water constituents such as nitrate, fluoride or bromide in combination with salt removal. Of particular concern is the effectiveness of FCDI when ions, such as nitrate, are recognized to non-electrostatically adsorb strongly to activated carbon particles thereby potentially rendering it difficult to regenerate these particles. In this study, SCC FCDI was used to desalt source waters containing nitrate at different concentrations. Results indicate that nitrate can be removed from source waters using FCDI to concentrations <1 mg NO3-N L−1 though a lower quality target such as 10 mg L−1 would be more cost-effective, particularly where the influent nitrate concentration is high (50 mg NO3-N L−1). Although studies of the fate of nitrate in the FCDI system show that physico-chemical adsorption of nitrate to the carbon initially plays a vital role in nitrate removal, the ongoing process of nitrate removal is not significantly affected by this phenomenon with this lack of effect most likely due to the continued formation of electrical double layers enabling capacitive nitrate removal. In contrast to conventional CDI systems, constant voltage mode is shown to be more favorable in maintaining stable effluent quality in SCC FCDI because the decrease in electrical potential that occurs in constant current operation leads to a reduction in the extent of salt removal from the brackish source waters. Through periodic replacement of the electrolyte at a water recovery of 91.4%, we show that the FCDI system can achieve a continuous desalting performance with the effluent NO3-N concentration below 1 mg NO3-N L−1 at low energy consumption (~0.5 kWh m−3) but high productivity

    The antibacterial activity of a photoactivatable diarylacetylene against Gram-positive bacteria

    Get PDF
    The emergence of antibiotic resistance is a growing threat to human health, and therefore, alternatives to existing compounds are urgently needed. In this context, a novel fluorescent photoactivatable diarylacetylene has been identified and characterised for its antibacterial activity, which preferentially eliminates Gram-positive over Gram-negative bacteria. Experiments confirmed that the Gram-negative lipopolysaccharide-rich outer surface is responsible for tolerance, as strains with reduced outer membrane integrity showed increased susceptibility. Additionally, bacteria deficient in oxidative damage repair pathways also displayed enhanced sensitivity, confirming that reactive oxygen species production is the mechanism of antibacterial activity. This new diarylacetylene shows promise as an antibacterial agent against Gram-positive bacteria that can be activated in situ, potentially for the treatment of skin infections

    The Vehicle, 1968, Vol. 10 no. 2

    Get PDF
    Vol. 10, No. 2 Table of Contents 1st Prize, ArtCorner of My MindGerry Moreheadpage 4 #1Clyde Simspage 5 Aesthetics for a VagabondByron Nelsonpage 5 1st Prize, Short StorySteam HeatCharles Whitepage 6 a drawingSally Roachpage 6 an untitled themeCatherine Waitepage 8 MoodKevin Sheapage 9 1st Prize, PoetryHome ThoughtsJane Careypage 10 an untitled poemCatherine Waitepage 11 a drawingSally Roachpage 11 GraceJames T. Jonespage 12 LonelinessSally Roachpage 14 Love, JimmyAstaire Pappaspage 14 CapturedJeff Nelsonpage 15 Winnie Davis Neely AwardUnconcernRoger Zulaufpage 17 an untitled poemDavid N. Deckerpage 17 Morality and American Foreign Policy: The Ever-widening GapBruce L. Berrypage 18 La LibertadChris Holavespage 19 1966Roger Zulaufpage 19 SinThomas W. Phippspage 20 a drawingRoger Perkinspage 20 Summer SweatJerry J. Carterpage 20 1st Prize, EssayCuriosityThomas W. Phippspage 21 A Bottle of DreamsMaurice Snivelypage 21 Chalk DustCatherine Waitepage 22 Diffused Existence or, a Meager Attempt at Helping You Over the Rough SpotsJan Gerlachpage 22 To *e.e.Paula Bresnanpage 22 A PoemThomas W. Phippspage 22 Beach PartyJerol Mikeworthpage 22 Wexford\u27s PartyRoy Lueckepage 23 The Four O\u27Clock ClubSally Roachpage 23 Chesterpage 24https://thekeep.eiu.edu/vehicle/1018/thumbnail.jp

    A Search for Jet Handedness in Hadronic Z0Z^0 Decays

    Get PDF
    We have searched for signatures of polarization in hadronic jets from Z0→qqˉZ^0 \to q \bar{q} decays using the ``jet handedness'' method. The polar angle asymmetry induced by the high SLC electron-beam polarization was used to separate quark jets from antiquark jets, expected to be left- and right-polarized, respectively. We find no evidence for jet handedness in our global sample or in a sample of light quark jets and we set upper limits at the 95% C.L. of 0.063 and 0.099 respectively on the magnitude of the analyzing power of the method proposed by Efremov {\it et al.}Comment: Revtex, 8 pages, 2 figure

    Measurement of the Charged Multiplicities in b, c and Light Quark Events from Z0 Decays

    Full text link
    Average charged multiplicities have been measured separately in bb, cc and light quark (u,d,su,d,s) events from Z0Z^0 decays measured in the SLD experiment. Impact parameters of charged tracks were used to select enriched samples of bb and light quark events, and reconstructed charmed mesons were used to select cc quark events. We measured the charged multiplicities: nˉuds=20.21±0.10(stat.)±0.22(syst.)\bar{n}_{uds} = 20.21 \pm 0.10 (\rm{stat.})\pm 0.22(\rm{syst.}), nˉc=21.28±0.46(stat.)−0.36+0.41(syst.)\bar{n}_{c} = 21.28 \pm 0.46(\rm{stat.}) ^{+0.41}_{-0.36}(\rm{syst.}) nˉb=23.14±0.10(stat.)−0.37+0.38(syst.)\bar{n}_{b} = 23.14 \pm 0.10(\rm{stat.}) ^{+0.38}_{-0.37}(\rm{syst.}), from which we derived the differences between the total average charged multiplicities of cc or bb quark events and light quark events: Δnˉc=1.07±0.47(stat.)−0.30+0.36(syst.)\Delta \bar{n}_c = 1.07 \pm 0.47(\rm{stat.})^{+0.36}_{-0.30}(\rm{syst.}) and Δnˉb=2.93±0.14(stat.)−0.29+0.30(syst.)\Delta \bar{n}_b = 2.93 \pm 0.14(\rm{stat.})^{+0.30}_{-0.29}(\rm{syst.}). We compared these measurements with those at lower center-of-mass energies and with perturbative QCD predictions. These combined results are in agreement with the QCD expectations and disfavor the hypothesis of flavor-independent fragmentation.Comment: 19 pages LaTex, 4 EPS figures, to appear in Physics Letters
    • 

    corecore