19 research outputs found
Influence des cycles hydriques de la dessiccation et de l'humidification sur le comportement hydromécanique des géomatériaux non saturés
Ce travail de recherche porte sur le comportement des milieux poreux (triphasiques), plus particulièrement les sols non saturés sous sollicitations hydro-mécaniques. Un modèle constitutif élastoplastique couplé est développé. Ce modèle original est formulé selon les principes suivants: une loi constitutive est développée pour décrire le comportement de chaque phase (squelette solide, liquide, et gaz). Ensuite, des relations de couplage sont ajoutées entre chacune des phases. Pour le comportement du squelette solide, une loi élastoplastique non associée est adoptée, avec deux surfaces de charges, en cisaillement et en compression. La partie hydrique est décrite par une formulation qui permet de prendre en compte l effet d hystérésis. Ce modèle a été enrichi par une relation de couplage hydromécanique qui permet d exprimer la pression d entrée d air en fonction de la porosité. Ensuite, le couplage complet se fait avec la contrainte effective de Bishop en utilisant une nouvelle définition du paramètre de succion grâce à laquelle, les différents phénomènes présents dans la réponse des milieux poreux sous différentes sollicitations peuvent être reproduits. Ce modèle est validé par une confrontation à des données expérimentales issues de la littérature sur différents types de sol (sable, limon, ). Le modèle est implanté dans le code aux éléments finis Cast3M. L analyse de problèmes particuliers, tels que la mise en œuvre d un cas test d un sol d assise soumis à un cycle pluvial, ainsi que l étude de la stabilité d une pente, permette de montrer la capacité du modèle à reproduire le comportement des milieux poreux non saturés.This work focuses on the behaviour of porous triphasic media, particularly on unsaturated soils subjected to hydromechanical loading. A coupled elastoplastic constitutive model has been developed. This original model is formulated according to the following principles: (1) a constitutive law describing the behaviour of different phases (solid skeleton, liquid and gas). (2) coupling relationships between each phase. For the behaviour of the solid skeleton, a non associated elastoplastic constitutive law is adopted, with two loading surfaces: shear surface and compression cap surface. The hydric part is discribed using a formulation which allows to take into account the hysteresis effect. This model has been extended using a hydromechanical coupling relation between the air entry value and the porosity. Then the coupling is completed with the Bishop effective stress, using a new definition for the suction parameter . Using this formulation, the various phenomena present in the porous media behaviour under different loading can be reproduced. The developed model has been validated through a comparison with experimental data on different types of soil (sand, silt, ). This model is implemented in the french finite element code Cast3M. The analysis of specific problems, such as (1) the study of shallow foundation subjected to cyclic rain event, as well as (2) the study of slope stability, show the model capacity to reproduce the behaviour of unsaturated porous media.VILLEURBANNE-DOC'INSA-Bib. elec. (692669901) / SudocSudocFranceF
Approche en contrainte effective pour le couplage hydromécanique dans les milieux poreux non saturés
Nous présentons ici un modèle hydromécanique couplé pour les milieux poreux non saturés. La partie mécanique est décrite par une loi élastoplastique non associée(Barnichon 1998). La partie hydrique est décrite par le modèle de Van Genuchten, pour les courbes limites de rétention d'eau, et celui de Mualem 1974 pour les courbes de balayages. De plus, une relation permet d'exprimer la pression d'entrée d'air en fonction de la porosité. Enfin le couplage complet se fait avec la contrainte effective de Bishop en utilisant la relation de Modaressi(1994)pour l'évolution du paramètre de succion Xi
Temperature effects on the design parameters of a geothermal pile
In geotechnical engineering, geostructures with thermo-active functions establish direct thermal exchange between the ground and buildings. They can transfer energy from or into the ground to heat or cool a building. However, adapting foundation piles, completely or in part, to produce energy piles results in heat exchange with the soil, which changes the temperature of the soil and could thereby and affects the geotechnical properties and load bearing capacity of the geostructure. Most calculations of the bearing capacities of deep foundations conducted in France are currently based on in-situ testing results using a pressuremeter. Using finite element method to model the pressuremetric behaviour of a compacted soil subjected to thermo-mechanical variations is the main motivation for this work. In this study, several pressuremeter tests were conducted on a compacted illitic soil in a laboratory tank at temperatures between 1° and 40°C. The impact of temperature variation on the limit pressure (Pl), the creep pressure (Pf) and the Ménard pressuremeter modulus (EM) were determined. The results showed a significant decrease for both limit pressure (Pl) and creep pressure (Pf) with the increase of temperature. Numerical simulations of these tests were used to calibrate a bilinear constitutive model, taking into account temperature effects on soil compressibility within a coupled thermo-mechanical framework. Thereafter, a case study of a heat exchanger pile was simulated using the proposed approach
