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1. Introduction
Turbulent flow over and through a permeable surface is a common feature of many aquatic systems. Rivers 
are an important example of such a flow, as they generally have highly turbulent flow over a granular sedi-
ment bed. While porewater flow generally decays to Darcy flow deep in the bed, turbulence from the over-
lying flow penetrates across the sediment-water interface (Blois et al., 2014; Boano et al., 2011; Dade, 2001; 
Nagaoka & Ohgaki, 1990; Packman et al., 2004; Pokrajac et al., 2007; Roche et al., 2018). This region of 
exchange between overlying flow and subsurface flow, known as the hyporheic zone, has a dramatic impact 
on river ecosystems, as hyporheic exchange controls the retention, transformation, and remobilization of 
nutrients, particulate organic matter, and contaminants (Boano et  al.,  2014; Jones & Mulholland,  1999; 
McKnight et al., 2004; Newcomer Johnson et al., 2016; Withers & Jarvie, 2008; Xia et al., 2018).

Early attempts to explore the coupling between overlying flow and porewater flow concentrated on sand 
beds with large bed roughness features (bedforms; Elliott & Brooks, 1997a; Thibodeaux & Boyle, 1987). 
Models for these systems treated the subsurface as a homogeneous isotropic porous medium and used Dar-
cy assumptions for hyporheic porewater flow (Elliott & Brooks, 1997b; Packman & Brooks, 2001). For coarse 
sediment beds, early experimental studies found turbulence played an important role in hyporheic flow 
(Nagaoka & Ohgaki, 1990; Packman et al., 2004). However, turbulent hyporheic exchange is very difficult to 
observe experimentally, even in the laboratory, because of obstruction from adjacent bed sediment grains. 
These limitations have restricted measurements to accessible regions of the bed, either via flow visualiza-
tion (Packman et al., 2004; Roche et al., 2018) or by measuring velocities in the open pore spaces between 

Abstract Freestream turbulence in rivers is a key contributor to the flux of dissolved nutrients, 
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grains (Manes et al., 2009; Pokrajac et al., 2007). More recently, refractive-index-matching techniques have 
been used to visualize the pore fluid flow more completely (Voermans et al., 2017). Several studies have 
observed an unexpected velocity minimum in the first pore below the sediment-water interface (Manes 
et al., 2009; Pokrajac et al., 2007; Roche et al., 2018), and porewater transport has complex patterns that are 
difficult to reduce into simple expressions such as diffusion coefficients (Roche et al., 2018, 2019). Improved 
models for turbulent hyporheic exchange are needed, as experimental and numerical investigations have 
shown that freestream turbulence penetrates into the subsurface (Blois et al., 2012; Kuwata & Suga, 2017; 
Roche et al., 2018; Shen et al., 2020; Stoesser et al., 2007) and plays a vital role in many of the key func-
tions of the hyporheic zone, such as storage and transformation of stream-borne solutes including nitrogen 
and organic carbon (Grant, Gomez-Velez, et al., 2018; Jones & Mulholland, 1999; Knapp et al., 2017; Li 
et al., 2017, 2021).

While great strides have been made in accurately modeling advective hyporheic exchange induced by bed-
forms in fine-sediment beds (Boano et al., 2014), it has proven difficult to parameterize models for turbu-
lent hyporheic transport based only on fundamental morphological properties and hydrodynamic process-
es. Most current hyporheic flow models are semi-coupled, meaning that separate solvers are used in the 
freestream and the bed, linked through boundary conditions imposed at the interface (Boano et al., 2014). 
Moreover, continuum assumptions are used for the subsurface flow, both the hyporheic zone and the 
deeper regions of the bed governed by Darcy's Law. For turbulent hyporheic exchange, specification of 
a problem-specific diffusion coefficient is typical (e.g., Grant, Azizian, et  al.,  2018; Grant, Gomez-Velez, 
et al., 2018; Grant et al., 2020; Roche et al., 2018, 2019). These assumptions represent significant shortcom-
ings of available models, as they are unable to directly capture turbulent interactions between surface-fluid 
and pore-fluid, or turbulent flows in porewaters (Boano et al., 2014; Grant, Gomez-Velez, et al., 2018). The 
inability to properly resolve turbulence can lead to underestimations of hyporheic exchange by a factor or 
two or more (O'Connor et al., 2012; O'Connor & Harvey, 2008). Improved understanding of turbulent inter-
actions between surface and porewater is needed along with a method for directly solving both flow regimes 
and upscaling results into river biogeochemistry models.

