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Abstract

This paper sheds new light on the preference reversal phenomenon by analyzing decision

times in the choice task. In a first experiment, we replicated the standard reversal pattern

and found that choices associated with reversals take significantly longer than non-reversals,

and non-reversal choices take longer whenever long-shot lotteries are selected. These results

can be explained by a combination of noisy lottery evaluations (imprecise preferences) and

an overpricing phenomenon associated with the compatibility hypothesis. The first cause

explains the existence of reversals, while the second explains the predominance of a partic-

ular type thereof. A second experiment showed that the overpricing phenomenon can be

shut down, greatly reducing reversals, by using ranking-based, ordinally-framed evaluation

tasks. This experiment also disentangled the two determinants of reversals, because impre-

cise evaluations still deliver testable predictions on decision times even in the absence of

the overpricing phenomenon. Strikingly, when unframed ranking tasks were used, decision

times in the choice phase were greatly reduced, even though this phase was identical across

treatments. This observation is consistent with psychological insights on conflicting decision

processes.

Keywords: Preference reversals, Decision times, Imprecise preferences, Compatibility

hypothesis
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1 Introduction

The concept of preference is of fundamental importance for decision theory and economic analy-

sis. Yet, preferences are not a primitive but a derived object which structures choices as long as

they exhibit some basic consistency, e.g. in the form of the weak axiom of revealed preference. If

choices are consistent, a number of elementary predictions can be derived, which form the basis

for decision theory, microeconomics, consumer research, and judgment and decision making.

One such prediction is that choices should agree with valuations: if a decision maker chooses

one option over another, he should value the former more than the latter.

This common-sense prediction is at odds with observed decisions under risk. The preference

reversal phenomenon, first documented in psychology by Slovic and Lichtenstein (1968) and

Lindman (1971), describes a situation in which participants are asked to state monetary valu-

ations for a series of lotteries (usually through minimum selling prices), and separately choose

from pairs of those lotteries. The pairs consist of a P -bet, which has a high probability of paying

a moderate amount of money, and a $-bet , which has a low probability of paying a high amount

of money. A preference reversal occurs if either the P -bet is chosen from a pair in which the

$-bet is priced higher or the $-bet is chosen from a pair in which the P -bet is priced higher.

The preference reversal phenomenon is characterized by a high rate of reversals of the first type

(between 40 and 80 percent in most experiments), which are called predicted reversals. Rever-

sals of the second type, termed unpredicted, are less frequent (between 5 and 30 percent). The

asymmetry between both types of reversals is especially problematic, for, if reversals were due

to e.g. participants’ errors, one should expect similar numbers of both types. In other words,

while one could explain away unpredicted reversals as noisy observations, predicted reversals

remain a serious challenge to basic economic analysis.

It is no surprise that preference reversals have received a great deal of attention in the

last half century. After the first replication in economics by Grether and Plott (1979), a large

number of experimental and theoretical studies has shown that the phenomenon is extremely

stable. It has been replicated using hypothetical and real payments, di↵erent payment schemes,

and di↵erent elicitation methods for lottery prices (for a survey, see e.g. Seidl, 2002). Prefer-

ence reversals of this particular form have been documented beyond lottery choice, e.g. in the

field of health utility measurements (Stalmeier et al., 1997; Bleichrodt and Pinto Prades, 1994;

Oliver, 2013). Furthermore, other forms of inconsistencies between di↵erent preference elicita-

tion methods have been established in the literature, including reversals between pricing and

rating (Schkade and Johnson, 1989) as well as discrepancies between certainty and probability

equivalents (Hershey and Schoemaker, 1985; Johnson and Schkade, 1989; Delquié, 1993). In

addition to their conceptual importance for decision theory, these phenomena are of great rele-

vance for applied economics, since they cast doubts on the validity of e.g. consumer valuations,

and, accordingly, on demand estimations and policy decisions based on those valuations.

The present research provides new evidence on the determinants of preference reversals by

investigating decision times in two separate experiments. This allows us to go beyond existing

accounts of behavioral data and investigate the decision processes underlying reversals. Using

a well-established, stylized fact on decision times (that decisions take longer when the decision
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maker is closer to indi↵erence), we argue that the combination of two standard elements of exist-

ing accounts of preference reversals is enough to explain the pattern of reversals while delivering

testable predictions on decision times. The two determinants are the imprecision of preferences

in the evaluation phase (Schmidt and Hey, 2004; Butler and Loomes, 2007) and the overpricing

of $-bets. The latter can be due to anchoring of evaluations on the largest monetary outcomes of

a lottery (Tversky et al., 1990), which is itself a consequence of the cardinal/monetary framing

of the evaluation phase. An alternative explanation for the overpricing of $-bets is reference

dependence (Sugden, 2003; Schmidt et al., 2008; Lindsay, 2013).1

The main, clear-cut prediction that we obtain for decision times is that choices associated

with reversals of either type are slower than the corresponding non-reversal choices. Our first

experiment reproduced the standard preference reversal pattern and confirmed this prediction.

We employed two di↵erent payment methods, the BDM procedure (Becker et al., 1964) and an

ordinal payment scheme (Goldstein and Einhorn, 1987; Tversky et al., 1990; Cubitt et al., 2004),

showing that our findings are robust to changes in the evaluation task.

Our first experiment hence provided novel evidence in favor of theories based on preference

imprecision and the overpricing of $-bets. In our second experiment, we showed that these two

determinants of preference reversals can be disentangled in the laboratory by “shutting down”

the overpricing phenomenon. This was accomplished by moving away from cardinal elicitation

tasks. Instead, we employed two di↵erent ranking methods (plus a control BDM replication),

one with a price framing, and one where we carefully removed all references to prices. This

experiment helps establish that the imprecision of elicited monetary valuations is an important

key for the existence of reversals, while the overpricing phenomenon causes their asymmetry,

i.e. the predominance of predicted preference reversals. When the latter is eliminated, predicted

reversals become rare, but choices associated with reversals remain significantly slower than

corresponding non-reversal choices. This confirms our interpretation because this prediction

can be shown to arise exclusively from preference imprecision in the choice phase.

Received evidence on preference reversals could potentially be explained by a number of

alternative, “as if” models. The analysis of decision times, however, allows us to put di↵erent

hypotheses on the determinants of preference reversals to a more stringent test than if we

relied on behavioral data only, and further enables us (through predictions arising from one

determinant only) to disentangle the causes of reversals.2

Our research also delivers additional theoretical and methodological insights. On the basis

of our assumptions, we also obtain an additional, surprising prediction, namely that decisions

where the riskier $-bet is chosen without giving rise to a reversal should be slower than those

non-reversals where the P -bet is chosen. This nontrivial prediction arises as a consequence

1 Reference dependence states that a subject’s reference point when asked for a minimum selling price is the
lottery at hand. Exchanging the lottery for a certain amount of cash involves a probabilistic loss which is higher
for the $-bet than for the P -bet leading to a higher stated price for the $-bet. We thank an anonymous referee
for referring us to this strand of literature.

2 The measurement of decision times is a standard tool in psychology (see, e.g., Bargh and Chartrand,
2000). To our knowledge, the first studies in economics employing them to study risky choice were those of
Wilcox (1993, 1994). Decision times were also used by Mo↵att (2005) relying on risky-choice data from Hey
(2001). Rubinstein (2007) advocated the measurement of decision times in large-scale, web-based experiments
to better understand economic decisions. Achtziger and Alós-Ferrer (2014) measured response times within a
Bayesian-updating paradigm in order to study intuitive decision making in economic contexts.
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of the conjunction of imprecise preferences and the overpricing phenomenon, and hence was

predicted for (and observed in) the first experiment but not for the second. A further, striking

observation was that choices in the treatment with unframed ranking-based evaluations were

much faster than those in other treatments, in spite of the fact that choice phases were identical

across treatments. This fact has a simple process-based explanation (which we relegate to the

discussion of that experiment). Last, our design specifically allowed comparing reversal rates

when prices are elicited before the choice phase to reversal rates occurring when prices are

elicited after the choice phase. This comparison, which has not been previously made in the

literature, was motivated by evidence from psychology (see Section 2.3 below) indicating that

choices might sharpen and even modify previously imprecise preferences. In agreement with this

observation, we show that ordering e↵ects, although small, are present in the measurement of

reversals.

The remainder of the paper is organized as follows. In Section 2 we derive our experimen-

tal hypotheses from a simple formal model. Sections 3 and 4 describe the first and second

experiments and their results, respectively. Section 5 concludes.

2 A Simple Model of Preference Reversals and Decision Times

In this section we derive our experimental hypotheses from a simplified formal model. We

develop this model only to the extent necessary to obtain predictions on preference reversals and

the associated decision times. In particular, the model is tailored to experiments on preference

reversals and makes no attempt to provide a foundation based on first principles. Rather, we take

the main building blocks directly in as assumptions, including imprecise monetary evaluations

and the overpricing phenomenon.

2.1 Model and Rationale

We consider a choice between a P -bet and a $-bet and the pricing decisions for both bets.

In preference reversal experiments, results refer to a relatively large number of evaluation and

choice decisions. Systematic biases are avoided, e.g. by o↵ering choices between lotteries of sim-

ilar expected values, or counterbalancing the di↵erence in expected values across pairs. Hence,

to obtain experimental hypotheses, it is reasonable to treat the utilities of the bets as random

variables. Specifically, let uP and u$ denote the “true” utilities of the P -bet and the $-bet,

respectively. We assume that, in an experiment, these utilities are drawn from i.i.d. continuous

random variables with some fixed distribution. However, the analysis relies only on the distribu-

tion of utility di↵erences uP � u$. We assume that this distribution has an everywhere positive

density h.3

The first building block of our model is preference imprecision in the evaluation phase. We

follow Schmidt and Hey (2004) and Butler and Loomes (2007), who found that subjects in

preference reversal experiments exhibit imprecise monetary valuations of lotteries. Specifically,

3 Since uP and u$ are i.i.d, uP � u$ and u$ � uP have the same distribution. If the distribution of uP and u$

has density v then h = (v ⇤v�), where v�(s) = v(�s) for all s and the symbol ⇤ denotes the convolution operator.
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Schmidt and Hey (2004) suggested that part of the preference reversal phenomenon might be

due to pricing errors, while choice errors play a minor role.4 Our model incorporates these

observations by assuming a noisy evaluation phase and a relatively noise-free choice phase. The

first assumption states that the pricing of lotteries is a noisy process. Denote by CEP and CE$

the elicited certainty equivalents of the P -bet and the $-bet, respectively.

Assumption 1. CEP = uP + ⇣P and CE$ = u$ + ⇣$, where ⇣P and ⇣$ are independent error

terms with everywhere positive density functions.5

In contrast, the choice phase should be comparatively noise-free. For simplicity, the second

assumption postulates that choices follow the underlying utilities. Write c(P, $) = P if the P -bet

was chosen in the choice task and c(P, $) = $ if the $-bet was chosen.

