CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
The role of bacterial and algal exopolymeric substances in iron chemistry
Authors
E Angles
AR Bowie
+8 more
T David Waite
CS Hassler
CM Nichols
A Ninh Pham
L Norman
VI Slaveykova
AT Townsend
IAM Worms
Publication date
1 January 2015
Publisher
'Elsevier BV'
Doi
Abstract
© 2015 Elsevier B.V. It is widely accepted that the complexation of iron (Fe) with organic compounds is the primary factor that regulates Fe reactivity and its bioavailability to phytoplankton in the open ocean. Despite considerable efforts to unravel the provenance of the many organic ligands present in the 'ligand soup' and their contribution to Fe chemistry, much of this pool remains largely unresolved. Bacteria and phytoplankton are known to release exopolymeric substances (EPS) for a variety of functions and it is known that this material has metal binding properties. However, the contribution that bacterial and algal EPS makes to Fe biogeochemistry is not well documented. This study revealed that both bacterial and algal EPS contain functional components known to bind Fe (uronic acid, saccharides) and details the molecular weight distribution of the EPS. It is also demonstrated that components of the EPS have a high affinity for Fe-binding, in some cases similar to that of bacterial siderophores (~KFe'L 1012) and that this material greatly enhances Fe solubility (and, possibly, Fe oxyhydroxide reactivity via prevention of aggregation) in seawater. However, EPS may also accelerate Fe(II) oxidation and thus Fe(II) removal from the system. Our findings indicate that, in remote ocean regions, bacterial and algal EPS could play a significant role in the biogeochemical cycling of Fe and their contribution should be considered to further our understanding of the dynamics of Fe-limited oceans
Similar works
Full text
Available Versions
OPUS - University of Technology Sydney
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:opus.lib.uts.edu.au:10453/...
Last time updated on 13/02/2017
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1016%2Fj.marchem.2...
Last time updated on 08/01/2021
Archive ouverte UNIGE
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:unige.ch:aou:unige:72711
Last time updated on 07/06/2024