2,018 research outputs found

    Scale invariance in coarsening of binary and ternary fluids

    Full text link
    Phase separation in binary and ternary fluids is studied using a two dimensional Lattice Gas Automata. The lengths, given by the the first zero crossing point of the correlation function and the total interface length is shown to exhibit power law dependence on time. In binary mixtures, our data clearly indicate the existence of a regime having more than one length scale where the coarsening process proceeds through the rupture and reassociation of domains. In ternary fluids; in the case of symmetric mixtures there exists a regime with a single length scale having dynamic exponent 1/2, while in asymmetric mixtures our data establish the break down of scale invariance.Comment: 20 pages, 13 figure

    Where Power Resides in Committees

    Get PDF
    The power to control decisions is rarely distributed equally in committees. In a small voting committee, in which members have conflicting interests, we study how the decision right to break ties (formal power) translates into effective control over outcomes (real power). Two controlled experiments show that the level of real power held by the chair is larger than predicted by rational-choice theory. We also provide causal evidence that the legitimacy, but not the salience, of holding formal tie-breaking power affects voting behavior and thus the distribution of real power in the committee. Attitudinal measures related to the perceived attractiveness of the decision right to break ties exhibit a strong asymmetry between the one holding the decision right and those who do not

    Classical Structures Based on Unitaries

    Full text link
    Starting from the observation that distinct notions of copying have arisen in different categorical fields (logic and computation, contrasted with quantum mechanics) this paper addresses the question of when, or whether, they may coincide. Provided all definitions are strict in the categorical sense, we show that this can never be the case. However, allowing for the defining axioms to be taken up to canonical isomorphism, a close connection between the classical structures of categorical quantum mechanics, and the categorical property of self-similarity familiar from logical and computational models becomes apparent. The required canonical isomorphisms are non-trivial, and mix both typed (multi-object) and untyped (single-object) tensors and structural isomorphisms; we give coherence results that justify this approach. We then give a class of examples where distinct self-similar structures at an object determine distinct matrix representations of arrows, in the same way as classical structures determine matrix representations in Hilbert space. We also give analogues of familiar notions from linear algebra in this setting such as changes of basis, and diagonalisation.Comment: 24 pages,7 diagram

    Elastic interactions of active cells with soft materials

    Full text link
    Anchorage-dependent cells collect information on the mechanical properties of the environment through their contractile machineries and use this information to position and orient themselves. Since the probing process is anisotropic, cellular force patterns during active mechanosensing can be modelled as anisotropic force contraction dipoles. Their build-up depends on the mechanical properties of the environment, including elastic rigidity and prestrain. In a finite sized sample, it also depends on sample geometry and boundary conditions through image strain fields. We discuss the interactions of active cells with an elastic environment and compare it to the case of physical force dipoles. Despite marked differences, both cases can be described in the same theoretical framework. We exactly solve the elastic equations for anisotropic force contraction dipoles in different geometries (full space, halfspace and sphere) and with different boundary conditions. These results are then used to predict optimal position and orientation of mechanosensing cells in soft material.Comment: Revtex, 38 pages, 8 Postscript files included; revised version, accepted for publication in Phys. Rev.

    Secure Data Aggregation in Wireless Sensor Networks. Homomorphism versus Watermarking Approach

    No full text
    International audienceWireless sensor networks are now in widespread use to monitor regions, detect events and acquire information. Since the deployed nodes are separated, they need to cooperatively communicate sensed data to the base station. Hence, transmissions are a very energy consuming operation. To reduce the amount of sending data, an aggregation approach can be applied along the path from sensors to the sink. However, usually the carried information contains confidential data. Therefore, an end-to-end secure aggregation approach is required to ensure a healthy data reception. End-to-end encryption schemes that support operations over cypher-text have been proved important for private party sensor network implementations. These schemes offer two main advantages: end-to-end concealment of data and ability to operate on cipher text, then no more decryption is required for aggregation. Unfortunately, nowadays these methods are very complex and not suitable for sensor nodes having limited resources. In this paper, we propose a secure end-to-end encrypted-data aggregation scheme. It is based on elliptic curve cryptography that exploits a smaller key size. Additionally, it allows the use of higher number of operations on cypher-texts and prevents the distinction between two identical texts from their cryptograms. These properties permit to our approach to achieve higher security levels than existing cryptosystems in sensor networks. Our experiments show that our proposed secure aggregation method significantly reduces computation and communication overhead and can be practically implemented in on-the-shelf sensor platforms. By using homomorphic encryption on elliptic curves, we thus have realized an efficient and secure data aggregation in sensor networks. Lastly, to enlarge the aggregation functions that can be used in a secure wireless sensor network, a watermarking-based authentication scheme is finally proposed