Assumption 2. c(P, $) = P whenever up > u$ and c(P, $) = $ whenever up < u$.

The second element of our model is the compatibility hypothesis proposed by Tversky et al.

(1988, 1990), according to which attributes that naturally map onto the evaluation scale are

given predominant weight in the evaluation phase. Since the evaluation scale usually refers

to prices, the monetary outcomes of the lotteries might anchor valuations, giving rise to an

overpricing of the $-bet, where a large monetary outcome is salient.6 In other words, since the

$-bet yields a large outcome with moderate probability and the P -bet pays a moderate outcome

with high probability, subjects will tend to state a higher price for the $-bet. This overpricing

phenomenon can be captured by simply assuming a strictly positive mean for the error term

associated with the valuation of the $-bet.

Assumption 3. There is a tendency to overprice the $-bet, i.e. E[⇣$] = K > 0 but E[⇣P ] = 0.

Further, the densities of ⇣P and ⇣$ are symmetric around the means and unimodal.

The last assumption refers to decision times. It is a well-established fact in the psychological

literature that decision times reflect preferences in the sense that hard choices, where the decision

maker is close to being indi↵erent, result in longer decision times than easy choices, where one

option is clearly better (see e.g. Shultz et al., 1999; Sharot et al., 2009; Alós-Ferrer et al., 2012).

This has also been observed in the risky-choice studies of Wilcox (1993) and Mo↵att (2005), and

in a study of intertemporal choices by Chabris et al. (2009). To model this e↵ect in a simple

way, we postulate that the choice time DTC only depends on the utility di↵erence |uP �u$|. To
avoid unnecessarily complicating the model, we make the simplifying assumption that decisions

are of two kinds, easy and hard. Easy decisions correspond to utility pairs (up, u$) such that

|uP �u$| � � for some � > 0, while utility pairs (up, u$) with |uP �u$| < � lead to hard decisions.

4 See Blavatsky (2009) for a formal model focused on those findings.
5 An alternative interpretation of uP and u$ is hence that they correspond to the expected monetary valua-

tions of the lotteries, in the absence of (over)pricing biases. The second part of the assumption is for technical
convenience. The analysis goes through, with more cumbersome proofs, if the error terms have bounded support.

6 Tversky et al. (1990) used a design with additional choices between the bets and cash amounts and showed
that at least part of the predicted reversals arise because of an overpricing of $-bets. Tversky et al. (1988)
also proposed the prominence hypothesis, which assumes a bias in the choice stage rather than in the evaluation
stage (see also Fischer et al., 1999). Cubitt et al. (2004) investigated a number of alternative hypotheses including
prominence and compatibility and dismissed each of them in isolation, concluding that a combination of hypotheses
would be a more reasonable explanation of their findings.
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Denote by TE = E[DTC | |uP � u$| � �] and TH = E[DTC | |uP � u$| < �] the expected choice

times for easy and hard decisions, respectively. The next assumption captures the idea that

choice decisions in which a subject is close to indi↵erence between two items are harder than

“obvious” choices.

Assumption 4. Hard choices take longer than easy choices, i.e. TH > TE .

Our assumptions are meant to reflect the basic principles involved in preference reversal

experiments without unnecessarily complicating the exposition and the analysis. Of course, one

could postulate more involved formulations, as e.g. a continuously monotonic relation between

choice times and closeness to indi↵erence. The next section shows that the simple versions

postulated above are enough to provide testable hypotheses.

2.2 Predictions

Our model makes several predictions which can be experimentally tested (all proofs are in the

online appendix). The first one is that predicted reversals should be more frequent than unpre-

dicted ones, that is, we expect the usual pattern of preference reversals. This is unsurprising,

since our model incorporates standard elements which have been developed precisely to explain

this pattern. We view this result simply as a basic test that the model generates reasonable

predictions.

Proposition 1. Under Assumptions 1, 2, and 3, the reversal rate is higher for predicted pref-

erence reversals than for unpredicted preference reversals, i.e. Pr(CE$ > CEP |c(P, $) = P ) >

Pr(CEP > CE$|c(P, $) = $).

The intuition for this result is straightforward. Both kinds of reversals result from noise in

the evaluation phase shifting the evaluations of the lotteries in opposite directions. A reversal

occurs when, due to noisy realizations, the evaluation ranking is reversed with respect to the one

derived from utilities. The overpricing phenomenon helps produce predicted reversals: initially,

the $-bet is ranked lower than the P -bet (u$ < uP ), but overpricing tends to shift the valuation

of the $-bet higher than that of the P -bet. Overpricing, however, makes unpredicted reversals

less likely: the $-bet is initially ranked higher and overpricing tends to increase its evaluation

with respect to the P -bet even more.

We can reformulate the prediction arising from the last proposition straight away as an

experimental hypothesis.

H1 The average rate of predicted reversals (i.e. percentage of reversals over all P -choices) per

subject is larger than the average rate of unpredicted reversals (i.e. percentage of reversals over

all $-choices).

The novel feature in our experimental design is that we record decision times in the choice

task which allows us to look at preference reversals from a di↵erent perspective. Assumption

4 yields two novel predictions for decision times. The first refers to decision times for choices

leading to preference reversals vs. choices not leading to preference reversals.
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Proposition 2. Let DTC denote the decision time in the choice phase. Under Assumptions 1,

2, and 4,

(i) the decision time for a P -bet leading to a preference reversal is longer than the decision time

for a P -bet that does not lead to a preference reversal, i.e. E[DTC |CE$ > CEP , c(P, $) =

P ] > E[DTC |CEP > CE$, c(P, $) = P ];

(ii) and the decision time for a $-bet leading to a preference reversal is longer than the de-

cision time for a $-bet that does not lead to a preference reversal, i.e. E[DTC |CEP >

CE$, c(P, $) = $] > E[DTC |CE$ > CEP , c(P, $) = $].

The intuition for this result is again simple. Since the origin of reversals lies in the noise

arising in the evaluation process, it is clear that reversals are more likely when utilities were close,

and hence errors in the evaluation phase are more likely to reverse the order of the lotteries.

Decisions where utilities are close are comparatively harder and hence take longer. In other

words, reversals are more likely to involve hard choices than non-reversals, which leads to longer

decision times. This proposition translates into the following experimental hypotheses.

H2a. The average decision time for predicted preference reversals is longer than the average

decision time for comparable non-reversals (i.e. non-reversals where the P -bet is chosen).

H2b. The average decision time for unpredicted preference reversals is longer than the average

decision time for comparable non-reversals (i.e. non-reversals where the $-bet is chosen).

The next prediction is orthogonal to preference reversals. At the same time, it represents an

a priori unexpected feature of the model and is hence especially valuable for its validation. It

concerns decision times when the $-bet was chosen given that it was priced higher compared to

decision times when the P -bet was chosen given that it was priced higher.

Proposition 3. Under Assumptions 1, 2, 3, and 4, the decision time for a $-bet that does not

lead to a preference reversal is longer than the decision time for a P -bet that does not lead to a

preference reversal, i.e. E[DTC |CE$ > CEP , c(P, $) = $] > E[DTC |CEP > CE$, c(P, $) = P ].

This result seems less intuitive. On the one hand, under overpricing, it is more likely that

$-bets will be priced higher than P-bets than the other way around. Hence, the probability that

a hard (slow) $-bet-choice will result in a non-reversal is larger than the probability that a hard

P -bet-choice will result in a non-reversal. On the other hand, an easy (fast) $-bet-choice is also

more likely to result in a non-reversal than an easy P -bet-choice. The reason for this is that in

the first case u$ > up and overpricing pushes the evaluations further apart, while in the second

case u$ < up and overpricing pushes the evaluations together. Proposition 3 holds because the

relative likelihood for a hard choice to lead to a non-reversal compared to the likelihood for an

easy choice to lead to a non-reversal is larger for $-bets than for P-bets.7 This result leads to

our next experimental prediction.

H3. The average decision time for non-reversals where the $-bet is chosen is longer than the

average decision time for non-reversals where the P -bet is chosen.

7 In particular, the arguments in the proof of this result hold only for non-reversals. No analogous version of
Proposition 3 for reversals can be established.
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2.3 Order E↵ects and Preference Reappraisal

Preference-reversal experiments include a pricing/evaluation phase and a choice phase. Thus

far, the literature has remained silent on order e↵ects, i.e. on whether there is any di↵erence

between experiments where the choice phase precedes the evaluation phase, and experiments

where the order of the tasks is reversed. Preference reversals have been established using either

of the two possible orderings.

We argue, however, that order e↵ects need to be taken into account. The reason is that,

as discussed above, imprecise preferences have been identified as one of the factors driving

preference reversals. If preferences are imprecise, a large literature in psychology indicates that

they might become more precise, or be generally altered, by the mere act of making choices. In

the classical Free-Choice Paradigm (Brehm, 1956), subjects first face a rating (ranking) task,

then a choice task, and finally another rating (ranking) task identical to the first one. The

chosen options are usually evaluated more positively in the second rating (ranking) task while

the options that were not chosen tend to be evaluated more negatively.8 According to Cognitive

Dissonance Theory (Festinger, 1957), this happens because in the reevaluation phase subjects

attempt to reduce the tension between the negative aspects of a chosen option and the positive

aspects of an option that was not chosen. Self-Perception Theory (Bem, 1967), on the other

hand, attributes this phenomenon to the fact that subjects learn their preferences better by

making choices and hence ratings (rankings) in the second phase more closely resemble the

“true preferences”. This raises the question of whether preference reversals are a↵ected by the

order of valuation and choices. More precisely, if preference reappraisal occurs during the choice

phase, there should be fewer preference reversals if the valuation task follows the choice task.

This yields an additional hypothesis.

H4. Preference reversals are reduced if the valuation task follows the choice task, compared to

the opposite ordering.

More generally, and in view of the discussion above, our expectation was that e↵ects would

in general be more clear when considering post-choice evaluations than when relying on pre-

choice ones. For example, if one relies on self-perception theory, classifying choices as reversals

or non-reversals on the basis of pre-choice evaluations will result in some false classifications,

e↵ectively adding more noise to all measurements. However, since preference reversals have

been established in the literature using both possible task orderings, we expected order e↵ects

to be subtle. The di↵erence should be more clear for unpredicted reversals, because, if those are

purely due to noise, any reduction of noise in the evaluation task should eliminate at least part

of them.
8 Although this classical task has recently been shown to be a↵ected by statistical biases (see Alós-Ferrer

and Shi, 2015, and the references therein), improved versions of the task have meanwhile re-established the basic
e↵ect. See e.g. Alós-Ferrer et al. (2012).
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3 Experiment 1: Preference Reversals and Decision Times

The objective of our first experiment was to test our experimental predictions, as derived in

Section 2, with regard to both choices and decision times. This would allow us to conclude that

the combination of imprecise preferences in the evaluation phase and an overpricing phenomenon

arising from the compatibility hypothesis is able to explain received evidence on preference

reversals while at the same time fitting novel evidence on process data.