Dual spatial and temporal averaging of the Navier-Stokes equations, called double averaging (DA), has 
emerged as a useful technique for quantifying the turbulent flow over the rough boundaries commonly 
found in rivers. DA has been used to obtain depth-averaged flow quantities, such as the Reynolds Stress 
(Nikora et al., 2007), and profiles that are independent of heterogeneities caused by flow over the rough 
and irregular bed. This methodology can be applied to a wide range of river geometries (Nikora et al., 2013). 
DA has allowed the identification of the hydrodynamic transition region in the bed, defined as the location 
where strong dissipation of momentum by drag forces around sediment grains decreases porewater veloc-
ities, turbulent stresses, and pressure fluctuations to laminar flow conditions (Breugem et al., 2006; Manes 
et al., 2009; Roche et al., 2018; Voermans et al., 2017, 2018; Vollmer et al., 2002). Although other powerful 
methods have been developed for the identification of structures in flows, such as proper orthogonal de-
composition (POD; Beaumard et al., 2019; Berkooz et al., 1993; Meyer et al., 2007), DA has an advantage in 
that an averaging volume can be explicitly specified, allowing structures above a particular length scale to 
be highlighted.

Models for hyporheic exchange often solve the Reynolds averaged Navier-Stokes (RANS) equations to as-
sess the overlying flow and the pressure distribution at the sediment-water interface (Bardini et al., 2012; 
Cardenas, 2008; Kaufman et al., 2017; Zheng et al., 2019). However, the complex and small-scale turbulent 
interactions in the transition region cannot be accurately resolved by RANS models, so attempts to solve 
for coupled freestream-porewater flows have concentrated on more computationally taxing but physically 
accurate techniques. Direct numerical simulation (DNS) has been used (Kuwata & Suga, 2017), but is very 
computationally expensive and can only be used with low Reynolds number and simple geometries. Large 
eddy simulations (LES) have been shown to capture the relevant physics (Fang et al., 2018; Lian et al., 2019; 
Stoesser et al., 2007), and can be more readily upscaled as they are not as computationally expensive as DNS, 
provided that the subgrid scale is still within the inertial regime. Recent LES simulations have been used 
not only to capture the coupled fluid-porewater flow, but also to compute lift and drag forces on individual 
sediment grains, which are important for determining mechanisms of sediment entrainment (Leonardi 
et al., 2018; Schmeeckle, 2014).
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In this study, we use LES to evaluate turbulent flow over and through a bed of coarse spheres, as a model 
system for understanding hyporheic flow coupling in a gravel bed stream (Figure 1). To identify and quan-
tify the effects of coherent turbulent structures and associated momentum fluxes in the transition region, 
we apply the double averaging method to LES (DA-LES) over the entire fluid domain, including hyporheic 
porewater flow in the sediment bed. We then compare our results with prior experimental observations and 
identify the role of coherent structures in controlling momentum exchange between the overlying flow and 
porewater. Our analysis advances understanding of turbulence generation at rough, porous interfaces by 
identifying the types of coherent structures created and the resulting turbulent momentum fluxes into the 
bed, as well as the drag forces responsible for dissipating momentum in the bed. We use this information to 
determine the extent of the transition region, which corresponds to the region of the hyporheic zone where 
turbulence is a significant transport process.

