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Exome sequencing reveals mutated SLC19A3
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To accomplish a diagnosis in patients with a rare unclassified disorder is difficult. In this study, we used magnetic resonance

imaging pattern recognition analysis to identify patients with the same novel heritable disorder. Whole-exome sequencing was

performed to discover the mutated gene. We identified seven patients sharing a previously undescribed magnetic resonance

imaging pattern, characterized by initial swelling with T2 hyperintensity of the basal nuclei, thalami, cerebral white matter and

cortex, pons and midbrain, followed by rarefaction or cystic degeneration of the white matter and, eventually, by progressive

cerebral, cerebellar and brainstem atrophy. All patients developed a severe encephalopathy with rapid deterioration of neuro-

logical functions a few weeks after birth, followed by respiratory failure and death. Lactate was elevated in body fluids and on

magnetic resonance spectroscopy in most patients. Whole-exome sequencing in a single patient revealed two predicted patho-

genic, heterozygous missense mutations in the SLC19A3 gene, encoding the second thiamine transporter. Additional predicted

pathogenic mutations and deletions were detected by Sanger sequencing in all six other patients. Pathology of brain tissue of

two patients demonstrated severe cerebral atrophy and microscopic brain lesions similar to Leigh’s syndrome. Although the

localization of SLC19A3 expression in brain was similar in the two investigated patients compared to age-matched control

subjects, the intensity of the immunoreactivity was increased. Previously published patients with SLC19A3 mutations have a
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milder clinical phenotype, no laboratory evidence of mitochondrial dysfunction and more limited lesions on magnetic resonance

imaging. In some, cerebral atrophy has been reported. The identification of this new, severe, lethal phenotype characterized by

subtotal brain degeneration broadens the phenotypic spectrum of SLC19A3 mutations. Recognition of the associated magnetic

resonance imaging pattern allows a fast diagnosis in affected infants.
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Introduction
Early-infantile onset encephalopathies have a major impact on

families. They come with an urgent need for a proper diagnosis

in view of immediate therapeutic decisions. Additionally, the diag-

nosis is important for genetic counselling and family planning. MRI

pattern recognition has been proven to be highly successful in

facilitating a rapid correct classification and diagnosis

(Schiffmann and van der Knaap, 2009). Several novel childhood

encephalopathies have been defined by their distinct pattern of

MRI abnormalities and in most cases the aetiology has been iden-

tified, confirming the validity of this approach (Leegwater et al.,

2001a, b; Zara et al., 2006; Scheper et al., 2007; Steenweg et al.,

2012a, b). Most of these disorders have a genetic aetiology with a

Mendelian inheritance pattern. Different genetic techniques,

including genome-wide linkage studies and homozygosity map-

ping, have been used to identify the associated genes

(Leegwater et al., 2001a, b; Zara et al., 2006; Scheper et al.,

2007). Although successful for common Mendelian disorders

and large or consanguineous families, these conventional tech-

niques fail to elucidate the related gene in extremely rare

Mendelian disorders, unrelated cases from different families, and

sporadic cases owing to de novo mutations. The recent introduc-

tion of whole-exome sequencing has created the opportunity to

identify the mutated gene in these cases leading to rapid new

gene discoveries (Ku et al., 2011; Steenweg et al., 2012a, b).

In the present study we used MRI pattern recognition for

the classification of a group of seven patients with a lethal en-

cephalopathy of unknown origin and performed whole-exome

sequencing as a first-tier genetic technique to identify the related

gene.

Patients and methods
Seven patients from five unrelated families, sharing a previously unde-

scribed distinct MRI pattern, were identified from our MRI database of

more than 3000 cases with an unclassified leukoencephalopathy.

Patients were included if they met the following MRI criteria: (i) bilat-

eral signal abnormalities of the nucleus caudatus, putamen, globus

pallidus and thalamus; (ii) extensive signal abnormalities of the sub-

cortical and central cerebral white matter and the cerebral cortex; (iii)

diffuse signal abnormalities of the cerebellar white matter with or

without involvement of the cortex; (iv) extensive signal abnormalities

in the pons and midbrain; and (v) in the case of follow-up MRIs,

atrophy of affected structures.

Detailed clinical information, laboratory investigations and autopsy

results were retrospectively collected and reviewed. A molecular

diagnosis was not achieved in any of the patients. Blood and/or fibro-

blasts of all patients were collected. Approval of the ethical standards

committee was received for whole-exome sequencing in patients with

unclassified leukoencephalopathies, with written informed consent of

the parents.