3.1 Experimental Design and Procedures

We followed a between-subject design comprised of three independent, consecutive single-decision

making parts. The first and third phases were evaluation tasks, while the second, intermediate

phase contained the choice task. This way, we can consider two kinds of preference reversals. On

the one hand, we have “Price-Choice Reversals” which occur comparing the evaluations in the

first phase and the choices in the second phase. On the other hand, we have “Choice-Price Re-

versals” which occur comparing the evaluations in the third phase and the choices in the second

phase. Each of our Hypotheses H1 to H3 can be tested either on Price-Choice or Choice-Price

reversals (or non-reversals), and we will report the results for both possibilities, keeping in mind

that we expect clearer results for the Choice-Price ordering. Comparing both orderings allows

us to test Hypothesis H4.

The stimuli were 40 di↵erent lotteries, which are presented in the online appendix. Each of

the pairs in the choice task contained one P -bet and one $-bet from this set of lotteries, with

the former being defined by a high probability of winning a moderate amount of money and the

latter being defined by a low probability of winning a high amount of money.9

We employed a pricing method for the evaluation of lotteries in phases 1 and 3. Participants

were asked to state their minimum selling price for each of the 40 lotteries which were presented

in fully randomized order (“State the lowest price for which you are just willing to sell the

presented lottery.”). Subjects were only allowed to state prices between e2 (the lower amount

to win) and the higher amount to win. An example screen display for the pricing tasks is shown

in the online appendix. The colors in the pie charts (green and blue) were counterbalanced

across subjects. In phase two, the choice task, subjects faced the 20 lottery pairs sequentially

and had to choose the lottery they would prefer to play out. See the online appendix for an

example screen of the choice task. The order of the pairs and the onscreen position of the

P -bet (i.e. left or right) was randomized. For each choice, we recorded the individuals’ decision

times as the time elapsed between the presentation of the lottery pair and clicking the button

(“This lottery”) underneath one of the two lotteries. After the three tasks, participants filled

in a questionnaire containing various questions on their statistical knowledge, sociodemographic

background, and personality attitudes.

9 Of the 20 lottery pairs, pairs 3 to 8 were such that the expected value of the P -bet was higher than the
expected value of the $-bet (with a di↵erence between e1.00 to e3.40). Pairs 9 to 14, which most closely resemble
the ones commonly used in the literature, had roughly equal expected values. In pairs 15 to 20, the $-bet had
a higher expected value than the P -bet (di↵erence between e1.60 to e4.80). Finally, lottery pairs 1 and 2 were
such that one bet dominated the other strictly and were only included as a basic rationality check. Only 2 out
of 141 subjects chose one of the two strictly dominated lotteries in phase 2. These two lottery pairs are therefore
excluded from the analysis.
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All three tasks were incentivized. Payo↵s were determined independently for each task after

completion of the ex-post questionnaire to prevent spillover e↵ects between tasks (e.g. through

wealth e↵ects). The two treatments in this experiment, BDM and OrdPM, di↵ered only in the

payment scheme used in the pricing tasks (phases 1 and 3). The former used a BDM payment

scheme (Becker et al., 1964), and the latter a variant of the Ordinal Payment Method (Goldstein

and Einhorn, 1987; Tversky et al., 1990; Cubitt et al., 2004). We included these two treatments

to ensure that our results were robust with respect to the elicitation method.

The two schemes determined the payment in an evaluation task as follows. In the BDM

treatment, after one of the 40 lotteries was picked at random the computer drew a price from

a uniform distribution over the interval ]2, A[, where A denotes the higher of the two amounts

to win. If this price was higher than or equal to the price stated by the subject, the subject

received this amount. If it was lower, the subject played the lottery and the payment was the

realized outcome of that lottery. This was done separately for each pricing task. In the OrdPM

treatment, two lotteries were chosen at random. The more highly priced lottery of the two

was then played out and the realized outcome was the payo↵ for this phase (in case of a tie,

the computer chose one at random). As in the BDM treatment, this procedure was conducted

separately for the two pricing phases. Note that under the ordinal payment scheme, the absolute

prices do not play a role, but only the induced ordering matters.

The payment method for the choice task in phase 2 was identical in both treatments. One

of the 20 lottery pairs was picked at random, then the lottery the subject had chosen from this

pair was played out and the realized outcome of that lottery was the payment for this round.

The total payment a participant received in the experiment was the sum of realized payo↵s in

the three decision tasks.

3.2 Procedures

Before the experiment started, participants were briefly informed that the session consisted of

three decision tasks, that payment for each task was partly determined by their decisions and

partly by luck, that the tasks were paid independently of one another and that lotteries from each

phase were not played out before the end of the experiment. In addition, four control questions

had to be answered, using pencil and paper, before the start of the experiment to ensure that

participants understood the concept of a lottery and its pie chart representation. Detailed

instructions about each individual decision-making task (phase 1 to 3) and how payments would

be determined in each phase were handed to the participants prior to the start of each phase.

The experiment was programmed in z-tree (Fischbacher, 2007). Participants were university

students with majors other than psychology and economics. Each student participated in only

one session. We conducted 7 sessions with a total of 141 participants (91 female). Of those, 67

were allocated to the BDM treatment and 74 to the OrdPM treatment. A session lasted about

2 hours with average earnings of e24.76 in the BDM treatment and of e23.03 in the OrdPM

treatment.
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Figure 1: Average reversal rate per individual in Experiment 1.

Note: Reversal rates for the Price-Choice (dark bars) and Choice-Price (light bars) task order-

ings. Error bars depict the 95 percent confidence interval.

3.3 Results of Experiment 1

As a first illustration, Figure 1 displays the average reversal rates in the BDM and the OrdPM

treatments in Experiment 1 (the percentage of P -bet choices in the BDM and OrdPM treatment

was 69.6%, and 65.6%, respectively). The reversal rate is simply the number of reversals of any

kind divided by the number of lottery pairs; the rate of predicted (unpredicted) reversals is

computed as the number of predicted (unpredicted) reversals divided by the number of P -bet

choices ($-bet choices). It is already apparent from Figure 1 that the rate of predicted reversals

is higher than that of unpredicted reversals, that measuring reversals with respect to post-

choice attitudes decreases the rates, possibly by reducing noise, and that there might be some

minor di↵erences between treatments. We now proceed to test for these observations and our

experimental hypotheses.

Predicted vs. unpredicted reversals (H1). We conducted two-sided Wilcoxon Signed-Rank

(hereafter WSR) tests to assess whether the rate of predicted reversals was higher than the rate

of unpredicted reversals. We computed the predicted and unpredicted preference reversal rates

for each subject individually. The rates for predicted reversals were significantly higher than the

rates of unpredicted reversals for both treatments and both possible task orderings (BDM Price-

Choice, N = 60, z = 4.170, p < 0.0001; BDM Choice-Price, N = 60, z = 5.140, p < 0.0001;

OrdPM Price-Choice, N = 69, z = 4.585, p < 0.0001; OrdPM Choice-Price, N = 69, z = 3.595,

p < 0.0005).10 This confirms Hypothesis H1.

Order e↵ects (H4). In the BDM treatment, the rate of unpredicted reversals was significantly

lower when prices were elicited after choices (Choice-Price) than when they were elicited before

choices (Price-Choice) (two-sided WSR test, N = 61, z = �3.014, p = 0.003). In the OrdPM

treatment, the same e↵ect was observed (N = 67, z = �2.70, p = 0.007) after exclusion of four

10 The tests for reversal rates include of course only the participants for which both rates can be computed.
For instance, if a participant never chose a $-bet, no rate of unpredicted reversals can be computed.

11



Price − Choice Choice − Price

10
12

14
16

18
20

22 Predicted Reversal
P−Bet Chosen No Reversal

(a) BDM treatment, Exp. 1

Price − Choice Choice − Price

8
12

16
20

24
28

Unpredicted Reversal
$−Bet Chosen No Reversal

(b) BDM treatment, Exp. 1

Price − Choice Choice − Price

10
12

14
16

18
20

22 Predicted Reversal
P−Bet Chosen No Reversal

(c) OrdPM treatment, Exp. 1

Price − Choice Choice − Price

8
12

16
20

24
28 Unpredicted Reversal

$−Bet Chosen No Reversal

(d) OrdPM treatment, Exp. 1

Figure 2: Average decision time per individual in choice task of Experiment 1.

Note: Predicted reversals are compared to non-reversals where the P -bet was chosen, unpre-

dicted reversals to non-reversals where the $-bet was chosen. Error bars depict the 95 percent

confidence interval.

extreme data points.11 There were no significant di↵erences in the rate of predicted reversals

(BDM, N = 66, z = �0.465, p = 0.642; OrdPM, N = 72, z = 1.090, p = 0.276). Since

unpredicted reversals are essentially due to noise, this is consistent with the interpretation that

measuring reversals through post-choice evaluations reduces noise.

Treatment e↵ects (reversals). We compared the individual reversal rates across treatments

using Mann-Whitney-U (MWU) tests. We found a significantly lower rate of predicted reversals

when prices are elicited after choices but not when prices are elicited before choices (Price-Choice,

z = 1.49, p = 0.135; Choice-Price, z = 0.42, p = 0.058). There were, however, no significant

di↵erences for unpredicted reversals (Price-Choice, z = 1.90, p = 0.678; Choice-Price, z = �0.88,

p = 0.380).

11 Four participants made only one $-bet choice yielding an unpredicted reversal in choice-price but not in
price-choice, resulting in increases of 100% in the reversal rate. Including these four data points, the e↵ect is not
significant anymore (N = 71, z = �1.339, p = 0.181).
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Figure 3: Average non-reversal decision time per individual in choice task of Experiment 1.

Note: Choices classified as non-reversals according to the indicated task ordering, Price-Choice

(left) and Choice-Price (right). Error bars depict the 95 percent confidence interval.

Decision times and reversals (H2). Figure 2 displays the decision times for reversals and

comparable non-reversals for both treatments and both task orderings. Each type of reversal

is compared with the correct counterfactual, i.e. predicted reversals are compared with non-

reversals where the P -bet was chosen, and unpredicted reversals with non-reversals where the

$-bet was chosen.

Two-sided WSR tests confirmed that predicted reversals involved significantly longer decision

times than comparable non-reversals, both for Price-Choice and for Choice-Price, both for the

BDM (Price-Choice N = 61, z = 2.758, p = 0.006; Choice-Price, N = 54, z = 3.625, p < 0.0005)

and the OrdPM treatments (Price-Choice, N = 66, z = 2.894, p = 0.004; Choice-Price, N = 57,

z = 2.987, p = 0.003).12 Unpredicted reversals were also associated with significantly longer

decision times in the OrdPM treatment (Price-Choice, N = 39, z = 2.854, p = 0.004; Choice-

Price, N = 22, z = 1.883, p = 0.060), but there were no significant di↵erences for unpredicted

reversals in the BDM treatment (Price-Choice, N = 31, z = 0.950, p = 0.342; Choice-Price,

N = 17, z = �0.947, p = 0.344).

