3,328 research outputs found

    Mitochondrial Acetylation and Diseases of Aging

    Get PDF
    In recent years, protein lysine acetylation has emerged as a prominent and conserved regulatory posttranslational modification that is abundant on numerous enzymes involved in the processes of intermediary metabolism. Well-characterized mitochondrial processes of carbon utilization are enriched in acetyl-lysine modifications. Although seminal discoveries have been made in the basic biology of mitochondrial acetylation, an understanding of how acetylation states influence enzyme function and metabolic reprogramming during pathological states remains largely unknown. This paper will examine our current understanding of eukaryotic acetate metabolism and present recent findings in the field of mitochondrial acetylation biology. The implications of mitochondrial acetylation for the aging process will be discussed, as well as its potential implications for the unique and localized metabolic states that occur during the aging-associated conditions of heart failure and cancer growth

    Mixing by microorganisms in stratified fluids

    Get PDF
    We examine the vertical mixing induced by the swimming of microorganisms at low Reynolds and Péclet numbers in a stably stratified ocean, and show that the global contribution of oceanic microswimmers to vertical mixing is negligible. We propose two approaches to estimating the mixing efficiency, η, or the ratio of the rate of potential energy creation to the total rate-of-working on the ocean by microswimmers. The first is based on scaling arguments and estimates η in terms of the ratio between the typical organism size, a, and an intrinsic length scale for the stratified flow, l = (νκ/N2)1/4, where ν is the kinematic viscosity, κ the diffusivity, and N the buoyancy frequency. In particular, for small organisms in the relevant oceanic limit, a/l \u3c\u3c 1, we predict the scaling η ∼ (a/l)3. The second estimate of η is formed by solving the full coupled flow-stratification problem by modeling the swimmer as a regularized force dipole, and computing the efficiency numerically. Our computational results, which are examined for all ratios a/l, validate the scaling arguments in the limit a/l \u3c\u3c 1 and further predict η ≈ 1.2(a/l)3 for vertical swimming and η ≈ 0.15 (a/l)3 for horizontal swimming. These results, relevant for any stratified fluid rich in biological activity, imply that the mixing efficiency of swimming microorganisms in the ocean is at very most 8% and is likely smaller by at least two orders of magnitude

    Meson vacuum phenomenology in a three-flavor linear sigma model with (axial-)vector mesons

    Full text link
    We study scalar, pseudoscalar, vector, and axial-vector mesons with non-strange and strange quantum numbers in the framework of a linear sigma model with global chiral U(Nf)L×U(Nf)RU(N_f)_L \times U(N_f)_R symmetry. We perform a global fit of meson masses, decay widths, as well as decay amplitudes. The quality of the fit is, for a hadronic model that does not consider isospin-breaking effects, surprisingly good. We also investigate the question whether the scalar qˉq\bar{q}q states lie below or above 1 GeV and find the scalar states above 1 GeV to be preferred as qˉq\bar{q}q states. Additionally, we also describe the axial-vector resonances as qˉq\bar{q}q states.Comment: 29 pages, 4 figures, 3 tables. v2 is the updated version after referee remarks (dilaton field discussed, a new figure added

    Double Averaging Analysis Applied to a Large Eddy Simulation of Coupled Turbulent Overlying and Porewater Flow

    Get PDF
    Freestream turbulence in rivers is a key contributor to the flux of dissolved nutrients, carbon, and other ecologically important solutes into porewater. To advance understanding of turbulent hyporheic exchange and porewater transport, we investigate flow over and through a rough bed of spheres using large eddy simulation (LES). We apply double averaging (combined space and time averaging) to the LES results to determine the mean velocity distribution, momentum balance, and drag forces. Our simulations show large-scale freestream structures interacting strongly with vortices generated at the surfaces of individual spheres to control turbulent momentum fluxes into the bed. The transition between turbulent flow and Darcy flow occurs over the first row of spheres, where turbulence decays rapidly and turbulent kinetic energy, Reynolds stress, and drag forces peak. Below this region, turbulence is only present in the high-velocity flow in open pore throats. Experimental observations suggest that minimum mean porewater velocity occurs in the first open pore space below the transition region, but our results show that the minimum occurs between the first and second pore spaces. The simulation mean porewater velocities are approximately half those captured in measurements because the model resolves the entire flow continuum while measurements can access high-velocity fluid in open pores. The high-resolution dual time-space averaging of the LES resolves both turbulent and mean flow features that are important to interfacial solute and particle fluxes, providing a means to include turbulent hyporheic exchange in upscaled river models, which has not been achieved to date

    Bacteria growth, persistence, and source assessment in rural Texas landscapes and streams

    Get PDF
    Bacteria water quality impairments are the most common water quality issue in Texas and are a considerable source of impairments nationally. Fecal indicator bacteria such as Escherichia coli (E. coli) and enterococci derived from birds and mammals are used as a measure of a waterbody’s ability to support contact recreation. Relationships between monitored levels of E. coli and enterococcus have been established with human contraction of a gastrointestinal illness from pathogenic organisms and serve as the basis for water quality standards that protect contact recreation. Stakeholder processes are often undertaken to improve the quality of impaired waters, define pollutant sources, and develop strategies to reduce bacteria loading to streams. Questions are often asked during these processes regarding the fate and transport of these bacteria in various environmental settings, the distribution of E. coli sources across watersheds, and how they respond to changes in water quality. Past research conducted has worked to address these questions; however, additional work is warranted. Re-created stream mesocosms were used to develop an improved understanding of E. coli fate and transport in the environment under controlled treatment conditions. Nutrient amendments that mimic increases in nutrient concentrations seen from nonpoint source pollutant loadings and wastewater effluent loadings were applied to determine if E. coli concentrations would change as a result of the amendments and alter growth or decay relative to a control mesocosm. No E. coli growth response was observed in any trial, and no significant differences in decay rates were observed either. This suggests that a single nutrient addition to a stream environment is not sufficient to produce a growth response in the ambient E. coli community. Soil and runoff samples collected from three controlled land uses were processed to enumerate E. coli and allow individual colonies to be isolated and fingerprinted for bacteria source tracking (BST). E. coli source contributions to native prairie, managed hay pasture, and cultivated cropland sites were determined using 7-way source identification splits. In all cases, wildlife were found to be the primary E. coli contributor. Unexpectedly, cattle and humans were identified as sources of E. coli in runoff and soils from some of the sites. Cattle are not actively stocked nor have they been stocked at any of these sites for at least three years, and no known sources of human fecal deposition have occurred in these watersheds. This demonstrates the complex diversity of E. coli in unimpacted environments and the potential for bacteria to be translocated by transmission vectors.Funding support for this project was provided through a State Nonpoint Source Grant from the Texas State Soil and Water Conservation Boar
    corecore