Magnetic resonance imaging pattern
recognition
A total number of 15 MRIs were available for the study. MRIs were

evaluated according to a previously published protocol by consensus of

two investigators (S.H.K. and M.S.v.d.K.) (van der Knaap et al., 1999).

Studies typically included sagittal T1-weighted spin-echo images and

axial T1-weighted, T2-weighted and proton density spin-echo images.

FLAIR images were available in six patients. Signal changes were

defined as abnormally high signals on T2-weighted images. White

matter rarefaction was defined as T2-hyperintense white matter

areas with low signal on FLAIR or proton density, but not as low as

the signal CSF. Cystic degeneration was defined as T2-hyperintense

white matter areas with a low signal on FLAIR or proton densitiy, as

low as the signal of CSF. Cerebral atrophy was scored as mild, mod-

erate or severe, based on the presence of cerebral or cerebellar sulcal

prominence, enlargement of the ventricles and subjective assessment

of brainstem size. Apparent diffusion coefficient maps were used to

assess restricted diffusion to avoid the T2-shinethrough effects.

Because magnetic resonance spectroscopy studies were obtained

with different techniques on machines from different vendors, we

only looked at the presence of lactate, represented by a doublet

centred at 1.33 parts per million. The MRIs of four disease stages

(acute, post-acute, intermediate and end-stage) were grouped

together.

Whole-exome sequencing
Whole-exome sequencing was performed in Patient 2. Genomic DNA

was extracted by standard methods. Exonic targets were enriched with

SeqCap EZ Human Exome Library v2.0 kit (Nimblegen). Sequencing

was performed with 100 bp paired-end reads on a Hiseq2000

(Illumina). Read alignment to the human genome assembly hg19

was performed with Burrows-Wheeler Aligner tool (v0.5.9) (http://

bio-bwa.sourceforge.net) (Li and Durbin, 2009). Single-nucleotide

variants and small insertions and deletions were called with Varscan

v2.2.5 (http://varscan.sourceforge.net) (Koboldt et al., 2009) and

annotated with Annovar (http://www.openbioinformatics.org/anno-

var) (Wang et al., 2010). Novelty of variants was determined using

public single nucleotide polymorphism databases, including dbSNP132

(http://www.ncbi.nlm.nih.gov/projects/SNP) and the 1000 Genomes

project (release November 2010), and our in-house control exomes

(yielding 17 exomes of patients with different disease phenotypes).

PolyPhen-2 was used for pathogenicity prediction of variants (http://

genetics.bwh.harvard.edu/pph2/) (Adzhubei et al., 2010).
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Mutation analysis
All coding exons and the adjacent splice sites of the SLC19A3 gene of

the index patients were amplified by PCR (NG_016359.1). For one

case the full length open reading frame was amplified by

reverse-transcription PCR (NM_025243.3). The DNA of parents was

only investigated for the amplicons containing the familial mutations.

All SLC19A3 amplicons were analysed by direct DNA sequence ana-

lysis. The amplicons were analysed by capillary electrophoresis using an

ABI3130xl genetic analyser (Applied Biosystems) and assessed using

Mutation Surveyor� (Softgenetics). Primer sequences are available

on request.

Pathology
Brain tissue from Patients 3 and 4 was collected at autopsy at The

Hospital for Sick Children, Toronto, Ontario, Canada. Macroscopic and

microscopic characteristics and the expression patterns of SLC19A3

and SLC19A2 were studied. To investigate the normal expression of

SLC19A3 and SLC19A2, post-mortem brain tissue samples were ob-

tained from four unrelated age-matched control subjects without sig-

nificant confounding neuropathological findings at autopsy and from

one 2-year-old child with Leigh’s syndrome. Leigh’s syndrome was

diagnosed based on the clinical course, the typical MRI pattern and

pathology findings of Leigh’s syndrome at autopsy. No molecular diag-

nosis was achieved. Formalin-fixed, paraffin-embedded tissue was sec-

tioned at 6 mm and stained for haematoxylin and eosin or

Kluver-periodic acid Schiff according to standard methods.