Decision times and non-reversals (H3). Non-reversals were clearly slower when the $-bet was

chosen than when the P -bet was chosen (see Figure 3). The di↵erence was highly significant

independently of whether choices were declared non-reversals according to pre-choice or post-

choice evaluations, for both the BDM treatment (Price-Choice, N = 56, z = 3.242, p = 0.001;

Choice-Price, N = 51, z = 2.995, p = 0.003) and the OrdPM treatment (Price-Choice, N = 64,

z = �3.681, p < 0.0005; Choice-Price, N = 59, z = �3.204, p = 0.001).

12 Every test on decision times was conducted for the population of subjects for which the involved average
decision times could be computed. For instance, if a subject did not display any unpredicted reversal, no decision
time can be computed for this category.
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3.4 Regression Analysis for Experiment 1

We conducted a random-e↵ects panel regression analysis (with standard errors clustered at the

subject level) to further investigate the relation between preference reversals and decision times,

and to further test our hypotheses while controlling for a number of natural variables, e.g.

individual and lottery-pair covariates. Since decision times are always positive, we used the log

of decision times (logDT ) as the dependent variable. For each treatment, we report a regression

including a dummy variable for Price-Choice reversals and an analogous one with a dummy

variable for Choice-Price reversals (see Table 1). We also ran a number of additional regressions

and found the main e↵ects to be robust (in magnitude and significance) to the inclusion or

exclusion of additional control variables.

The regressions include dummies for choices which were part of reversals, for $-bet choices,

and the interaction thereof. Hence we can make any comparison among reversals and non-

reversals where the $-bet or the P -bet was chosen, either directly through specific regression

coe�cients or via appropriate postestimation tests, which are also reported in the table.

Predicted reversals vs. non-reversals. Hypothesis H2a states that decision times for pre-

dicted preference reversals should be longer on average than decision times for comparable non-

reversals, i.e. non-reversals where the P -bet was chosen. Since a $-choice dummy is included,

the comparison between predicted reversals and non-reversals where the P -bet was chosen cor-

responds to the reversal dummy in the regression, which is highly significant and positive for

both regressions for the OrdPM treatment, and for the Choice-Price regression for the BDM

treatment. This indicates that predicted reversals took longer than comparable non-reversals,

confirming Hypothesis H2a.

Unpredicted reversals vs. non-reversals. Hypothesis H2b states that unpredicted reversals

should take longer than non-reversals where the $-bet was chosen. The di↵erence between both

types of choices corresponds to �Reversal+�$�Choice⇥Reversal, which is highly significant and pos-

itive in both regressions for the OrdPM, confirming Hypothesis 2b. However, the postestimation

tests are not significant for the BDM treatment.

Comparison of non-reversals. According to Hypothesis H3, non-reversals where the $-bet

was chosen should take longer than non-reversals where the P -bet was chosen. Since reversals

dummies are included, this comparison corresponds to the $-choice dummy, which is highly

significant and positive for all four regressions. Hence, conditional on the absence of a preference

reversal, $-bet choices took longer, confirming Hypothesis H3.

Controls: Lotteries. We included a number of covariates in order to control for di↵erences in

the lottery pairs. The absolute value of the di↵erence in expected values of the P -bet and the

$-bet (Di↵EV) had a weakly significant negative e↵ect in both treatments. We further included

the absolute di↵erence in the prices stated for the lotteries in phases one and three (StatedDi↵-

1, StatedDi↵-3) as a rough measure of how similar (or di↵erent) the participant viewed the

lotteries within a pair. Both were highly significant in the OrdPM treatment, but essentially

not significant in the BDM treatment.

The ratio of the two higher amounts to win in the $-bet and the P -bet (Ratio) had a

significant positive e↵ect in both treatments. This e↵ect has a direct interpretation. Given our
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Table 1: Random-e↵ects panel regressions for decision times, Experiment 1.

Treatment BDM BDM OrdPM OrdPM
Order P-C C-P P-C C-P

ReversalPC 0.018 0.078⇤⇤⇤

(0.029) (0.025)
ReversalCP 0.083⇤⇤⇤ 0.109⇤⇤⇤

(0.031) (0.027)
$-Choice 0.127⇤⇤⇤ 0.155⇤⇤⇤ 0.126⇤⇤⇤ 0.151⇤⇤⇤

(0.054) (0.031) (0.027) (0.026)
$-Choice -0.097 0.107⇤⇤

⇥ReversalPC (0.073) (0.052)
$-Choice -0.189⇤⇤ 0.058

⇥ReversalCP (0.095) (0.064)
Di↵EV -0.023⇤ -0.022⇤ -0.021⇤⇤ -0.023⇤⇤

(0.012) (0.012) (0.009) (0.009)
Ratio 0.041⇤⇤⇤ 0.036⇤⇤⇤ 0.038⇤⇤⇤ 0.038⇤⇤⇤

(0.011) (0.011) (0.008) (0.008)
StatedDi↵-1 -0.010 -0.009 -0.008⇤⇤ -0.009⇤⇤⇤

(0.007) (0.007) (0.003) (0.003)
StatedDi↵-3 -0.010 -0.011⇤ -0.011⇤⇤⇤ -0.011⇤⇤⇤

(0.006) (0.006) (0.003) (0.003)
Round -0.008⇤⇤⇤ -0.008⇤⇤⇤ -0.005⇤⇤⇤ -0.005⇤⇤⇤

(0.003) (0.003) (0.002) (0.002)
Female -0.286⇤⇤ -0.290⇤⇤ -0.156⇤⇤ -0.151⇤⇤

(0.113) (0.113) (0.072) (0.071)
Position 0.016 0.015 -0.012 -0.009

(0.023) (0.023) (0.019) (0.019)
Color -0.021 -0.019 0.088 0.084

(0.111) (0.112) (0.070) (0.068)
Constant 2.666⇤⇤⇤ 2.649⇤⇤⇤ 2.563⇤⇤⇤ 2.556⇤⇤⇤

(0.106) (0.105) (0.073) (0.072)

Nr. Obs. 1340 1340 1480 1480
Nr. Groups 67 67 74 74
R2-Overall 0.103 0.101 0.118 0.119
Wald test 0.000 0.000 0.000 0.000

Postestimation tests
Reversal -0.079 -0.106 0.185⇤⇤⇤ 0.167⇤⇤⇤

+($-Choice⇥Reversal) (0.072) (0.094) (0.045) (0.056)

Note: All regressions are random-e↵ects panel estimations, with log decision time as dependent

variable. Standard errors in parentheses. ⇤⇤⇤ p < 0.01, ⇤⇤ p < 0.05, ⇤ p < 0.1.
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construction of lottery pairs, a larger ratio translates into the high amount to win being much

larger in the $-bet than in the P -bet, which makes the $-bet more attractive on the monetary

domain. At the same, the probability to win the high amount is much larger for the P -bet than

for the $-bet, which makes the P -bet more attractive on the probability domain. This tradeo↵

leads to “more di�cult” decisions which in turn lead to longer response times.

Other controls. Decision time measurements in repeated tasks usually capture a learning

e↵ect as participants gain familiarity with the interface. We controlled for this e↵ect by including

the round in which the choice was made as a regressor (Round). This was significantly negative

in both treatments. A dummy variable controlling for gender (Female) was also significant in

both treatments. Finally, we controlled for onscreen position (Position) of the P -bet and the

$-bet and for the colors used in the pie-chart (Color) to verify that these factors did not influence

the results. As expected, these variables never had significant e↵ects.

3.5 Discussion of Experiment 1

The analysis of the data confirms our predictions as derived in Section 2. First, the rate of

predicted reversals is clearly higher than the rate of unpredicted ones, in agreement with previous

experiments. Second, preference reversals appear to involve longer decision times. This e↵ect is

clear for an ordinal-based elicitation of prices; in the BDM treatment, the e↵ect is also present

albeit less pronounced. Third, in both treatments we found that $-bet choices which are part of

non-reversals take significantly longer than P -bet choices part of non-reversals.

In view of the evidence, we conclude that the data is compatible with the idea that pref-

erence reversals arise from the combination of two factors. First, as pointed out by Schmidt

and Hey (2004) and Butler and Loomes (2007), monetary valuations of lotteries are typically

imprecise, and hence preference elicitation through pricing tasks is much noisier than actual

choices. Second, as summarized by the compatibility hypothesis (Tversky et al., 1988, 1990),

the use of pricing tasks causes an overpricing phenomenon which anchors up the evaluation of

bets with a saliently high monetary outcome. These observations produce testable hypotheses

for both behavioral data and decision times once we incorporate the observation that easier

choices (where the alternatives are farther away from indi↵erence) are faster (e.g. Wilcox, 1993;

Shultz et al., 1999; Mo↵att, 2005).

Regarding ordering e↵ects, we observe small but systematic di↵erences suggesting that a

Price-Choice ordering, where the evaluation task precedes actual choices, might be noisier than

the opposite order, hence producing both higher reversal rates and slightly less clear e↵ects.

This is compatible with self-perception theory (Bem, 1967), which holds that actual choices

serve as “self-signals” that help reduce noise in future evaluations of alternatives.

Last, we observe small but definite treatment e↵ects, pointing out that price evaluations

conducted through the BDM “price-list” scheme might be noisier than those conducted according

to a more intuitive, ordinal-like scheme. This is reflected by the fact that reversal rates (especially

of unpredicted reversals, which are presumably due to noise) are higher in the BDM case. It is

also compatible with the general observation that e↵ects are often more clearly observed in the

OrdPM treatment than in the BDM one.
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4 Experiment 2: Eliminating Reversals

The objective of our second experiment was twofold. First, we wanted to show that the over-

pricing phenomenon can be next to eliminated by using ordinal, ranking-based evaluation tasks.

Second, this manipulation would allow us to disentangle the two building blocks of our model.

The absence of the overpricing phenomenon should result in a reduction of predicted preference

reversals, while the assumption of imprecise preferences still delivers predictions on decision

times.

4.1 Motivation and Hypotheses

In our first experiment we found that the method used to elicit participants’ minimum selling

prices a↵ects the rate of preference reversals. According to the compatibility hypothesis, pre-

dicted reversals are more frequent because participants focus more on monetary outcomes when

their preferences are elicited through prices. Notably, predicted preference reversals were also

more frequent in the OrdPM treatment, where the use of prices in the evaluation task was sim-

ple framing, with no direct monetary consequences. This raises the natural hypothesis that the

overpricing phenomenon predicted by the compatibility hypothesis arises due to a price-based,

cardinal framing (i.e., a “rating task”) in the evaluation phases. As a consequence, moving away

from a cardinal evaluation task towards a more natural, ordinal-based one (a “ranking task”)

should greatly reduce the rate of predicted reversals (given that behavior in the choice phase

does not change).

