17 research outputs found

    Accelerated optimization of transparent, amorphous zinc-tin-oxide thin films for optoelectronic applications

    Get PDF
    In the last decade, transparent amorphous oxide semiconductors (TAOS) have become an essential component of many electronics, from ultra high resolution displays to solar cells. However, these disordered oxides typically rely on expensive component metals like indium to provide sufficient charge carrier conduction, and their optoelectronic properties are not as predictable and well-described as those of traditional, crystalline semiconductors. Herein we report on our comprehensive study of the amorphous zinc-tin-oxide (a-ZTO) system for use as an indium-free, n-type TAOS. Using a combination of high-throughput co-deposition growth, high resolution spectral mapping, and atomistic calculations, we explain the development of disorder-related subgap states in SnO2-like a-ZTO and optical bandgap reduction in ZnO-like a-ZTO. In addition, we report on a composition-induced electronic and structural transition in ZnO-like a-ZTO resulting in an exceptionally high figure of merit, comparable to that of amorphous indium-gallium-zinc-oxide. Our results accelerate the development of a-ZTO and similar systems as indium-free TAOS materials

    Lone-pair stabilization in transparent amorphous tin oxides:a potential route to p-type conduction pathways

    Get PDF
    The electronic and atomic structures of amorphous transparent tin oxides have been investigated by a combination of X-ray spectroscopy and atomistic calculations. Crystalline SnO is a promising p-type transparent oxide semiconductor due to a complex lone-pair hybridization that affords both optical transparency despite a small electronic band gap and spherical s-orbital character at the valence band edge. We find that both of these desirable properties (transparency and s-orbital valence band character) are retained upon amorphization despite the disruption of the layered lone-pair states by structural disorder. We explain the anomalously large band gap widening necessary to maintain transparency in terms of lone-pair stabilization via atomic clustering. Our understanding of this mechanism suggests that continuous hole conduction pathways along extended lone pair clusters should be possible under certain stoichiometries. Moreover, these findings should be applicable to other lone-pair active semiconductors

    Evidence of a second-order Peierls-driven metal-insulator transition in crystalline NbO2

    Get PDF
    The metal-insulator transition of NbO2 is thought to be important for the functioning of recent niobium oxide-based memristor devices, and is often described as a Mott transition in these contexts. However, the actual transition mechanism remains unclear, as current devices actually employ electroformed NbOx that may be inherently different to crystalline NbO2. We report on our synchrotron x-ray spectroscopy and density-functional-theory study of crystalline, epitaxial NbO2 thin films grown by pulsed laser deposition and molecular beam epitaxy across the metal-insulator transition at ~810⁰C. The observed spectral changes reveal a second-order Peierls transition driven by a weakening of Nb dimerization without significant electron correlations, further supported by our density-functional-theory modeling. Our findings indicate that employing crystalline NbO2 as an active layer in memristor devices may facilitate analog control of the resistivity, whereby Joule-heating can modulate Nb-Nb dimer distance and consequently control the opening of a pseudogap

    Adsorption-controlled growth and properties of epitaxial SnO films

    No full text
    When it comes to providing the unusual combination of optical transparency, p-type conductivity, and relatively high mobility, Sn2+-based oxides are promising candidates. Epitaxial films of the simplest Sn2+ oxide, SnO, are grown in an adsorption-controlled regime at 380 degrees C on Al2O3 substrates by molecular-beam epitaxy, where the excess volatile SnOx desorbs from the film surface. A commensurately strained monolayer and an accompanying van der Waals gap is observed near the substrate interface, promoting layers with high structural perfection notwithstanding a large epitaxial lattice mismatch (-12%). The unintentionally doped films exhibit p-type conductivity with carrier concentration 2.5 x 10(16) cm(-3) and mobility 2.4 cm(2) V(-1)s(-1) at room temperature. Additional physical properties are measured and linked to the Sn2+ valence state and corresponding lone-pair charge-density distribution.Funding Agencies|ASCENT - DARPA; National Science Foundation (NSF)National Science Foundation (NSF) [DGE-1650441]; NSF MRSEC ProgramNational Science Foundation (NSF)NSF - Directorate for Mathematical &amp; Physical Sciences (MPS) [DMR-1719875]; NSFNational Science Foundation (NSF) [ECCS-1542081, DMR-0703406]; Air Force Office of Scientific ResearchUnited States Department of DefenseAir Force Office of Scientific Research (AFOSR) [FA955018-1-0024]; U.S. Department of Energy (DOE) Office of Science User FacilityUnited States Department of Energy (DOE) [DEAC02-06CH11357]; Olle Engkvist Foundation; NSF [Platform for the Accelerated Realization, Analysis, and Discovery of Interface Materials (PARADIM)] [DMR-1539918]</p
    corecore