Additionally, tissue sections were incubated with antibodies against

the following epitopes: SLC19A3 (Sigma, 1:500) and SLC19A2

(Sigma, 1:100), glial fibrillary acidic protein (GFAP, marker of astro-

cytes; Millipore, 1:1000), proteolipid protein (PLP, myelin marker;

AbDSerotec, 1:3000), neuronal nuclear antigen (NeuN, marker of neu-

rons; Sigma, 1:500), platelet endothelial cell adhesion molecule 1

(PECAM1/CD31, vascular endothelial cell marker; Dako, 1:50), and

collagen IV (basement membrane marker; Dako, 1:50). Negative con-

trols by omitting the primary antibody were included in each experi-

ment to verify the specificity of the immunohistochemical labelling.

Briefly, sections were deparaffinized and rehydrated. Endogenous per-

oxidase activity was quenched by incubating the slides in 0.3% hydro-

gen peroxide in methanol. Slides were rinsed with distilled water and

transferred to citric acid (pH 6). Heat-induced antigen retrieval was

performed using microwave irradiation for 15 min on low setting.

Tissue sections were then cooled to room temperature, rinsed and

incubated overnight with primary antibodies. Slides were rinsed and

the antibody visualized with diaminobenzidine tetrachloride. Between

incubation steps, sections were thoroughly washed. After a short rinse

in tap water, sections were counterstained with haematoxylin, washed,

dehydrated and mounted with polyvinyl alcohol medium with Dabco�

(Sigma).

Double and triple fluorescence immunohistochemical stainings were

performed on cryosections of snap-frozen brain tissue from the same

control subjects. Tissue sections were fixed in 2% paraformaldehyde,

subsequently permeabilized with 0.1% saponin, blocked in 5% normal

goat serum and incubated with primary antibodies overnight at 4�C.

After staining with secondary antibodies (Alexa Fluor� 488 -, 568-,

and 647-tagged; Molecular Probes, 1:400), sections were counter-

stained with DAPI (nuclear stain; Molecular Probes, 10 ng/ml) and

photographed using a Leica DM6000B microscope (Leica

Microsystems).

Results

Magnetic resonance imaging findings
Detailed MRI findings are outlined in Supplementary Table 1.

Most patients had more than one brain MRI; only Patients 1

and 2 had a single MRI. Four follow-up MRIs were available

in Patient 5, illustrating all four disease stages (Supplementary

Fig. 1).

The acute phase (MRI of two patients, Supplementary Table 1;

Fig. 1A–C, Patient 1) was characterized by severe swelling and

diffuse T2-hyperintensity of the cerebral and cerebellar white

matter and cortex. Typically, the depths of the sulci of the cerebral

and cerebellar cortex were affected, with a high T2-signal, while

the gyral crowns had a more normal, low T2-signal. Severe swel-

ling and T2-hyperintensity of central grey nuclei, including the

thalamus, putamen, globus pallidus, caudate nucleus and dentate

nucleus were present in both patients. The brainstem displayed

extensive signal abnormalities with relative sparing of the medulla

oblongata. Rarefaction of the deep cerebral white matter was seen

in Patient 1. Diffusion imaging of Patient 5 showed restricted dif-

fusion in multiple areas of the cerebral cortex and white matter,

corpus callosum, basal nuclei, thalamus, brainstem, and cerebellar

white matter.

The post-acute phase (MRI of three patients, Supplementary

Table 1; Fig. 2A–F, Patient 6) was characterized by partial reso-

lution of cerebral white matter swelling with rarefaction and/or

cystic degeneration of predominantly the subcortical white

matter, the basal nuclei and thalamus. The pulvinar was relatively

spared in Patients 6 and 7. Diffusion imaging was performed in

Patient 6 and revealed extensive areas of restricted diffusion in

cerebral white and grey matter structures (Fig. 2D and E). The

widespread signal abnormalities of midbrain and pons persisted

in all patients and new signal abnormalities of the medulla oblon-

gata developed in Patient 5.

The intermediate phase (MRI of six patients, Supplementary

Table 1; Fig. 3A–C; Patient 3) consisted of a variable degree of

atrophy of the brainstem, thalami, basal nuclei, cerebral white

matter and corpus callosum, accompanied by extensive thinning

of the cerebral cortex. Rarefaction of cerebral and/or cerebellar

white matter was present in three of the six patients. Cyst-like

structures were present throughout the cerebral white matter,

the thalami, basal nuclei, and cerebellar white matter in two pa-

tients. Although the widespread T2-hyperintensity of the brainstem

decreased, focal T2-signal abnormalities localized in the central-

dorsal area of the tegmentum of pons and midbrain persisted.