Specifically, suppose that, by employing a ranking-based evaluation task, we were able to

shut down the decision process responsible for the overpricing phenomenon. In terms of the

model in Section 2, this would imply K = 0 in Assumption 3. It is easy to revisit our theoretical

predictions and derive new experimental hypotheses for such a situation. First, Proposition

1 crucially depends on Assumption 3, and hence we would not expect Hypothesis H1 to hold

in this setting. Although from the point of view of the model we would expect no di↵erences

in reversal rates, this rests upon the implicit assumption that there is no other (second-order)

latent process causing unpredicted reversals. Even if this was the case, a conservative hypothesis

derived from our theoretical analysis is that the rate of predicted preference reversals should be

greatly reduced in comparison to treatments with price-framed evaluations.

H5. The rate of predicted preference reversals is lower if ordinal, ranking-based evaluation tasks

are used than if rating-based tasks are used.

Hypothesis H5 is also in line with previous findings in the literature. Ordinal-based evalua-

tion tasks reduce the di↵erence between the choice task and the evaluation task. For example

Bateman et al. (2007) show that a ranking task reduces predicted reversals, although the ranking

task they use is not directly comparable to ours (see Section 4.6).

The first decision-times predictions spelled out in Proposition 2 do not depend on Assumption

3. Hence, independently of whether evaluation tasks are based on ratings or rankings, we would

expect Hypotheses H2a/b to hold.
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H6a/b. Even if ordinal, ranking-based evaluation tasks are used, choices associated with pre-

dicted preference reversals take longer than P -bet choices associated with non-reversals, and

choices associated with unpredicted preference reversals take longer than $-bet choices associ-

ated with non-reversals.

Proposition 3 depends on Assumption 3. If K = 0, we would a priori expect no di↵erences

in the decision times associated with non-reversals where the P -bet or the $-bet was chosen.

H7. If ordinal, ranking-based evaluation tasks are used, the average decision time for non-

reversals where the P -bet is chosen is not di↵erent from the average decision time for non-

reversals where the $-bet is chosen.

4.2 Design of Experiment 2

The setup of the second experiment was identical to Experiment 1, with the exception of the

evaluation tasks. We used two di↵erent ranking-based tasks, meant to shut down the overpricing

decision processes, and one BDM task as a control. In each of the three treatments, presentation

of lotteries was such that participants faced a total of six blocks consisting of six lotteries each,

i.e. a total of 18 pairs.13 In the Rank-Unframed treatment, we used a purely ranking-based task.

Participants were asked to assign ranks (from most preferred to least preferred) to the lotteries

according to how much they would like to play each lottery, separately for each block. Most

importantly, we did not make any reference to prices (see the online appendix for an example

screen display of the two ranking treatments). In this sense, the task was unframed. The Rank-

Framed treatment was programmed identically. The only di↵erence was in the experimental

instructions. Participants were asked to rank the lotteries (from 1 to 6) according to their

minimum selling price, separately for each block. However, they were not asked to type in or

otherwise state the prices, but merely to think about them and use them for the ranking. Finally,

in the BDM2 treatment, participants had to complete a pricing task that was identical to the one

in the BDM treatment in Experiment 1, with the only exception that (for comparability with

the other treatments) lotteries were presented one after another in three blocks of six lotteries

each. Again, colors and onscreen positions of the lotteries were completely randomized in all

treatments.

As in Experiment 1, all three tasks were incentivized and payo↵s for each task were deter-

mined independently. Payo↵s for the evaluation task of the BDM2 and the choice tasks of all

three treatments were determined in the same way as in Experiment 1. Payo↵s for the eval-

uation phases for Treatments Rank-Unframed and Rank-Framed were determined as follows.

First, the computer picked one of the six blocks at random. From the six lotteries contained in

that block, the computer again randomly picked two. The one that had been ranked higher by

the participant was then played out and the participant received the outcome of that lottery as

payment for that round. In all three treatments, payments were determined and presented to

participants only after all three tasks had been completed.

13 We used 18 of the lottery pairs from Experiment 1, excluding the two pairs which contained stochastically
dominated lotteries.
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Since in both ranking treatments there was no actual “pricing” task, we will refer to the two

possible task orderings for these treatments as “Rank-Choice” and “Choice-Rank”.14

4.3 Procedures

We followed the same procedures as in Experiment 1. We conducted 12 sessions with a total of

215 participants (102 female). Of those, 73 were allocated to the Rank-Unframed treatment, 73

to the Rank-Framed treatment, and 69 to the BDM2 treatment. Sessions in the Rank-Unframed

treatment lasted roughly an hour with average earnings of e23.36. Sessions in the Rank-Framed

treatment lasted one hour and 20 minutes with average earnings of e24.07, while sessions in the

BDM2 treatment lasted about 2 hours with average earnings of e28.44.

4.4 Results of Experiment 2

Figure 4 shows the average reversal rates for all three treatments for both Price/Rank-Choice

and Choice-Price/Rank reversals (the percentage of P -bet choices in the BDM2, Rank-Framed,

and Rank-Unframed treatment were 69.4%, 66.7%, and 66.2%, respectively). As before, the

rate of predicted (unpredicted) reversals is computed as the number of predicted (unpredicted)

reversals divided by the number of P -bet choices ($-bet choices). The basic trends are already

apparent. The rate of predicted reversals was enormously reduced in both ranking treatments to

the extent of dropping below the rate of unpredicted reversals. Measuring reversals with respect

to post-choice attitudes does not have an e↵ect on the reversal rates.

BDM replication. The first observation is that, as expected, there is no qualitative di↵erence

between the results of Treatment BDM2 and Treatment BDM of Experiment 1. For instance,

in Treatment BDM2 the rates of predicted reversals are significantly higher than the rates of

unpredicted reversals (Price-Choice, N = 68, z = 4.495, p < 0.0001; Choice-Price, z = 4.585,

p < 0.0001).

Reduction of predicted reversals (H5). Kruskal-Wallis tests confirmed that the rate of pre-

dicted reversals was significantly di↵erent across treatments for both task orderings (Price/Rank-

Choice, �2 = 59.239, df= 2, p < 0.0001; Choice-Price/Rank, �2 = 60.5983, df= 2, p < 0.0001).

To confirm that the di↵erences were between the ranking treatments and the control BDM2 treat-

ment, we conducted two-sided MWU tests with Holm-Bonferroni correction to account for mul-

tiple comparisons (p-values below are the adjusted values). Both ranking treatments generated

significantly lower predicted reversal rates than the BDM2 treatment (Rank-Framed Price/Rank-

Choice, z = 6.01, p < 0.0001; Rank-Framed Choice-Price/Rank, z = 5.75, p < 0.0001;

Rank-Unframed Price/Rank-Choice, z = 7.19, p < 0.0001; Rank-Unframed Choice-Price/Rank,

z = 7.25, p < 0.0001). The di↵erence in the rate of predicted reversals across both ranking

treatments was not significant for the Rank-Choice ordering (z = �0.81, p = 0.414), but for

the Choice-Rank ordering the rate of predicted reversals was significantly lower in the Rank-

14 Our experimental setup does not allow distinguishing between the scale compatibility hypothesis and ref-
erence dependence (Sugden, 2003; Schmidt et al., 2008; Lindsay, 2013) as an explanation for the overpricing of
$-bets. This is due to the fact that when asking subjects to think about their minimum selling price (be it in a
pricing or a framed ranking task) both e↵ects would be present whereas in an unframed ranking task both e↵ects
would be absent.
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Figure 4: Average reversal rate per individual in Experiment 2.

Note: Reversal rates for the Price/Rank-Choice (dark) and Choice-Price/Rank (light) orderings.

Error bars depict the 95 percent confidence interval.

Unframed treatment than in the Rank-Framed treatment (z = �2.29, p = 0.022). This last

result agrees with the idea that the Rank-Unframed treatment goes one step further in the

elimination of the overpricing process than a ranking-based but still price-framed approach.

Reversal of the standard reversal pattern. In the ranking treatments, the usual pattern of

reversals was reversed, with unpredicted reversals becoming more prominent than predicted ones

(Figure 4). Two-sided WSR tests confirm this observation. The rate of unpredicted reversals

is significantly higher than the rate of predicted reversal rates in both ranking treatments inde-

pendent of the task ordering (Rank-Framed Rank-Choice, N = 66, z = 3.47, p = 0.001; Rank-

Framed Choice-Rank, N = 66, z = 3.17, p = 0.002; Rank-Unframed Rank-Choice, N = 68,

z = 5.27, p < 0.0001; Rank-Unframed Choice-Rank, N = 66, z = 5.71, p < 0.001).

Order e↵ects (H4). In contrast to Experiment 1, we found no significant di↵erences in neither

the rate of unpredicted reversals (BDM2, N = 68, z = 0.918, p = 0.359; Rank-Framed, N = 66,

z = 0.235, p = 0.814; Rank-Unframed, N = 70, z = �0.474, p = 0.636) nor in the rate of

predicted reversals (BDM2, N = 69, z = 503, p = 0.615; Rank-Framed, N = 73, z = 0.453,
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p = 0.651; Rank-Unframed. N = 71, z = 1.479, p = 0.139) when prices were elicited after

choices compared to when they were elicited before choices.

Decision times and reversals (H2/H6). Figure 5 displays the decision times for reversals and

comparable non-reversals for all three treatments and both task orderings, comparing each type

of reversal with the appropriate non-reversals. Two-sided WSR tests confirmed that predicted

reversals involved longer decision times than comparable non-reversals, both for Price/Rank-

Choice and for Choice-Price/Rank, for all treatments. For both ranking treatments, the dif-

ferences were highly significant (Rank-Framed Rank-Choice, N = 42, z = 3.551, p < 0.0005;

Rank-Framed Choice-Rank, N = 45, z = 2.743, p = 0.006; Rank-Unframed Rank-Choice,

N = 43, z = 2.614, p = 0.009); Rank-Unframed Choice-Rank, N = 34, z = 3.163, p = 0.002).

This confirms that the decision times e↵ect predicted by our model, which is independent of

the overpricing assumption, is still present under ordinal (ranking) evaluation tasks. In the case

of the BDM2 treatment, the test missed significance for the Price-Choice ordering (N = 64,

z = 1.595, p = 0.111), but the di↵erence was significant for Choice-Price (N = 58, z = 3.004,

p = 0.003).

For both ranking treatments unpredicted reversals were again significantly slower than com-

parable non-reversals independently of task ordering (Rank-Framed Rank-Choice, N = 49,

z = 2.875, p = 0.004; Rank-Framed Choice-Rank, N = 45, z = 3.014, p = 0.003; Rank-

Unframed Rank-Choice, N = 49, z = 1.930, p = 0.054); Rank-Unframed Choice-Rank, N = 47,

z = 3.656, p < 0.0005). In the BDM2 treatment the decision time di↵erences were not significant

for the Price-Choice ordering (N = 30, z = 1.131, p = 0.258), but unpredicted reversals were

significantly slower for the Choice-Price ordering (N = 23, z = 1.992, p = 0.046).