Influence des cycles hydriques de la dessiccation et de l’humidification sur le comportement hydromécanique des géomatériaux non saturés
This work focuses on the behaviour of porous triphasic media, particularly on unsaturated soils subjected to hydromechanical loading. A coupled elastoplastic constitutive model has been developed. This original model is formulated according to the following principles: (1) a constitutive law describing the behaviour of different phases (solid skeleton, liquid and gas). (2) coupling relationships between each phase. For the behaviour of the solid skeleton, a non associated elastoplastic constitutive law is adopted, with two loading surfaces: shear surface and compression cap surface. The hydric part is discribed using a formulation which allows to take into account the hysteresis effect. This model has been extended using a hydromechanical coupling relation between the air entry value and the porosity. Then the coupling is completed with the Bishop effective stress, using a new definition for the suction parameter χ. Using this formulation, the various phenomena present in the porous media behaviour under different loading can be reproduced. The developed model has been validated through a comparison with experimental data on different types of soil (sand, silt,…). This model is implemented in the french finite element code Cast3M. The analysis of specific problems, such as (1) the study of shallow foundation subjected to cyclic rain event, as well as (2) the study of slope stability, show the model capacity to reproduce the behaviour of unsaturated porous media.Ce travail de recherche porte sur le comportement des milieux poreux (triphasiques), plus particulièrement les sols non saturés sous sollicitations hydro-mécaniques. Un modèle constitutif élastoplastique couplé est développé. Ce modèle original est formulé selon les principes suivants: une loi constitutive est développée pour décrire le comportement de chaque phase (squelette solide, liquide, et gaz). Ensuite, des relations de couplage sont ajoutées entre chacune des phases. Pour le comportement du squelette solide, une loi élastoplastique non associée est adoptée, avec deux surfaces de charges, en cisaillement et en compression. La partie hydrique est décrite par une formulation qui permet de prendre en compte l’effet d’hystérésis. Ce modèle a été enrichi par une relation de couplage hydromécanique qui permet d’exprimer la pression d’entrée d’air en fonction de la porosité. Ensuite, le couplage complet se fait avec la contrainte effective de Bishop en utilisant une nouvelle définition du paramètre de succion χ grâce à laquelle, les différents phénomènes présents dans la réponse des milieux poreux sous différentes sollicitations peuvent être reproduits. Ce modèle est validé par une confrontation à des données expérimentales issues de la littérature sur différents types de sol (sable, limon,…). Le modèle est implanté dans le code aux éléments finis Cast3M. L’analyse de problèmes particuliers, tels que la mise en œuvre d’un cas test d’un sol d’assise soumis à un cycle pluvial, ainsi que l’étude de la stabilité d’une pente, permette de montrer la capacité du modèle à reproduire le comportement des milieux poreux non saturés
Influence of hydric cycles of humidification and desiccation on the hydromechanical coupled behaviour of unsaturated geomaterials
Ce travail de recherche porte sur le comportement des milieux poreux (triphasiques), plus particulièrement les sols non saturés sous sollicitations hydro-mécaniques. Un modèle constitutif élastoplastique couplé est développé. Ce modèle original est formulé selon les principes suivants: une loi constitutive est développée pour décrire le comportement de chaque phase (squelette solide, liquide, et gaz). Ensuite, des relations de couplage sont ajoutées entre chacune des phases. Pour le comportement du squelette solide, une loi élastoplastique non associée est adoptée, avec deux surfaces de charges, en cisaillement et en compression. La partie hydrique est décrite par une formulation qui permet de prendre en compte l’effet d’hystérésis. Ce modèle a été enrichi par une relation de couplage hydromécanique qui permet d’exprimer la pression d’entrée d’air en fonction de la porosité. Ensuite, le couplage complet se fait avec la contrainte effective de Bishop en utilisant une nouvelle définition du paramètre de succion χ grâce à laquelle, les