Previously detected areas of restricted diffusion resolved. A sub-

dural haematoma developed in three patients, most likely due to

advancing cerebral atrophy.

The end stage (MRI of five patients, Supplementary Table 1;

Fig. 4A–C, Patient 4) was characterized by severe atrophy of the

cerebral white matter and cortex, corpus callosum, thalami and

basal nuclei. Cerebellar atrophy was noted in three patients.

Atrophy of the pons and midbrain with persisting T2-hyperinten-

sity of the central-dorsal area of the tegmentum of pons and

midbrain was present in four patients.
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Elevated lactate in affected white and grey matter was

found by magnetic resonance spectroscopy in five patients

during one or more disease stages (Supplementary Table 1).

Contrast was given to Patients 6 and 7 during the post-acute

phase, and to Patient 5 during the intermediate phase. No

enhancement was observed. It is important to note that the

four disease stages followed each other rapidly and that the

brain abnormalities evolved in the course of a few weeks to

months.

Clinical findings
Detailed clinical characteristics and findings at last examination

are described in Supplementary Table 2. Patients 2 and 4,

Figure 2 Axial T2-weighted images (A–C), diffusion-weighted images (D and E), and a coronal FLAIR image (F) in Patient 6 at 2.9 months

of age, illustrating the post-acute phase. Moderate swelling of the cerebral white matter, basal nuclei and thalami is observed (B and C).

Note the relative sparing of the pulvinar (B). There is restricted diffusion in the thalami, caudate nucleus and different parts of the cerebral

white matter (D and E). Multiple areas of rarefied white matter are present (F).

Figure 1 Axial (A and B) and sagittal (C) T2-weighted images in Patient 1 at 3 months of age, illustrating the acute phase. Note the

extensive swelling and T2-hyperintensity of the cerebral and cerebellar white matter, basal nuclei and thalami (B). The depths of the

gyri of the cerebral and cerebellar cortex are more affected than the gyral crowns (B and C).
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as well as Patients 5 and 7 are siblings. Consanguinity was present

in two families. Pregnancy and delivery were uneventful for all

patients. Early psychomotor development was delayed in the

siblings Patients 5 and 7. The initial signs were noted between

8 weeks and 5.5 months of age (mean 2.7 months) and included

irritability, seizures or suspected seizures, sometimes infantile

spasms, loss of contact, somnolence and lowering of conscious-

ness, extensor spasms, feeding difficulties and failure of achieving

developmental milestones. A preceding event was evident in

six patients, including (viral) infection or vaccination shortly

before onset. Within a few weeks after the first signs, all patients

showed rapid and severe regression of neurological functions with

progressive spasticity, deterioration of contact, feeding difficulties,

and eventually respiratory failure. Six patients died before the age

of 2 years (range 4–20 months); Patient 6 died at the age of

4 years and 8 months. Neurological examination predominantly

showed pyramidal signs of arms and legs; no extrapyramidal

signs were present. Ophthalmological investigation revealed

optic nerve atrophy in most patients. None of the seven patients

had involvement of other organs or dysmorphic features.

Patients 1 and 3 received a ‘mitochondrial’ cocktail, including

vitamin B6, co-enzyme Q, riboflavin, nicotinamide, and biotin,

but no thiamine. No beneficial effect of the supplements was

observed.

Laboratory findings
Laboratory findings are summarized in Supplementary Table 3.

Plasma lactate levels were elevated in five patients at initial pres-

entation (range 3.3–4.6 mmol/l, normal values 1.2–2.2 mmol/l)

and showed a subsequent gradual decline during follow-up.

Amino acid levels in blood revealed a slightly elevated alanine in

three patients with increased ornithine and glycine in one patient.

Plasma thiamine levels were not measured. Urinary organic acids

were normal in all patients. A slightly reduced activity of one or

more respiratory chain enzyme complexes in muscle was found in

three patients. However, normal enzyme activities were measured

in skin fibroblasts. Ragged red fibres or structural mitochondrial

abnormalities were not observed. Mutation analysis of whole

mitochondrial DNA in blood or targeted mutation analysis of mito-

chondrial DNA in muscle or blood revealed no mutations in the

tested patients.