2. Problem and Theory
2.1. Governing Equations

We consider an incompressible fluid flow over and through a three-dimensional bed composed of spheres 
as shown in Figure 1c. The LES continuity and momentum equations are:

𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝜕𝜕𝑖𝑖

= 0 (1)

𝜌𝜌𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝜕𝜕

+ 𝜌𝜌
𝜕𝜕(𝜕𝜕𝑖𝑖𝜕𝜕𝑗𝑗)
𝜕𝜕𝜕𝜕𝑗𝑗

= −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑖𝑖
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𝜕𝜕𝜕𝜕𝑖𝑖𝑗𝑗
𝜕𝜕𝜕𝜕𝑗𝑗

−
𝜕𝜕𝜕𝜕𝑆𝑆𝑆𝑆𝑆𝑆

𝑖𝑖𝑗𝑗

𝜕𝜕𝜕𝜕𝑗𝑗
+ 𝑏𝑏𝑖𝑖 (2)

where 𝐴𝐴 𝐴𝐴𝑖𝑖 is the space-filtered velocity, 𝐴𝐴 𝐴𝐴 is the pressure, 𝐴𝐴 𝐴𝐴 is the fluid density, 𝐴𝐴 𝐴𝐴𝑖𝑖 is the body force used to drive 
the flow, and 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 and 𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆

𝑖𝑖𝑖𝑖  denote the deviatoric part of the resolved shear viscous stress and unresolved 
subgrid scale shear stress, respectively. The Einstein summation convention is employed where repeated 
indices appear. The fluid is assumed Newtonian with a resolved shear stress given by 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 = 2𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖 , where 𝐴𝐴 𝐴𝐴 
is the molecular viscosity and 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 is the resolved rate of deformation, defined as 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 = 1

2
(𝜕𝜕𝜕𝜕𝑖𝑖∕𝜕𝜕𝜕𝜕𝑖𝑖 + 𝜕𝜕𝜕𝜕𝑖𝑖∕𝜕𝜕𝜕𝜕𝑖𝑖) .

The wall-adapting local eddy-viscosity (WALE) closure model proposed by Nicoud and Ducros (1999) is 
applied for the subgrid scale stress, 𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆

𝑖𝑖𝑖𝑖 = −2𝜇𝜇𝑡𝑡𝑆𝑆𝑖𝑖𝑖𝑖 , where 𝐴𝐴 𝐴𝐴𝑡𝑡 is the eddy viscosity given by:

𝜇𝜇𝑡𝑡 = 𝜌𝜌(𝐶𝐶𝑤𝑤Δ)2
(𝑆𝑆𝑑𝑑

𝑖𝑖𝑖𝑖𝑆𝑆
𝑑𝑑
𝑖𝑖𝑖𝑖)

3∕2

(𝑆𝑆𝑖𝑖𝑖𝑖𝑆𝑆𝑖𝑖𝑖𝑖)5∕2 + (𝑆𝑆𝑑𝑑
𝑖𝑖𝑖𝑖𝑆𝑆

𝑑𝑑
𝑖𝑖𝑖𝑖)

5∕4 (3)

Figure 1. (a) Gravel streambed where turbulent hyporheic exchange has been shown to be important to both flow and biogeochemistry. Image reproduced 
from Padhi et al. (2019). (b) Schematic of flow structure in water column and porewater. Curved arrows show examples of coherent turbulent structures. For 
simulations, we consider a flow of depth 𝐴𝐴 𝐴𝐴 over and through a bed of spheres of diameter 𝐴𝐴 𝐴𝐴 with a gap 𝐴𝐴 𝐴𝐴𝑔𝑔 between adjacent spheres. Sphere centers are spaced 

𝐴𝐴 𝐴𝐴 = 𝑑𝑑𝑔𝑔 +𝐷𝐷 apart. The direction of streamwise velocity is 𝐴𝐴 𝐴𝐴1 with a minimum shown under the first sphere layer. (c) Three-dimensional bed geometry for large 
eddy simulations. The mean flow is in the ( 𝐴𝐴 𝐴𝐴 ) direction and the bed surface is located at 𝐴𝐴 𝐴𝐴∗ = 0 , where 𝐴𝐴 𝐴𝐴∗ is defined as 𝐴𝐴 𝐴𝐴∗ = 𝐴𝐴∕𝐿𝐿 .
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where the constant 𝐴𝐴 𝐴𝐴𝑤𝑤 is set to 0.325, 𝐴𝐴 Δ is the spatial filter. As an unstructured, sphere-surface conforming 
mesh is used in this study, the spatial filter is tied with the discretization, namely, 𝐴𝐴 Δ = 𝑉𝑉 1∕3 with 𝐴𝐴 𝐴𝐴  being the 
volume of the local control volume cell. 𝐴𝐴 𝐴𝐴𝑑𝑑

