318 research outputs found

    Understanding the epidemiology of MRSA in Europe : do we need to think outside the box?

    Get PDF
    Background: The epidemiology of meticillin-resistant Staphylococcus aureus (MRSA) infections, using bacteraemia as a marker, shows a striking geographical pattern in Europe. The prevalence of MRSA is low in Northern European countries, increases into central Europe and reaches its highest levels in the Mediterranean region. This has been attributed to varying levels of implementation of infection control and antibiotic stewardship (ICAS) programmes, but reasons for this variation have not been clearly established. Aim: To investigate the possible impact of national cultural dimensions on the epidemi- ology of MRSA in Europe. Methods: Median proportions of MRSA bacteraemia were sourced for countries partici- pating in the EARS-Net surveillance network in 2010, and correlated with the national cultural dimension scores of Hofstede et al. Findings: Significant associations were identified between MRSA proportions and the cultural constructs of uncertainty avoidance (UAI), masculinity (MAS) and power distance. Multiple regression models found significant associations for UAI, MAS and short-term orientation (R2 adjusted 1⁄4 0.475; P < 0.001). The model was found to be predictive of MRSA trends identified in several European countries between 2006 and 2010. Conclusion: Implementation of ICAS programmes often requires behavioural change. Cultural dimensions appear to be key factors affecting perceptions and values among healthcare workers, which in turn are critical for compliance and uptake. Customizing ICAS initiatives to reflect the local cultural background may improve their chances of success.peer-reviewe

    Differential Gene Expression in Normal Human Mammary Epithelial Cells Treated with Malathion Monitored by DNA Microarrays

    Get PDF
    Organophosphate pesticides are a major source of occupational exposure in the United States. Moreover, malathion has been sprayed over major urban populations in an effort to control mosquitoes carrying West Nile virus. Previous research, reviewed by the U.S. Environmental Protection Agency, on the genotoxicity and carcinogenicity of malathion has been inconclusive, although malathion is a known endocrine disruptor. Here, interindividual variations and commonality of gene expression signatures have been studied in normal human mammary epithelial cells from four women undergoing reduction mammoplasty. The cell strains were obtained from the discarded tissues through the Cooperative Human Tissue Network (sponsors: National Cancer Institute and National Disease Research Interchange). Interindividual variation of gene expression patterns in response to malathion was observed in various clustering patterns for the four cell strains. Further clustering identified three genes with increased expression after treatment in all four cell strains. These genes were two aldo–keto reductases (AKR1C1 and AKR1C2) and an estrogen-responsive gene (EBBP). Decreased expression of six RNA species was seen at various time points in all cell strains analyzed: plasminogen activator (PLAT), centromere protein F (CPF), replication factor C (RFC3), thymidylate synthetase (TYMS), a putative mitotic checkpoint kinase (BUB1), and a gene of unknown function (GenBank accession no. AI859865). Expression changes in all these genes, detected by DNA microarrays, have been verified by real-time polymerase chain reaction. Differential changes in expression of these genes may yield biomarkers that provide insight into interindividual variation in malathion toxicity

    Methylation-Specific MLPA (MS-MLPA): simultaneous detection of CpG methylation and copy number changes of up to 40 sequences

    Get PDF
    Copy number changes and CpG methylation of various genes are hallmarks of tumor development but are not yet widely used in diagnostic settings. The recently developed multiplex ligation-dependent probe amplification (MLPA) method has increased the possibilities for multiplex detection of gene copy number aberrations in a routine laboratory. Here we describe a novel robust method: the methylation-specific MLPA (MS-MLPA) that can detect changes in both CpG methylation as well as copy number of up to 40 chromosomal sequences in a simple reaction. In MS-MLPA, the ligation of MLPA probe oligonucleotides is combined with digestion of the genomic DNA–probe hybrid complexes with methylation-sensitive endonucleases. Digestion of the genomic DNA–probe complex, rather than double-stranded genomic DNA, allowed the use of DNA derived from the formalin treated paraffin-embedded tissue samples, enabling retrospective studies. To validate this novel method, we used MS-MLPA to detect aberrant methylation in DNA samples of patients with Prader–Willy syndrome, Angelman syndrome or acute myeloid leukemia

    Exome sequencing reveals mutated SLC19A3 in patients with an early-infantile, lethal encephalopathy