Whole-exome analysis
Whole-exome sequencing was performed in DNA of Patient 2. To

prioritize candidate disease genes, we filtered the raw data based

on the assumptions that the causal variant was not present in

control exomes, was compliant with an autosomal recessive inher-

itance and altered the amino acid sequence, as summarized in

Supplementary Table 4. This approach selected three genes with

variants fulfilling these criteria: SLC19A3 (MIM*606152),

SLC34A1 (MIM*182309) and OBSL1 (MIM*610991). Based on

conservation status, predicted pathogenicity using Polyphen-2

(Adzhubei et al., 2010) and a literature search for disease pheno-

types linked to these genes, we selected SLC19A3 as the best

candidate gene. The two heterozygous SLC19A3 variants detected

in Patient 2, a c.541T4C transition predicting the replacement of

serine at protein position 181 by proline p.Ser181Pro and a

c.1154T4G transversion predicting a p.Leu385Arg replacement,

were confirmed by Sanger sequencing. DNA from the parents

was not available to confirm compound heterozygosity.

SLC19A3 mutation analysis
Sanger sequencing of SLC19A3 identified missense and nonsense

mutations and deletions in all seven patients (Table 1). Except for

Patients 5 and 7, no DNA from parents was available so carrier

status in the parents could not be confirmed. All identified muta-

tions were not present in 13 000 control chromosomes of sub-

jects included in the NHLBI GO Exome Sequencing Project

database and were predicted to be probably pathogenic by

Polyphen-2 (Adzhubei et al., 2010) (Table 1). Patient 1 harboured

the p.Gly23Val mutation on one allele, which was previously

found in homozygous state in two patients from a Yemeni

Figure 3 Axial (A and B) and coronal (C) T2-weighted images in Patient 3 at 2.3 months of age, illustrating the intermediate phase. Note

the atrophy of the cerebral white matter and thinning of the cortex (B and C). Cystic lesions of the basal nuclei, thalami and subcortical

white matter are present (B and C). The T2-hyperintensity of the pons is restricted to the central-dorsal area (A).
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family with biotin-responsive basal ganglia disease (Zeng et al.,

2005).

Brain pathology
Macroscopic examination of the brain of Patients 3 and 4 showed

severe atrophy of the cerebral cortex, deep grey matter structures

and subcortical and central white matter. Microscopic examination

confirmed the involvement of both grey and white matter with

multiple, bilateral and often symmetric infarct-like lesions in the

cerebrum, brainstem (Fig. 5G) and cerebellum. All lesions were

characterized by rarefaction and vacuolar degeneration to cavitary

necrosis of the neuropil and surrounding white matter, accompa-

nied by prominent, dilated capillaries and reactive astrogliosis

(Fig. 5A–D). In the cerebral and cerebellar cortex these lesions

affected preferentially the depth of the sulci and extended to

the pial surface (Fig. 5E and F). Here subtotal loss of neurons

was associated with infiltration of lipid-laden macrophages and

mineralization of the residual neurons (Fig. 5B). The lesions in

the basal nuclei (Fig. 5D), brainstem and cerebellum had the

same histopathological features. Notably, well-preserved neurons

in the context of nectrotizing areas were found in the midbrain

and pontine tegmentum (Fig. 5H). Although relatively spared, the

deep white matter also showed myelin pallor, microcystic changes,

dilated perivascular spaces, and marked isomorphic reactive astro-

gliosis (data not shown).

In the non-neurological controls, SLC19A2 and SLC19A3 were

expressed in the blood vessels throughout the brain (Fig. 6A and

B). Double labelling showed co-localization of SLC19A3 with

collagen IV at the basement membrane and in the surrounding

pericytes (Supplementary Fig. 2A). By contrast, SLC19A2 immu-

noreactivity was found only at the luminal side of the blood

vessels, where it co-localized with the endothelial marker CD31

(Supplementary Fig. 2D). In the control cerebral cortex, SLC19A3

expression was also found in meningeal cells and in some

NeuN-positive small neurons in the deeper cortical layers

(Supplementary Fig. 2F) and immediately subcortical cerebral

white matter (Fig. 6A). Scattered SLC19A3-positive neurons

were also seen in the brainstem and cerebellar nuclei. No

SLC19A3 expression was seen in astrocytes (Fig. 6A;