    Proximity to sports facilities and sports participation for adolescents in Germany

    Get PDF
    Objectives: To assess the relationship between proximity to specific sports facilities and participation in the corresponding sports activities for adolescents in Germany. Methods: A sample of 1,768 adolescents aged 11–17 years old and living in 161 German communities was examined. Distances to the nearest sports facilities were calculated as an indicator of proximity to sports facilities using Geographic Information Systems (GIS). Participation in specific leisure-time sports activities in sports clubs was assessed using a selfreport questionnaire and individual-level socio-demographic variables were derived from a parent questionnaire. Community-level socio-demographics as covariates were selected from the INKAR database, in particular from indicators and maps on land development. Logistic regression analyses were conducted to examine associations between proximity to the nearest sports facilities and participation in the corresponding sports activities. Results: The logisitic regression analyses showed that girls residing longer distances from the nearest gym were less likely to engage in indoor sports activities; a significant interaction between distances to gyms and level of urbanization was identified. Decomposition of the interaction term showed that for adolescent girls living in rural areas participation in indoor sports activities was positively associated with gym proximity. Proximity to tennis courts and indoor pools was not associated with participation in tennis or water sports, respectively. Conclusions: Improved proximity to gyms is likely to be more important for female adolescents living in rural areas

    Preference reversals: Time and again

    Get PDF
    This paper sheds new light on the preference reversal phenomenon by analyzing decision times in the choice task. In a first experiment, we replicated the standard reversal pattern and found that choices associated with reversals take significantly longer than non-reversals, and non-reversal choices take longer whenever long-shot lotteries are selected. These results can be explained by a combination of noisy lottery evaluations (imprecise preferences) and an overpricing phenomenon associated with the compatibility hypothesis. The first cause explains the existence of reversals, while the second explains the predominance of a particular type thereof. A second experiment showed that the overpricing phenomenon can be shut down, greatly reducing reversals, by using ranking-based, ordinally-framed evaluation tasks. This experiment also disentangled the two determinants of reversals, because imprecise evaluations still deliver testable predictions on decision times even in the absence of the overpricing phenomenon. Strikingly, when unframed ranking tasks were used, decision times in the choice phase were greatly reduced, even though this phase was identical across treatments. This observation is consistent with psychological insights on conflicting decision processes

    Model-independent extraction of ∣Vtq∣|V_{tq}| matrix elements from top-quark measurements at hadron colliders

    Full text link
    Current methods to extract the quark-mixing matrix element ∣Vtb∣|V_{tb}| from single-top production measurements assume that ∣Vtb∣≫∣Vtd∣,∣Vts∣|V_{tb}|\gg |V_{td}|, |V_{ts}|: top quarks decay into bb quarks with 100% branching fraction, s-channel single-top production is always accompanied by a bb quark and initial-state contributions from dd and ss quarks in the tt-channel production of single top quarks are neglected. Triggered by a recent measurement of the ratio R=∣Vtb∣2∣Vtd∣2+∣Vts∣2+∣Vtb∣2=0.90±0.04R=\frac{|V_{tb}|^{2}}{|V_{td}|^{2}+|V_{ts}|^{2}+|V_{tb}|^{2}}=0.90 \pm 0.04 performed by the D0 collaboration, we consider a ∣Vtb∣|V_{tb}| extraction method that takes into account non zero d- and s-quark contributions both in production and decay. We propose a strategy that allows to extract consistently and in a model-independent way the quark mixing matrix elements ∣Vtd∣|V_{td}|, ∣Vts∣|V_{ts}|, and ∣Vtb∣|V_{tb}| from the measurement of RR and from single-top measured event yields. As an illustration, we apply our method to the Tevatron data using a CDF analysis of the measured single-top event yield with two jets in the final state one of which is identified as a bb-quark jet. We constrain the ∣Vtq∣|V_{tq}| matrix elements within a four-generation scenario by combining the results with those obtained from direct measurements in flavor physics and determine the preferred range for the top-quark decay width within different scenarios.Comment: 36 pages, 17 figure
    • …
    corecore