    Get PDF
    To accomplish a diagnosis in patients with a rare unclassified disorder is difficult. In this study, we used magnetic resonance imaging pattern recognition analysis to identify patients with the same novel heritable disorder. Whole-exome sequencing was performed to discover the mutated gene. We identified seven patients sharing a previously undescribed magnetic resonance imaging pattern, characterized by initial swelling with T2 hyperintensity of the basal nuclei, thalami, cerebral white matter and cortex, pons and midbrain, followed by rarefaction or cystic degeneration of the white matter and, eventually, by progressive cerebral, cerebellar and brainstem atrophy. All patients developed a severe encephalopathy with rapid deterioration of neurological functions a few weeks after birth, followed by respiratory failure and death. Lactate was elevated in body fluids and on magnetic resonance spectroscopy in most patients. Whole-exome sequencing in a single patient revealed two predicted pathogenic, heterozygous missense mutations in the SLC19A3 gene, encoding the second thiamine transporter. Additional predicted pathogenic mutations and deletions were detected by Sanger sequencing in all six other patients. Pathology of brain tissue of two patients demonstrated severe cerebral atrophy and microscopic brain lesions similar to Leigh's syndrome. Although the localization of SLC19A3 expression in brain was similar in the two investigated patients compared to age-matched control subjects, the intensity of the immunoreactivity was increased. Previously published patients with SLC19A3 mutations have a milder clinical phenotype, no laboratory evidence of mitochondrial dysfunction and more limited lesions on magnetic resonance imaging. In some, cerebral atrophy has been reported. The identification of this new, severe, lethal phenotype characterized by subtotal brain degeneration broadens the phenotypic spectrum of SLC19A3 mutations. Recognition of the associated magnetic resonance imaging pattern allows a fast diagnosis in affected infant

    Biallelic BUB1 mutations cause microcephaly, developmental delay, and variable effects on cohesion and chromosome segregation

    Get PDF
    Budding uninhibited by benzimidazoles (BUB1) contributes to multiple mitotic processes. Here, we describe the first two patients with biallelic BUB1 germline mutations, who both display microcephaly, intellectual disability, and several patient-specific features. The identified mutations cause variable degrees of reduced total protein level and kinase activity, leading to distinct mitotic defects. Both patients' cells show prolonged mitosis duration, chromosome segregation errors, and an overall functional spindle assembly checkpoint. However, while BUB1 levels mostly affect BUBR1 kinetochore recruitment, impaired kinase activity prohibits centromeric recruitment of Aurora B, SGO1, and TOP2A, correlating with anaphase bridges, aneuploidy, and defective sister chromatid cohesion. We do not observe accelerated cohesion fatigue. We hypothesize that unresolved DNA catenanes increase cohesion strength, with concomitant increase in anaphase bridges. In conclusion, BUB1 mutations cause a neurodevelopmental disorder, with clinical and cellular phenotypes that partially resemble previously described syndromes, including autosomal recessive primary microcephaly, mosaic variegated aneuploidy, and cohesinopathies.info:eu-repo/semantics/publishedVersio

    The Cellular Phenotype of Roberts Syndrome Fibroblasts as Revealed by Ectopic Expression of ESCO2

    Get PDF
    Cohesion between sister chromatids is essential for faithful chromosome segregation. In budding yeast, the acetyltransferase Eco1/Ctf7 establishes cohesion during DNA replication in S phase and in response to DNA double strand breaks in G2/M phase. In humans two Eco1 orthologs exist: ESCO1 and ESCO2. Both proteins are required for proper sister chromatid cohesion, but their exact function is unclear at present. Since ESCO2 has been identified as the gene defective in the rare autosomal recessive cohesinopathy Roberts syndrome (RBS), cells from RBS patients can be used to elucidate the role of ESCO2. We investigated for the first time RBS cells in comparison to isogenic controls that stably express V5- or GFP-tagged ESCO2. We show that the sister chromatid cohesion defect in the transfected cell lines is rescued and suggest that ESCO2 is regulated by proteasomal degradation in a cell cycle-dependent manner. In comparison to the corrected cells RBS cells were hypersensitive to the DNA-damaging agents mitomycin C, camptothecin and etoposide, while no particular sensitivity to UV, ionizing radiation, hydroxyurea or aphidicolin was found. The cohesion defect of RBS cells and their hypersensitivity to DNA-damaging agents were not corrected by a patient-derived ESCO2 acetyltransferase mutant (W539G), indicating that the acetyltransferase activity of ESCO2 is essential for its function. In contrast to a previous study on cells from patients with Cornelia de Lange syndrome, another cohesinopathy, RBS cells failed to exhibit excessive chromosome aberrations after irradiation in G2 phase of the cell cycle. Our results point at an S phase-specific role for ESCO2 in the maintenance of genome stability

    Proper genomic profiling of (BRCA1-mutated) basal-like breast carcinomas requires prior removal of tumor infiltrating lymphocytes

    Get PDF
    BRCA1-mutated breast carcinomas may have distinct biological features, suggesting the involvement of specific oncogenic pathways in tumor development. The identification of genomic aberrations characteristic for BRCA1-mutated breast carcinomas could lead to a better understanding of BRCA1-associated oncogenic events and could prove valuable in clinical testing for BRCA1-involvement in patients. Methods: For this purpose, genomic and gene expression profiles of basal-like BRCA1-mutated breast tumors (n=27) were compared with basal-like familial BRCAX (non-. BRCA1/. 2/. CHEK2*1100delC) tumors (n=14) in a familial cohort of 120 breast carcinomas. Results: Genome wide copy number profiles of the BRCA1-mutated breast carcinomas in our data appeared heterogeneous. Gene expression analyses identifi
    corecore