𝑖𝑖𝑖𝑖 is calculated as

𝑆𝑆𝑑𝑑
𝑖𝑖𝑖𝑖 =

1
2

[

𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝜕𝜕𝑘𝑘

𝜕𝜕𝜕𝜕𝑘𝑘
𝜕𝜕𝜕𝜕𝑖𝑖

+
𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝜕𝜕𝑘𝑘

𝜕𝜕𝜕𝜕𝑘𝑘
𝜕𝜕𝜕𝜕𝑖𝑖

]

 (4)

Unlike some closure schemes (such as the Smagorinsky model), the WALE model is designed so that 𝐴𝐴 𝐴𝐴𝑡𝑡 = 0 
at the wall (Nicoud & Ducros, 1999), which allows the determination of the correct properties (e.g., shear 
stress and drag forces) when integrating through the viscous sublayer.

2.2. Averaging Techniques for Post-Processing Analysis

We use two decomposition methodologies to transform local instantaneous variables into forms that allow 
easier interpretation of the governing processes. The first method is the traditional Reynolds decomposition 
methodology in time, which results in the Reynolds-averaged LES (RA-LES) equations. The other is a dou-
ble-decomposition technique that is applied to assess larger-scale flow structure and flow-bed interactions 
integrated over both space and time. In the double-decomposition technique, the time-averaged variables 
from RA-LES are further decomposed into spatial mean variables and their local spatial fluctuations, lead-
ing to the double averaged LES (DA-LES) equations, which differ from the double averaged Navier-Stokes 
equations (DA-NS) proposed in Nikora et al. (2007, 2001), in that DA-LES includes the subgrid-scale stress 
as separate terms. This improves calculation of the form and viscous drag forces in the bed, which are criti-
cal for the analysis of interactions between overlying flow and porewater flow.

2.2.1. Double Averaged LES Equations

While the double averaging methodology has previously been applied to the Navier-Stokes Equation (Niko-
ra et al., 2001, 2007), here we derive double averaged equations for LES (DA-LES) by applying the superfi-
cial spatial averaging equation to the RA-LES equations. A full derivation of the DA-LES equations can be 
found in Appendix A. The resulting continuity and momentum equations are:

𝜕𝜕⟨�̄�𝑢𝑖𝑖⟩𝑠𝑠
𝜕𝜕𝜕𝜕𝑖𝑖

= 0 (5)

and

�
�⟨��⟩�
��

+ �
�⟨����⟩�
���

= −
�⟨�⟩�
���

+
�⟨���⟩�
���

−
�⟨����

�� ⟩�

���
+

�⟨���� ⟩�
���

− ��,�
� + ��,�

� + ⟨�̄�⟩� (6)

where 𝐴𝐴 𝐴𝐴𝑝𝑝𝑝𝑝𝑝
𝑖𝑖  represents the form drag force per unit volume:

𝑓𝑓𝑝𝑝𝑝𝑝𝑝
𝑖𝑖 = − 1

𝑉𝑉𝑜𝑜 ∫𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖

�̄�𝑝𝑖𝑖𝑖𝑖d𝐴𝐴 (7)

and 𝐴𝐴 𝐴𝐴𝑣𝑣𝑣𝑣𝑣
𝑖𝑖  denotes the viscous drag force per unit volume:

��,�
� = 1

�� ∫����

2������d� (8)

The overbar denotes time averaging, 𝐴𝐴 ⟨⋅⟩ denotes spatial averaging, 𝐴𝐴 𝐴𝐴𝑜𝑜 stands for the overall averaging vol-
ume, ���� = −��′��

′
�  is the Reynolds stress (where fluctuations are calculated around the LES resolved veloc-

ity), and 𝐴𝐴 𝐴𝐴 is the contact area between the fluid and the solid inside 𝐴𝐴 𝐴𝐴𝑜𝑜 , and 𝐴𝐴 𝐴𝐴𝑖𝑖 is the unit normal at 𝐴𝐴 𝐴𝐴 that 
points from the solid into the fluid. The body force 𝐴𝐴 �̄�𝑏𝑖𝑖 is taken as a constant. The WALE model forces 𝐴𝐴 𝐴𝐴𝑡𝑡 = 0 
at solid surfaces, so only the molecular viscosity contributes to the viscous drag.

In addition to the total volume definition, the roughness geometry indicator ( 𝐴𝐴 𝐴𝐴𝑠𝑠 ) can be applied to write the 
form drag and viscous drag forces as intrinsic spatial averages.
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𝑓𝑓𝑝𝑝
𝑖𝑖 =

𝑓𝑓𝑝𝑝𝑝𝑝𝑝
𝑖𝑖

𝜙𝜙𝑝𝑝
 (9)

𝑓𝑓𝑣𝑣
𝑖𝑖 =

𝑓𝑓𝑣𝑣𝑣𝑣𝑣
𝑖𝑖

𝜙𝜙𝑣𝑣
 (10)

where 𝐴𝐴 𝐴𝐴𝑠𝑠 = 𝑉𝑉𝑓𝑓∕𝑉𝑉𝑜𝑜 , and 𝐴𝐴 𝐴𝐴𝑓𝑓 is the space occupied by fluid in 𝐴𝐴 𝐴𝐴𝑜𝑜 .

If intrinsic averaging is applied (see Appendix A), alternative formulations of the form and viscous drag 
forces are:

��
� =

⟨

��̄
���

⟩

− 1
��

���⟨�⟩
���

 (11)

and

��
� = −

⟨

�( 2���� )
���

⟩

+ 1
��

���⟨2����⟩

���
 (12)

which provide a convenient method for computing the form drag force and viscous drag force from the same 
averaging volumes used to compute the rest of the terms in Equation 6. To allow for a verification of the 
drag values in Equations 11 and 12, the drag can also be directly calculated via a direct surface integration 
on each layer of spheres using Equations 7 and 8.

2.2.2. Simplification of the Double Averaged LES Momentum Equation

For a common flow configuration, turbulent flow over and through a semi-infinite packed granular bed as 
shown in Figure 1, we assume that the double averaged terms in Equation 6 are functions of 𝐴𝐴 𝐴𝐴 (i.e., 𝐴𝐴 𝐴𝐴3 ) only. 
For this case, the derivatives of space-averaged quantities are zero in the 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 directions. For steady mean 
flow, the temporal derivative is also zero. With these assumptions Equation 6 may be simplified as:

�
d⟨�̄��̄3⟩�
d�3

= −
d⟨�⟩�
d�3

��3 +
d⟨��3⟩�
d�3

−
d⟨����

�3 ⟩�

d�3
+

d⟨���3⟩�
d�3

− ��,�
� + ��,�

� + ⟨��⟩� (13)

where 𝐴𝐴 𝐴𝐴𝑖𝑖3 is the Kronecker delta function.

Using an 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 coordinate system with (u, v, w) respectively the (x, y, z)-direction velocities, a uniform body 
force is applied in the 𝐴𝐴 𝐴𝐴 -direction. By periodicity, the 𝐴𝐴 𝐴𝐴 -direction pressure gradient is zero if the averaging 
volume encompasses the unit cell in the streamwise direction. In this case, Equation 13 may be further 
simplified by setting 𝐴𝐴 𝐴𝐴 = 1 :

�
d⟨�̄�̄⟩�

d�
=

d⟨�13⟩�
d�

−
d⟨����

13 ⟩�

d�
+

d⟨��13⟩�
d�

− ��,�
1 + ��,�

1 + ⟨�1⟩� (14)

Taking a similar approach but applying the intrinsic averaging equations yields the intrinsic version of the 
DA-LES momentum equation, which is applied to the LES-computed flow field to evaluate the momentum 
balances shown in this study.