Supplementary Fig. 2E and F). No other SLC19A2-positive cell

types beside blood cells were seen in the cerebral cortex (data

Table 1 SLC19A3 mutations in present patients

Patient Country of origin c.DNA Deduced effecta Type of mutation State Exon

1 Canadian c.68G4Tb p.Gly23Valb Missense Heterozygous 2

r.1173_1314del p.Gln393* Exon deletion Heterozygous 5

2 and 4 (sibs) European c.541T4C p.Ser181Pro Missense Heterozygous 3

c.1154T4G p.Leu385Arg Missense Heterozygous 4

3 European c.507C4G p.Tyr169* Nonsense Heterozygous 3

c.527C4A p.Ser176Tyr Missense Heterozygous 3

5 and 7 (sibs) Lebanese c.895_925del p.Val299fs Frameshift Homozygousc 3

6 Moroccan c.1332C4G p.Ser444Arg Missense Homozygous 6

The missense mutations described are presumed to be pathogenic, because all mutations have been analysed with Polyphen-2 and had prediction scores 50.92, the amino
acids involved are all moderately to highly conserved, and none of the mutations were detected in 513 000 control alleles. However, to confirm pathogenicity, over-
expression studies need to be performed. All other type of mutations detected in this study should be considered pathogenic based on their truncating nature.
a Nomenclature rules of den Dunnen and Antonarakis (2001).
b Known mutation (Zeng et al., 2005).
c Both parents are carrier of the mutation, confirming homozygosity for the mutation in their affected children.

Figure 4 Axial T2-weighted images in Patient 4 at 9.5 months of age, illustrating the end phase. Note the advanced atrophy of

the cerebral white matter, basal nuclei, thalami and cortex (A–C). The signal abnormalities of the pons have almost completely

disappeared (A).
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Figure 5 Haematoxylin and eosin (H&E) stain of the cerebral cortex shows an infarct-like lesion extending to the pial surface and to the

subcortical white matter (A, Patient 4). Note the relatively spared cortex on the left side of the picture. At higher magnification lesions

display rarefaction and loosening of the neuropil with subtotal loss of neurons, lipophages and chronic fibrillary astrogliosis (B, Patient 4).

Immunolabelling for glial fibrillary acidic protein (GFAP) shows marked reactive proliferation of astroglial cells (C, Patient 4). Haematoxylin

and eosin stain of the basal nuclei shows rarefaction of the neuropil with vascular prominence in the putamen (D, Patient 4). Immunostain

for the proteolipid protein (PLP) shows white matter rarefaction with loss of stainable myelin deeper in the folia. Note also the moderate

cortical atrophy and the relative sparing of the cortex at the crowns of the gyri, with still visible external and internal granular layers (E,

Patient 3). Immunolabelling for glial fibrillary acidic protein from the same patient shows reactive proliferation of the white matter

astrocytes and of the Bergmann glia. Note also the total loss of neurons in the depth of the gyri, including the Purkinje cells (F, Patient 3).

Whole mount of haematoxylin and eosin-stained cross section through the pontomesencephalic junction shows bilaterally symmetric

necrotizing lesions in the tectum and tegmentum with relative sparing of the peri-aqueductal areas. Note the presence of an additional

midline necrotizing lesion in the raphe (G, Patient 4). Haematoxylin and eosin stain of the oculomotor nucleus (III cranial nerve) in the

midbrain shows marked rarefaction to liquefaction of the neuropil with astrogliosis, lipophages, dilated blood vessels and relative sparing

of some neuronal cells (H, Patient 3).
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not shown), whereas scattered faintly SLC19A2-positive neurons

were visible in the deep cerebellar nuclei (Fig. 6B) and in the

brainstem.

In the two SLC19A3-mutated patients, as well as in the patient

with Leigh’s syndrome, a stronger immunoreactivity for both

SLC19A3 and, to a lesser degree, SLC19A2 was detected in the

wall of the blood vessels (Fig. 6C–F). The localization of both

transporters was the same as in normal control tissue. In contrast

with non-neurological controls, numerous SLC19A3-positive astro-

cytes were also seen in and around infarct-like lesions in the

SLC19A3-mutated patients (Fig. 6C and E) and, to a lesser

degree, in the patient with Leigh’s syndrome (Fig. 6D).

Increased SLC19A3 expression was also detected in subpial astro-

cytes (Fig. 6C).

Discussion
Using MRI pattern recognition we identified a group of young

infants with a dramatic, lethal encephalopathy with subtotal

brain degeneration. Exome sequencing of one patient and subse-

quent Sanger sequencing of six patients revealed (presumed)

pathogenic mutations in the SLC19A3 gene. SLC19A3 encodes

the second thiamine transporter and is ubiquitously expressed,

including in brain (Rajgopal et al., 2001).

