4 research outputs found

    Disk Detective: Discovery of New Circumstellar Disk Candidates through Citizen Science

    Get PDF
    The Disk Detective citizen science project aims to find new stars with 22 micron excess emission from circumstellar dust using data from NASA's WISE mission. Initial cuts on the AllWISE catalog provide an input catalog of 277,686 sources. Volunteers then view images of each source online in 10 different bands to identify false-positives (galaxies, background stars, interstellar matter, image artifacts, etc.). Sources that survive this online vetting are followed up with spectroscopy on the FLWO Tillinghast telescope. This approach should allow us to unleash the full potential of WISE for finding new debris disks and protoplanetary disks. We announce a first list of 37 new disk candidates discovered by the project, and we describe our vetting and follow-up process. One of these systems appears to contain the first debris disk discovered around a star with a white dwarf companion: HD 74389. We also report four newly discovered classical Be stars (HD 6612, HD 7406, HD 164137, and HD 218546) and a new detection of 22 micron excess around a previously known debris disk host star, HD 22128.Comment: 50 pages, accepted for publication in the Astrophysical Journa

    Stardust Interstellar Preliminary Examination I: Identification of tracks in aerogel

    No full text
    Here, we report the identification of 69 tracks in approximately 250 cm2 of aerogel collectors of the Stardust Interstellar Dust Collector. We identified these tracks through Stardust@home, a distributed internet-based virtual microscope and search engine, in which > 30,000 amateur scientists collectively performed >9 × 107 searches on approximately 106 fields of view. Using calibration images, we measured individual detection efficiency, and found that the individual detection efficiency for tracks > 2.5 ?m in diameter was >0.6, and was >0.75 for tracks >3 ?m in diameter. Because most fields of view were searched >30 times, these results could be combined to yield a theoretical detection efficiency near unity. The initial expectation was that interstellar dust would be captured at very high speed. The actual tracks discovered in the Stardust collector, however, were due to low-speed impacts, and were morphologically strongly distinct from the calibration images. As a result, the detection efficiency of these tracks was lower than detection efficiency of calibrations presented in training, testing, and ongoing calibration. Nevertheless, as calibration images based on low-speed impacts were added later in the project, detection efficiencies for low-speed tracks rose dramatically. We conclude that a massively distributed, calibrated search, with amateur collaborators, is an effective approach to the challenging problem of identification of tracks of hypervelocity projectiles captured in aerogel
    corecore