Decision times and non-reversals (H3/H7). Treatment BDM2 successfully replicated the

finding that non-reversals are slower when the $-bet is chosen than when the P -bet is chosen,

as predicted in Hypothesis H3 (WSR tests; Price-Choice, N = 60, z = 1.984, p = 0.047;

Choice-Price, N = 58, z = 2.609, p = 0.009). However, for ranking treatments we expected no

di↵erences (Hypothesis H7). There is still a significant di↵erence for the Rank-Choice ordering

(Rank-Framed, N = 57, z = 1.835, p = 0.066; Rank-Unframed, N = 54, z = 1.825, p = 0.068),

but there is clearly no significant di↵erence for the classification according to the Choice-Rank

ordering (Rank-Framed, N = 55, z = 0.733, p = 0.463; Rank-Unframed, N = 48, z = 0.385,

p = 0.701). Figure 6 illustrates these results.

Decision times in the Rank-Unframed Treatment. All decisions in the Rank-Unframed treat-

ment were significantly quicker than in the other two treatments (Figures 5 and 6). The di↵er-

ence is substantial: the median decision time over all choices was 13.41 s in BDM2, 12.52 s in

Rank-Framed, and only 9.61 s in Rank-Unframed. This is remarkable, because the treatments

di↵ered only in the evaluation phases, and the choice phases in which the decision times were

measured were identical. We will discuss this observation in detail below.

A Kruskal-Wallis test confirmed that decision times were significantly di↵erent across treat-

ments (�2 = 35.545, df= 2, p < 0.0001). Two-sided MWU tests with Holm-Bonferroni cor-

rection to account for multiple comparisons showed that decisions were faster in the Rank-

Unframed treatment than in the other treatments (BDM2, z = �5.722, p < 0.0001; Rank-
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Figure 5: Average decision time per individual in the choice task in Experiment 2.

Note: Predicted reversals are compared to non-reversals where the P -bet was chosen, unpre-

dicted reversals to non-reversals where the $-bet was chosen. Error bars depict the 95 percent

confidence interval.

Framed, z = �4.225, p < 0.0001).15

15 The di↵erence between decision times in treatments Rank-Framed and BDM2 missed significance, z =
�1.596, p = 0.111.
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Figure 6: Average non-reversal decision time per individual in choice task of Experiment 2.

Note: Choices classified as non-reversals according to the indicated task ordering. Error bars

depict the 95 percent confidence interval.

4.5 Regression Analysis for Experiment 2

As for Experiment 1, we conducted a random-e↵ects panel regression analysis on the log of

decision times from Experiment 2. The objective was to confirm and clarify our results while

controlling for natural individual and lottery-pair characteristics; specifically, we included the

same controls as in Experiment 1.16 Table 2 contains the main results of all treatments. For each

treatment, in the first regression reversals are classified as such according to the Price/Rank-

Choice task ordering, while in the second one the Choice-Price/Rank is used. We present a

single regression for each treatment and task ordering, but the results are robust with respect

to the control variables.

Predicted reversals vs. non-reversals. The reversal dummies were highly significant in all

treatments and task orderings, except for the “noisiest” Price-Choice in Treatment BDM2.

This indicates that, as in Experiment 1, predicted reversals took longer than comparable non-

reversals, confirming Hypothesis H2a.

Unpredicted reversals vs. non-reversals. Hypothesis H2b states that unpredicted reversals

should take longer than non-reversals where the $-bet was chosen. The di↵erence corresponds to

�Reversal+�$�Choice⇥Reversal, which is indeed highly significant and positive in all four regressions

for the ranking treatments. The postestimation tests are not significant for the BDM2 treatment.

Comparison of non-reversals. The $-choice dummy is significant and positive for Treatment

BDM2. That is, as in Experiment 1, non-reversals where the $-bet was chosen took longer

than non-reversals where the P -bet was chosen in this treatment (Hypothesis H3). As stated

in Hypothesis H7, we expected this e↵ect to disappear for the purely ordinal, unframed treat-

ment Rank-Unframed. Indeed, the dummy is not significant in any of the regressions for this

treatment. The prediction is less clear for the “intermediate” treatment Rank-Framed, where

16 For the two ranking treatments, StatedDi↵-1 and StatedDi↵-3 refer to the di↵erence in stated ranks between
the two lotteries within a pair in phases 1 and 3, respectively.
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Table 2: Random-e↵ects panel regressions for decision times, Experiment 2.

Treatment BDM2 RankFramed RankUnframed
Order P-C C-P R-C C-R R-C C-R

ReversalPC 0.049 0.135⇤⇤⇤ 0.108⇤⇤⇤

(0.031) (0.042) (0.044)
ReversalCP 0.100⇤⇤⇤ 0.155⇤⇤⇤ 0.199⇤⇤⇤

(0.032) (0.043) (0.051)
$-Choice 0.072⇤⇤ 0.098⇤⇤⇤ 0.073⇤⇤ 0.062⇤ 0.030 -0.006

(0.033) (0.033) (0.033) (0.033) (0.036) (0.035)
$-Choice 0.026 0.014 0.014
⇥ReversalPC (0.069) (0.062) (0.061)

$-Choice 0.011 0.039 0.008
⇥ReversalCP (0.077) (0.064) (0.067)

Di↵EV -0.022⇤⇤ -0.020⇤ -0.026⇤⇤ -0.025⇤⇤ -0.013 -0.008
(0.031) (0.011) (0.010) (0.010) (0.010) (0.010)

Ratio 0.034⇤⇤⇤ 0.033⇤⇤⇤ 0.038⇤⇤⇤ 0.038⇤⇤⇤ 0.044⇤⇤⇤ 0.043⇤⇤⇤

(0.011) (0.011) (0.010) (0.010) (0.009) (0.009)
StatedDi↵-1 -0.005 -0.004 -0.011 -0.014 -0.024⇤⇤ -0.026⇤⇤⇤

(0.005) (0.005) (0.010) (0.010) (0.010) (0.010)
StatedDi↵-3 -0.003 -0.005 -0.046⇤⇤⇤ -0.041⇤⇤⇤ -0.045⇤⇤⇤ -0.042⇤⇤⇤

(0.005) (0.005) (0.010) (0.010) (0.011) (0.011)
Round -0.007⇤⇤⇤ -0.007⇤⇤⇤ -0.008⇤⇤⇤ -0.007⇤⇤⇤ -0.003 -0.003

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Female -0.190⇤⇤ -0.181⇤⇤ -0.238⇤⇤⇤ -0.237⇤⇤⇤ -0.217⇤⇤ -0.212⇤⇤

(0.089) (0.087) (0.077) (0.077) (0.087) (0.085)
Position 0.004 0.008 0.008 0.004 0.030 0.022

(0.023) (0.023) (0.022) (0.022) (0.021) (0.021)
Color 0.108 0.112 0.088 0.085 -0.034 -0.040

(0.087) (0.086) (0.077) (0.077) (0.085) (0.083)
Constant 2.624⇤⇤⇤ 2.595⇤⇤⇤ 2.649⇤⇤⇤ 2.645 2.391⇤⇤⇤ 2.388⇤⇤⇤

(0.095) (0.094) (0.087) (0.087) (0.090) (0.088)

Nr. Obs. 1242 1244 1314 1314 1314 1314
Nr. Groups 69 69 73 73 73 73
R2-Overall 0.066 0.069 0.128 0.140 0.104 0.122
Wald test 0.000 0.000 0.000 0.000 0.000 0.000

Postestimation tests
Reversal 0.075 0.111 0.149⇤⇤⇤ 0.194⇤⇤⇤ 0.121⇤⇤⇤ 0.207⇤⇤⇤

+($-Ch⇥Rev) (0.060) (0.068) (0.043) (0.044) (0.031) (0.041)

Note: All regressions are random-e↵ects panel estimations, with log decision time as dependent

variable. Standard errors in parentheses. ⇤⇤⇤ p < 0.01, ⇤⇤ p < 0.05, ⇤ p < 0.1.
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the evaluation task was also ordinal but there was an indirect framing in terms of prices.17 For

this treatment, the $-choice was significantly positive, but e.g. only at the 10% level for the

Choice-Rank ordering.

Controls: Lotteries. As in Experiment 1, the ratio of the two higher amounts to win in

the $-bet and the P -bet (Ratio) had a significant positive e↵ect throughout. Likewise, the

absolute di↵erence in expected values of the P -bet and the $-bet (Di↵EV) had a weakly sig-

nificant negative e↵ect, but not in the Rank-Unframed treatment. The absolute di↵erence in

the prices/ranks stated for the lotteries in phases one and three (StatedDi↵-1, StatedDi↵-3) was

significant for Rank-Unframed but not for BDM2 (and only the second measure was significant

for Rank-Framed).

Other controls. As in Experiment 1, we controlled for learning and familiarity e↵ects by

including the round in which the choice was made as a regressor. Also as in Experiment 1,

female participants were significantly quicker in all treatments and task orderings. The onscreen

position (Position) of the P -bet and the $-bet and the colors used in the pie-chart (Color) had,

as expected, no e↵ect.

4.6 Discussion of Experiment 2

The experiment successfully separated the two postulated determinants of reversals. On the

one hand, the almost-complete disappearance of predicted reversals in the ranking treatments

(especially when ordinally framed) confirms that the overpricing phenomenon can be shut down.

It also shows that this phenomenon appears due to the cardinal, rating-based frame used in

standard evaluation tasks as those employed in Experiment 1. On the other hand, the remaining

reversals are still associated with longer decision times (a prediction we derived from noisy

evaluations) even though the overpricing process has been impaired. This is evidence that both

noisy evaluations and the overpricing phenomenon need to be taken into account as di↵erent

ingredients in order to model preference reversals.

Concerning the elimination of reversals, our results are consistent with evidence from Bate-

man et al. (2007). These authors also observed a reduction in predicted preference reversal rates

in an experiment where lotteries were ranked within sets which also contained sure amounts.

Their ranking task is not directly comparable to ours because $-bets and P -bets were ranked

separately, i.e. within di↵erent sets, and the ranks of P -bets relative to $-bets were inferred

indirectly. Oliver (2013) used a similar method for the measurement of preferences in the health

domain (life expectancy).

Our main object of study have been predicted preference reversals, since they are empiri-

cally more relevant. The compatibility hypothesis points to an overpricing phenomenon as a

reason for the predominance of these reversals, while the origin of unpredicted ones might be

just noisy evaluations. Nonetheless, it is interesting to observe that the rate of unpredicted

reversals increased in the ranking treatments with respect to the control (BDM2) treatment.