The cerebral MRI abnormalities of our patients indicate rapid

onset and massive neuronal cell death, suggestive of severe

energy failure. The white matter abnormalities can be explained

by Wallerian degeneration. Different disease phases follow each

other rapidly and soon lead to subtotal brain degeneration. Initial

Figure 6 Stain for SLC19A3 in control brain tissue shows scattered strongly immunoreactive neurons in the deeper cerebral cortex (top

right) and corticosubcortical junction (A). SLC19A3-immunoreactivity is also visible in the wall of blood vessels (A, inset) along the

basement membrane and in pericytes. Stain for SLC19A2 of the cerebellar white matter shows immunopositivity of the vascular endo-

thelial cells (B, inset). Note also a faint immunoreactivity in the neurons of the dentate nucleus (B). Labelling for SLC19A3 of a cortical

lesion from Patient 4 shows increased immunoreactivity at the blood vessel walls and immunopositive parenchymal and subpial astrocytes

(C). A similar constellation of findings is visible in a grey matter lesion from the age-matched control with Leigh’s encephalopathy

unrelated to SLC19A3. Note the apparent less pronounced SLC19A3-immunoreactivity in the reactive astrocytes (D). Stain for SLC19A3 of

a relatively spared subcortical white matter area in the frontal lobe of Patient 4 shows strong immunoreactivity in the perivascular pericytes

and, to a lesser extent, in the reactive astrocytes (E). Labelling for SLC19A2 of the same brain region of the same patient shows increased

immunopositivity in the vascular endothelial cells and reactive astrocytes (F).
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diffuse swelling with T2-hyperintensity of the cerebral cortex and

white matter, caudate nucleus, putamen, globus pallidus, thalami,

dentate nucleus, cerebellum, pons and midbrain is followed by

rarefaction and cystic degeneration of the white matter and pro-

gressive cerebral, cerebellar and brainstem atrophy. Deficiency of

thiamine pyrophosphate, the active form of thiamine, can explain

this energy failure due to its important role as cofactor for three

major enzyme systems involved in the tricarboxylic acid cycle. The

developing brain is a large energy consumer and can therefore

be regarded as one of the most vulnerable organs for thiamine

deficiency.

Parallel to the rapidly progressive MRI abnormalities, patients

deteriorate dramatically within a few weeks after the first signs

and die early. In the majority of the patients the onset of deteri-

oration was preceded by an infection or vaccination, a feature also

commonly seen in mitochondrial disorders. Most patients have

elevated lactate levels in plasma and on spectroscopy. These find-

ings are consistent with the hypothesis that thiamine deficiency

leads to decreased oxidative decarboxylation of pyruvate and

�-ketoglutarate acid, resulting in pyruvate accumulation and lac-

tate production (Jhala and Hazell, 2011).

In our patients, brain pathology shows symmetric, bilateral

infarct-like lesions with profound loss of neurons, astrogliosis and

vascular prominence, comparable to what is observed in Leigh’s

syndrome (Powers and de Vivo, 2002). The observation that the

crowns of the gyri are less severely affected than the depth of the

sulci, as seen both by brain MRI and histologically, is a typical

finding in conditions of energy failure (van der Knaap and Valk,

2005). The pathological findings in our patients are, however,

more severe and extensive than commonly observed in patients

with Leigh’s syndrome (Powers and de Vivo, 2002).

The expression of SLC19A3 and SLC19A2 has been extensively

studied in intestinal and renal epithelial cells (Said et al., 2004;

Ashokkumar et al., 2006), but not in the brain. In our study, we

found that both wild-type transporters are differentially expressed

within cerebral blood vessels. SLC19A2 is expressed exclusively at

the luminal side, while SLC19A3 is solely present at the basement

membrane and in perivascular pericytes. This distribution differs

from that observed in intestinal and renal epithelial cells, where

SLC19A3 is present at the luminal apical side and SLC19A2 at

both the luminal and baso-lateral side (Said et al., 2004;

Ashokkumar et al., 2006). This differential distribution could indi-

cate a different role of both thiamine transporters in thiamine

homeostasis. Because the localization of both transporters in the

brain is different than observed in renal and intestinal tissue, regu-

lation of thiamine homeostasis could be different for these organs.

Compared with non-neurological controls, both transporters

locate to the same position in cerebral blood vessels of the two

SLC19A3-mutated patients investigated histopathologically.