différents phénomènes présents dans la réponse des milieux poreux sous différentes sollicitations peuvent être reproduits. Ce modèle est validé par une confrontation à des données expérimentales issues de la littérature sur différents types de sol (sable, limon,…). Le modèle est implanté dans le code aux éléments finis Cast3M. L’analyse de problèmes particuliers, tels que la mise en œuvre d’un cas test d’un sol d’assise soumis à un cycle pluvial, ainsi que l’étude de la stabilité d’une pente, permette de montrer la capacité du modèle à reproduire le comportement des milieux poreux non saturés.This work focuses on the behaviour of porous triphasic media, particularly on unsaturated soils subjected to hydromechanical loading. A coupled elastoplastic constitutive model has been developed. This original model is formulated according to the following principles: (1) a constitutive law describing the behaviour of different phases (solid skeleton, liquid and gas). (2) coupling relationships between each phase. For the behaviour of the solid skeleton, a non associated elastoplastic constitutive law is adopted, with two loading surfaces: shear surface and compression cap surface. The hydric part is discribed using a formulation which allows to take into account the hysteresis effect. This model has been extended using a hydromechanical coupling relation between the air entry value and the porosity. Then the coupling is completed with the Bishop effective stress, using a new definition for the suction parameter χ. Using this formulation, the various phenomena present in the porous media behaviour under different loading can be reproduced. The developed model has been validated through a comparison with experimental data on different types of soil (sand, silt,…). This model is implemented in the french finite element code Cast3M. The analysis of specific problems, such as (1) the study of shallow foundation subjected to cyclic rain event, as well as (2) the study of slope stability, show the model capacity to reproduce the behaviour of unsaturated porous media
Un nouveau modèle hydromécanique en contrainte effective pour les sols non saturés
International audienceNous présentons dans cet article un modèle hydromécanique couplé pour les milieux poreux non saturés. La partie mécanique est décrite par une loi élastoplastique non-associée. Dans la partie hydrique, les effets d'hystérésis observés sur les courbes de retention d'eau sont très bien reproduits. Le modèle est formulé en utilisant le modèle empirique de Van Genuchten 1980, pour définir les courbes limites, et en utilisant le modèle de Mualem 1974 pour les courbes de balayages. En outre, une relation a été introduite pour exprimer la pression d'entrée d'air en fonction de la porosité. Finalement, le couplage complet est réalisé en utilisant la contrainte effective de Bishop; une nouvelle formulation pour le paramètre χ est utilisée et discutée. ABSTRACT. We present a coupled hydro-mechanical model for unsaturated porous media. The mechanical part is described by a non-associated elastoplastic model. In the hydric part, the hysteresis effect is highlighted, and the model is formulated using the model of Van Genuchten 1980, to represent the boundary curves of water retention, and Mualem's model 1974 for scanning curves. In addition, a coupled hydromechanical relationship has been used to express the air entry value depending on the porosity. Finally the complete coupling is achieved using Bishop effective stress; a new formulation has been used and discussed for the variation of suction parameter χ. MOTS-CLÉS : sol non saturé, courbe de rétention d'eau, modèle elastoplastique, hystérésis
Numerical effect of seismic force on a medium arch dam
International audienc
On the use of effective stress in three-dimensional hydro-mechanical coupled model
International audienceIn the last decades, a number of hydro-mechanical elastoplastic constitutive models for unsaturated soils have been proposed. Those models couple the hydraulic and mechanical behaviour of unsaturated soils, and take into account the effects of the degree of saturation on the stress–strain behaviour and the effects of deformation on the soil–water characteristic response with a simple reversible part for the hysteresis. In addition, the influence of the suction on the stress–strain behaviour is considered. However, until now, few models predict the stress–strain and soil–water characteristic responses of unsaturated soils in a fully three-dimensional Finite Element code. This paper presents the predictions of an unsaturated soil model in a Three-dimensional Framework, and develops a study on the effect of partial saturation on the stability of shallow foundation resting on unsaturated silty soil. Qualitative predictions of the constitutive model show that incorporating a special formulation for the effective stress into an elastoplastic coupled hydro-mechanical model opens a full range of possibilities in modelling unsaturated soil behaviour