In fact, our ranking treatments reversed the usual pattern of preference reversals turning un-

17 We consider the framing “indirect” because, contrary to the tasks in Experiment 1 or Treatment BDM2,
participants did not actually write down prices.
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predicted reversals into the dominant ones. We hypothesize that, when the cues on which the

overpricing process acts are removed, attention is diverted to probabilities instead. Following

the compatibility hypothesis, this would result in an over-evaluation of P -bets, for which a high

probability is salient. However, this process is weaker than the one causing overpricing of $-

bets with pricing frames, simply because monetary rewards are a more immediately accessible

concept than probabilities. Thus, in a standard preference-reversal study, this second process is

overshadowed by the overpricing of $-bets. Our evidence in this respect is consistent with Cubitt

et al. (2004), where the rate of unpredicted reversals increased when subjects were asked for

“probabilistic valuations” instead of prices, trying to induce a probability anchor. However, the

rates of predicted reversals remained relatively high, suggesting that such valuation tasks, being

still cardinal, do not completely remove the salience of monetary outcomes.18 Casey (1991,

1994) observed a higher rate of unpredicted reversals compared to predicted ones using very

high payo↵s and maximum buying prices (rather than minimum selling prices). Again, however,

predicted reversal rates remained comparatively high. Casey (1994) argues that high stakes

might induce buyers to anchor on the smallest monetary outcome of a lottery, adjusting the

valuation upwards on the basis of probabilities, and hence resulting in an overpricing of P-bets.

In our terms, the setting of Casey (1991, 1994) might correspond to a combination of elements

enhancing the second process mentioned above. If such a second process is assumed, the increase

of unpredicted reversals in our ranking treatments, in Cubitt et al. (2004), and in Casey (1991,

1994) can be explained within our model. One could argue that in a ranking task there is,

for whatever the reason, a tendency to “over-rank” the P -bet. Versions of our Propositions 1

and 2 would then yield a higher rate of unpredicted reversals as well as the observed decision

time pattern for reversals. This, however, would not explain the fact that $-bet non-reversal

choices still take (weakly) longer that P -bet non-reversal choices in the ranking treatments. The

latter observation might point towards a possible “over-ranking” of P -bets being guided by a

fundamentally di↵erent process than the overpricing of $-bets.

As a remark, we observe order e↵ects on decision times (similar to those already seen in

Experiment 1) that are compatible with the view that post-choice elicitation tasks carry less

noise than pre-choice analogues, possibly due to “preference sharpening” or reappraisal in the

sense of self-perception theory.

4.7 Why Are Choices After Rankings Quicker? A Dual-Process Explanation

An important observation is that decision times in Treatment Rank-Unframed were significantly

shorter than those in other treatments, with the di↵erence being also rather large (see Figures 5

and 6). This is striking, because the choice phase in all our treatments was identical. Actually,

this di↵erence was expected, and the reasons have to be sought in (psychological) theories of

decision processes.19

18 Participants were asked for the probability p making them indi↵erent between a given lottery and receiving
a fixed, high monetary outcome X with probability p. Hence monetary outcomes remained an important part of
the frame.

19 We present this discussion after the fact for readability reasons only. For a detailed discussion of decision
times and conflicting decision processes under risk and uncertainty, see Achtziger and Alós-Ferrer (2014).
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We focus on dual-process models from psychology (Strack and Deutsch, 2004; Evans, 2008;

Weber and Johnson, 2009; Alós-Ferrer and Strack, 2014), which postulate that decisions are

the result of the interaction of possibly conflicting decision processes of di↵erent types. A basic

prediction of dual-process models is that the detection of conflict among decision processes and

its resolution consume both time and cognitive resources. That is, decision times are longer when

several processes conflict than when processes are aligned. In particular, this is independent of

how the conflict is resolved, i.e. which decision is actually made and which process determines

this decision.

In our framework, the compatibility hypothesis suggests that several decision processes might

be at work when choosing from a pair of lotteries. Overpricing might result from a process

focusing on monetary outcomes only, which competes with a more global decision process that

evaluates lotteries by taking both outcomes and winning probabilities into account. Clearly,

the former process is activated by a monetary frame in the initial evaluation phase (pricing)

and will be especially prevalent during lottery evaluation. If activated, this decision process

remains active during the subsequent choice phase, but there it is often inhibited, which leads to

a choice causing a preference reversal. The resulting process conflict results in increased decision

times. In the Treatment Rank-Unframed, we removed all references to prices, and hence the

overpricing process was simply not activated at all. Hence, there was no process conflict, and no

additional time was spent in conflict resolution in the choice phase. It is interesting to observe

that in the Treatment Rank-Framed, where the evaluation task was also ordinal but the frame

made a reference to prices, decision times were closer to those of the rating treatments, even

though predicted reversals were also greatly reduced. Again, the interpretation is simple. The

price frame generally activated the process behind overpricing, but the fact that the task was

ultimately a purely ordinal one made it less likely that this process actually shaped the decision

in the evaluation tasks, hence reducing reversals. However, since the process had been activated,

it needed to be inhibited in the choice phase, causing longer decision times.

This explanation does not a↵ect our other predictions. Essentially, it means that decision

times in the choice task, DT , consist of two components, choice time DTC and conflict resolution

time DTR, i.e. DT = DTC + DTR, where DTR is larger in the presence of process conflict.

Within each experimental treatment, there are no large variations in DTR, and hence none of

the predictions are a↵ected.

Two comments are in order. First, it is conceivable that some non-reversals correspond to

cases where the overpricing process is not activated. This would lead to the additional assump-

tion that, within a treatment, conflict resolution time is larger for reversals than for comparable

non-reversals.20 This more detailed account would leave our other hypotheses una↵ected, be-

cause H1/H5 do not concern decision times, and do not concern reversals. Hypothesis H4 on

order e↵ects is likewise orthogonal to this question. The additional assumption would a↵ect

exclusively the interpretation of Hypotheses H2/H7, i.e. that reversals take longer than com-

parable nonreversals. However, Proposition 2 states that choice times are longer for reversals

20 Such an assumption would also capture the observation that preference reappraisal and process conflict
resolution in the Free-Choice Paradigm occur during the choice phase, as observed in fMRI (Jarcho et al., 2011)
and response time studies (Alós-Ferrer et al., 2012).
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than for non-reversals. The new assumption would state that also conflict resolution time is on

average larger for reversals. Since total decision time is now viewed as the sum of choice time

and conflict resolution time, Hypotheses H2/H7 would remain una↵ected.

Second, dual-process theories postulate that decision processes can range from automatic

and fast, corresponding to quick heuristics, to controlled and slow. Although inessential for

our analysis, it is interesting to speculate on the nature of the decision processes involved in

preference reversals. Clearly, a decision process reflecting global valuation considerations should

be conceptualized as a cognitive, controlled process. It would be reasonable to assume that the

overpricing process is more automatic (quicker) than the former process. Our results suggest,

however, that it cannot be a purely impulsive process with very low response times. If this were

the case, then in case of conflict some decisions would actually be made by the impulsive process

and be correspondingly far quicker. This would reduce the average decision time, operating in

the opposite direction to the e↵ect discussed above. Our data make clear that this process is

not quick enough for this second-order consideration to o↵set the reduction of conflict resolution

time.

5 Conclusion

We investigated decision times in the choice task of two preference reversal experiments to

deepen our understanding of the actual decision processes behind preference reversals. Our

main hypotheses separate the reasons for the existence of reversals and for the predominance of

predicted reversals on the basis of two prominent accounts from the literature. While the exis-

tence of reversals is attributed to noise (imprecise preferences) in the evaluation phase (Schmidt

and Hey, 2004; Butler and Loomes, 2007), the predominance of predicted reversals is the re-

sult of an overpricing phenomenon of lotteries with salient monetary outcomes associated with

the compatibility hypothesis (Tversky et al., 1988, 1990). A noisy evaluation phase suggests

that choices involved in preference reversals are more likely to include comparisons where de-

cision makers are closer to indi↵erence. Since decision times associated with such hard choices

have been shown to take longer than easy choices where one option is clearly better (Wilcox,

1993; Shultz et al., 1999; Mo↵att, 2005; Chabris et al., 2009; Sharot et al., 2009; Alós-Ferrer

et al., 2012), choices involved in preferences reversals should take longer than corresponding

non-reversal choices.

The first experiment confirmed these hypotheses. We reproduced the standard preference

reversal pattern and found that reversals were clearly associated with longer decision times. In

the second experiment, we were able to shut down the overpricing process by moving away from

cardinal-based evaluation phases to purely ordinal ranking tasks, which e↵ectively separates

the consequences of the two postulated determinants of reversals. As expected, we observe a

significant reduction of predicted reversals. More importantly, reversal choices still take longer

than non-reversal choices, a prediction derived from imprecise preferences only. These findings

are compatible with the idea that reversals arise due to an interaction of noise in the evaluation

phases and a psychological process (or set thereof) causing an overpricing of lotteries with a
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salient monetary outcome.

In addition, we found that a complete removal of cues to prices in the evaluation phase

notably reduces decision times in the choice task. This observation is remarkable insofar as we

employ two otherwise identical ranking tasks that only di↵er in the experimental instructions. In

one treatment (Rank-Framed) participants are instructed to think about minimum selling prices

and rank lotteries accordingly, in the other (Rank-Unframed) there is no mentioning of prices

at all. Thinking about minimum selling prices in the evaluation phase significantly increases

decision times in the choice phase. This finding is compatible with standard psychological

insights on process conflict and provides further support towards the existence of an overpricing

process triggered by price cues.

Our design further allowed us to evaluate di↵erent experimental possibilities with regard to

the amount of noise they induce. By using two evaluation phases, one pre-choice and one post-

choice, we are able to conclude that post-choice evaluation tasks are in general more appropriate

for preference elicitation, in accordance with evidence on preference reappraisal from psychology.

By using di↵erent evaluation tasks across treatments, we conclude that tasks based on the BDM

procedure might add additional, unwanted noise and other tasks, as e.g. the Ordinal Payment

Method, might be more accurate. Finally, if one is interested in preferences rather than certainty

equivalents, our second experiment shows that the more accurate evaluation method (in the

sense of inducing fewer reversals) is to rely on purely ordinal, ranking-based tasks without any

references to prices.

Our research investigated the mechanisms and processes behind the preference reversal phe-

nomenon. Previous research (see e.g. Cubitt et al., 2004) has pointed out that a combination

of psychological mechanisms might be the simplest explanation of the phenomenon. Given the

fundamental importance of preference elicitation methods for both decision theory and applied

economics, and the amount of attention dedicated to the preference reversal phenomenon in the

last half century, we believe that fleshing out these mechanisms is an important step. At the same

time, we show that a parsimonious combination of insights from the literature with standard

facts on decision times can account for received evidence and provide new, testable hypotheses

allowing us to better understand the determinants of the preference reversal phenomenon.
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A Proofs

Throughout the appendix, let �⇣ = ⇣P � ⇣$ + K. Under Assumption 3, ⇣P and ⇣$ are i.i.d.

and unimodal, implying that �⇣ is symmetrically distributed around 0 and unimodal (cf.

Purkayastha, 1998, Theorem 2.1).

Proof of Proposition 1. We first claim that the probability of a predicted reversal Pr(CE$ >

CEP , C(P, $) = P ) is higher than the probability of an unpredicted reversal Pr(CEP >

CE$, C(P, $) = $). Since K > 0 by Assumption 3, Pr(�⇣ < �K � s) < Pr(�⇣ < K � s)

for all s 2 [0,1[ and the conclusion follows from the following computations.