However, their expression is increased. The observation that

their expression is also increased in the patient with Leigh’s syn-

drome may imply that the upregulation of the thiamine trans-

porters is not the direct consequence of decreased intracellular

thiamine, but of decreased energy availability. In the two investi-

gated SLC19A3-mutated patients, however, SLC19A3 and

SLC19A2 expression was detected in reactive astrocytes to a

greater degree than in the patient with Leigh’s syndrome. This

suggests that the intracellular thiamine level affects the expression

of both transporters in this cell type. The increased SLC19A3 and

SLC19A2 expression is possibly due to a regulatory feedback

mechanism. We could not determine whether this is specific for

the brain or also concerns the thiamine transporters located in

other organs, like the intestine and the kidney, because no intes-

tinal or renal material from patients was available in which we

could investigate the expression of the transporters. Plasma thia-

mine levels were not measured, so it remains unknown if thiamine

absorption in the intestine or kidney is affected in these patients. It

also remains to be investigated whether increased brain SLC19A3

and SLC19A2 expression is a general feature observed in patients

with SLC19A3 mutations.

Until now, SLC19A3 mutations have been associated with three

different clinical variants (see Supplementary Table 5 for an over-

view of all patients reported with SLC19A3 mutations): basal

ganglia disease (MIM#607483), Wernicke-like encephalopathy

(MIM#607483) and a more generalized encephalopathy (Zeng

et al., 2005; Kono et al., 2009; Debs et al., 2010; Yamada

et al., 2010; Serrano et al., 2012). Patients with basal ganglia

disease have a childhood or adolescent onset encephalopathy,

mainly characterized by epilepsy, confusion, dysarthria, dysphagia

and extrapyramidal symptoms. MRI shows focal lesions predom-

inantly in the putamen and caudate nucleus. Patients improve on

biotin or thiamine medication (Zeng et al., 2005; Debs et al.,

2010; Serrano et al., 2012). Patients with Wernicke-like enceph-

alopathy have an adolescent onset encephalopathy, clinically

resembling Wernicke syndrome. MRI also shows the typical

abnormalities involving the peri-aqueductal grey and medial thal-

amus. These patients improved on thiamine medication (Kono

et al., 2009). The patients with the more generalized encephalop-

athy have an infantile onset and a more severe phenotype, char-

acterized by infantile spasms and psychomotor retardation. Besides

focal lesions in the basal nuclei, their brain MRI also shows cere-

bral atrophy (Yamada et al., 2010). The effect of biotin or thia-

mine could not be determined in the latter patients. Overall, these

three phenotypes have a milder clinical course and a different MRI

pattern with more limited abnormalities than our patients.

Elevated lactate levels as evidence of mitochondrial dysfunction

were not reported in any of these cases.

We identified different heterozygous or homozygous missense

and nonsense mutations and deletions in SLC19A3 in our patients.

All mutations identified were novel, except for the heterozygous

p.Gly23Val mutation in Patient 1 (on the other allele this patient

had a deletion of 141 base pairs). This mutation was previously

found in homozygous state in two patients from one family

with basal ganglia disease (Zeng et al., 2005). Owing to the

small number of patients known, a clear genotype–phenotype

relationship cannot be established. The consistent phenotype in

multiple affected siblings, however, suggests that the genotype

indeed influences the phenotype. It could be that patients

with a milder phenotype are less vulnerable to thiamine deficiency

due to some remaining function of the mutant protein or due

to individual genetic or epigenetic factors, for instance positively

influencing the expression of SLC19A2 or RFC1, a poten-

tial thiamine monophosphate transporter (Zhao et al., 2001,

2002).
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Our findings broaden the phenotypic spectrum of patients with

SLC19A3 mutations. The cause of the clinical heterogeneity asso-

ciated with mutated SLC19A3 remains to be elucidated.

Recognition of the distinctive MRI pattern associated with the

different clinical phenotypes is important as it allows a rapid diag-

nosis in affected infants. Regarding treatment possibilities, two of

our patients received biotin, without thiamine, and had no signs of

improvements. The problem with this severe phenotype is that the

brain damage is already extensive when patients come to medical

attention. At present, the most important implication of the diag-

nosis for families is in genetic counselling and prenatal diagnosis.

Whether antenatal supplementation of thiamine and biotin has

any beneficial effect remains to be investigated.
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