Pr(CE$ > CEP , C(P, $) = P )

=

Z 1

0
Pr(CE$ > CEP |uP � u$ = s)h(s)ds =

Z 1

0
Pr(�⇣ < K � s)h(s)ds

Pr(CEP > CE$, C(P, $) = $) =

Z 1

0
Pr(CEP > CE$|u$ � uP = s)h(s)ds

=

Z 1

0
Pr(�⇣ > K + s)h(s)ds =

Z 1

0
Pr(�⇣ < �K � s)h(s)ds.

This proves the claim.

Note that Pr(CE$ > CEP |c(P, $) = P ) = Pr(CE$>CEP ,c(P,$)=P )
Pr(uP>u$)

, and Pr(CEP > CE$|c(P, $) =
$) = Pr(CEP>CE$,c(P,$)=$)

Pr(u$>uP ) . Since Pr(uP > u$) = Pr(u$ > uP ), the conclusion follows from the

claim. ⌅

The next lemma is used in the proof of Proposition 2.

Lemma 1. Under Assumption 1, the following hold.

(i) Pr(CE$ > CEP |0 < uP � u$ < �) > Pr(CE$ > CEP |uP � u$ > �).

(ii) Pr(CEP > CE$|0 < u$ � uP < �) > Pr(CEP > CE$|u$ � uP > �).

Proof. We prove part (i). The proof of part (ii) is analogous. We have Pr(CE$ > CEP |uP�u$ =

s) = Pr(�⇣ < K � s) and

Pr(CE$ > CEP |0 < uP�u$ < �) =
1

Pr(0 < uP � u$ < �)

Z �

0
Pr(CE$ > CEP |uP�u$ = s)h(s)ds

>

1

Pr(0 < uP � u$ < �)

Z �

0
Pr(�⇣ < K � �)h(s)ds = Pr(�⇣ < K � �).

Similarly Pr(CE$ > CEP |uP � u$ = s) = Pr(�⇣ < K � s) and

Pr(CE$ > CEP |uP � u$ > �) =
1

Pr(uP � u$ > �)

Z 1

�
Pr(CE$ > CEP |uP � u$ = s)h(s)ds

<

1

Pr(uP � u$ > �)

Z 1

�
Pr(�⇣ < K � �)h(s)ds = Pr(�⇣ < K � �)

and the conclusion follows. ⌅
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Proof of Proposition 2. (i) To shorten notation let �0 = Pr(CE$ > CEP |0 < uP � u$ < �),

�1 = Pr(CE$ > CEP |uP � u$ > �), P

� = Pr(0 < uP � u$ < �|0 < uP � u$), and P =

Pr(CE$ > CEP |uP > u$).

With these definitions, P = �0P
� +�1(1� P

�). We obtain E[DTC |CE$ > CEP , c(P, $) =

P ] = 1
P [�0P

�
TH+�1(1�P

�)TE ], and E[DTC |CEP > CE$, c(P, $) = P ] = 1
1�P [(1��0)P �

TH+

(1��1)(1� P

�)TE ]. A simple calculation shows that

E[DTC |CE$ > CEP , c(P, $) = P ] > E[DTC |CEP > CE$, c(P, $) = P ]

, P

�
TH [�0 � P ] > (1� P

�)TE [P ��1]

As P = �0P
�+�1(1�P

�), we obtain �0�P = (1�P

�)(�0��1) and P ��1 = P

�(�0��1).

Hence E[DTC |CE$ > CEP , c(P, $) = P ] > E[DTC |CEP > CE$, c(P, $) = P ] holds if and only

if TH(�0 � �1) > TE(�0 � �1). By Lemma 1(i), �0 > �1 and hence the inequality holds if

and only if TH > TE , which is true by Assumption 4.

(ii) is analogous to (i), using part (ii) of Lemma 1 instead of (i). ⌅

The next lemma is used in the proof of Proposition 3.

Lemma 2. Pr(0 < uP � u$ < �|0 < uP � u$) = Pr(0 < u$ � uP < �|0 < u$ � uP ).

Proof. First note that since uP and u$ are i.i.d, uP � u$ and u$ � uP are identically distributed

and Pr(u$ � uP > 0) = Pr(u$ � uP < 0) = 1/2. Then Pr(0 < u$ � uP < �|0 < u$ � uP ) =
Pr(0<u$�uP<�)

Pr(u$>uP ) = Pr(0<uP�u$<�)
Pr(uP>u$)

= Pr(0 < uP � u$ < �|0 < uP � u$). ⌅

Proof of Proposition 3. To shorten notation let �0 = Pr(CE$ > CEP |0 < u$ � uP < �),

�1 = Pr(CE$ > CEP |u$ � uP > �), �2 = Pr(CEP > CE$|0 < uP � u$ < �), �3 = Pr(CEP >

CE$|uP � u$ > �), P1 = Pr(CE$ > CEP |u$ > uP ), P2 = Pr(CEP > CE$|uP > u$). Let also

P

� be the probability given in Lemma 2.

With these definitions, we have that P1 = �0P
� +�1(1�P

�) and P2 = �2P
� +�3(1�P

�).

We obtain E[DTC |CE$ > CEP , c(P, $) = $] = 1
P1
[�0P

�
TH+�1(1�P

�)TE ] and E[DTC |CEP >

CE$, c(P, $) = P ] = 1
P2
[�2P

�
TH +�3(1� P

�)TE ]. This yields.

E[DTC |CE$ > CEP , c(P, $) = $] > E[DTC |CEP > CE$, c(P, $) = P ]

, P

�(1� P

�)TH [�0�3 ��1�2] > (1� P

�)P �
TE [�0�3 ��1�2]

Since TH > TE by Assumption 4, the claim holds if �1�2 < �0�3. The rest of the proof is

devoted to establish this fact. For this, we rely on ideas taken from Wijsman (1985).

First, note that

�0 =
1

Pr(0 < u$ � uP < �)

Z �

0
Pr(�⇣ < K + s)h(s)ds,

�1 =
1

Pr(u$ � uP > �)

Z 1

�
Pr(�⇣ < K + s)h(s)ds,

�2 =
1

Pr(0 < up � u$ < �)

Z �

0
Pr(�⇣ < �K + s)h(s)ds, and

�3 =
1

Pr(uP � u$ > �)

Z 1

�
Pr(�⇣ < �K + s)h(s)ds.
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Now let f1(s) := Pr(�⇣ < K + s), f2(s) = Pr(�⇣ < �K + s),

g1(s) =

8
<

:
h(s) if s 2]�,1[,

0 otherwise,
and g2(s) =

8
<

:
h(s) if s 2 [0, �],

0 otherwise.

As u$ and uP are i.i.d Pr(0 < u$ � uP < �) = Pr(0 < uP � u$ < �) and Pr(u$ � uP > �) =

Pr(uP � u$ > �) and hence showing that �1�2 < �0�3 boils down to showing that

Z 1

0
f1(s)g1(s)ds

Z 1

0
f2(s)g2(s)ds <

Z 1

0
f2(s)g1(s)ds

Z 1

0
f1(s)g2(s)ds.

To see that this is true note that

2

✓Z 1

0
f1(s)g1(s)ds

Z 1

0
f2(s)g2(s)ds�

Z 1

0
f2(s)g1(s)ds

Z 1

0
f1(s)g2(s)ds

◆

=

Z 1

0

Z 1

0
F (x, y)G(x, y)dxdy,

where F (x, y) = f1(x)f2(y)� f1(y)f2(x) and G(x, y) = g1(x)g2(y)� g1(y)g2(x). Further,

✓
f1

f2

◆0
(s) =

q(K + s)Pr(�⇣ < �K + s)� Pr(�⇣ < K + s)q(�K + s)

(Pr(�⇣ < �K + s))2
,

where q is the density of �⇣. Then (f1f2 )
0(s) < 0 since 0 < q(K + s)  q(�K + s) and Pr(�⇣ <

�K + s) < Pr(�⇣ < K + s) by Assumption 3.1 Thus f1
f2

is strictly decreasing and hence

F (x, y) > 0 if x < y and F (x, y) < 0 if y < x (of course, F (x, y) = 0 if x = y). By construction

G(x, y) > 0 if (x, y) 2]�,1[⇥[0, �], G(x, y) < 0 if (x, y) 2 [0, �]⇥]�,1[, andG(x, y) = 0 otherwise.

Hence F (x, y)G(x, y)  0 for all (x, y) 2 R+ ⇥ R+ and F (x, y)G(x, y) < 0 for all (x, y) 2
]�,1[⇥[0, �] [ [0, �]⇥]�,1[. This implies that

R1
0

R1
0 F (x, y)G(x, y)dxdy < 0 which proves the

claim. ⌅

1The fact that q(K + s)  q(�K + s) follows by unimodality. If s � K then q(�K + s)  q(K + s) since q is

nonincreasing in the positive domain. If s < K then q(�K + s) > q(�K � s) = q(K + s) since q is nondecreasing

in the negative domain and symmetric.
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B Lotteries

Table 1: The lottery pairs.

Lottery P-bet $-bet

pair Prob Outc EV StdDev Prob Outc EV StdDev

1 0.44 7 4.20 3.536 0.36 7 3.80 3.536

2 0.40 8 4.40 4.243 0.40 7 4.00 3.536

3 0.82 11 9.38 6.364 0.10 48 6.60 32.527

4 0.94 9 8.58 4.950 0.20 30 7.60 19.799

5 0.80 11 9.20 6.364 0.20 24 6.40 15.556

6 0.90 10 9.20 5.657 0.30 22 8.00 14.142

7 0.60 15 9.80 9.192 0.21 23 6.41 14.849

8 0.80 10 8.40 5.656 0.40 15 7.20 9.192

9 0.89 6 5.56 2.828 0.11 36 5.74 24.042

10 0.81 6 5.24 2.828 0.19 18 5.04 11.314

11 0.97 12 11.70 7.071 0.31 34 11.92 22.627

12 0.94 8 7.64 4.242 0.39 16 7.46 9.899

13 0.82 9 7.74 4.243 0.50 13 7.50 7.778

14 0.87 7 6.35 3.536 0.50 11 6.50 6.364

15 0.68 7 5.40 2.828 0.20 25 6.60 16.971

16 0.79 8 6.74 2.828 0.30 24 8.60 15.556

17 0.80 6 5.20 2.828 0.40 18 8.40 11.314

18 0.90 6 5.60 2.828 0.30 18 6.80 11.314

19 0.60 9 6.20 4.950 0.45 17 8.75 10.607

20 0.60 10 6.80 5.657 0.40 16 7.60 9.899

Note: Each lottery pays an amount of e2 with the remaining probability.
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C Screenshots

(a) Pricing phase (Experiment 1)

(b) Ranking phase (Experiment 2)

(c) Choice phase (Experiments 1 and 2)

Figure 1: Screenshots for pricing, ranking and choice task.
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