0 = −
�
��

d��⟨��⟩

d�
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

Resolved momentum flux

+ 1
��

d��⟨2��13⟩

d�
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

Resolved viscous stress

+ 1
��

d��⟨2���13⟩

d�
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

Subgrid stress

+
 

��
1

⏟⏟⏟
Viscous drag

−��
1

⏟⏟⏟
Form drag

−
�
��

d��⟨�′�′
⟩

d�
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

Reynolds stress

+ ⟨�1⟩
⏟⏟⏟

Body force
 (15)
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3. Numerical Methods
3.1. Numerical Model

LES is performed on turbulent flow over and through the domain shown 
in Figure 1c, which simulates an idealized section of a coarse gravel bed 
stream. The fluid is water with a viscosity of 𝐴𝐴 𝐴𝐴 = 1.002 × 10−3 𝑘𝑘𝑘𝑘

𝑚𝑚⋅𝑠𝑠
 and a 

density of 𝐴𝐴 𝐴𝐴 = 1 × 103 𝑘𝑘𝑘𝑘
𝑚𝑚3 . A body force 𝐴𝐴 𝐴𝐴𝑥𝑥 = 1.1 𝑘𝑘𝑘𝑘

𝑚𝑚2𝑠𝑠2
 applied in the stream-

wise direction drives the flow, which can be characterized by the bulk 
Reynolds number ( ��� = ����∕� ) and bed permeability Reynolds num-
ber ( ��� =

√

���∗∕� ). For 𝐴𝐴 𝐴𝐴𝐴𝐴𝑏𝑏 , the bulk velocity 𝐴𝐴 𝐴𝐴𝑏𝑏 must be determined 
using simulation results. For 𝐴𝐴 𝐴𝐴𝐴𝐴𝐾𝐾 , 𝐴𝐴 𝐴𝐴 is the bed permeability and is deter-

mined for a given sphere diameter via the Carman-Kozeny model (O'Connor & Harvey, 2008; Voermans 
et al.,  2017). The shear velocity, �∗ =

√

��∕� = 9.4 × 10−3 m/s is calculated from the wall shear stress 𝐴𝐴 𝐴𝐴𝑤𝑤 , 
which is determined from the body force as if the surface of the bed were a planar wall (namely, 𝐴𝐴 𝐴𝐴𝑤𝑤 = 𝑏𝑏𝑥𝑥𝐻𝐻 ). 
Because of the cubically packed nature of the bed, the permeability will be relatively large compared to 
most natural streams but is close to existing laboratory experimental values (Table 1; Kim et al., 2018; Roche 
et al., 2018) and a comparable numerical study (Leonardi et al., 2018).

The numerical model and simulation approach are briefly summarized here. As shown in Figure 1b, the 
𝐴𝐴 𝐴𝐴 -axis is oriented along the mean flow (streamwise) direction parallel to the bed surface, the 𝐴𝐴 𝐴𝐴 -axis is the 

spanwise orthogonal direction, and the 𝐴𝐴 𝐴𝐴 - axis is perpendicular to the bed surface pointed upwards into 
the overlying flow. Periodic boundary conditions are imposed in the streamwise and spanwise directions 
to model fully developed flow. The top and bottom surfaces are modeled as traction-free surfaces with no 
penetration. A no-slip condition is imposed at the surface of each sphere, and the simulation is conducted 
using a control volume finite element method (CVFEM; Schneider & Raw, 1987) implemented in the open-
source CFD code Nalu (Domino, 2015).

Given a sphere diameter 𝐴𝐴 𝐴𝐴 = 38 mm and a uniform spacing between spheres of 𝐴𝐴 𝐴𝐴𝑔𝑔 = 2 mm, the cell length 
𝐴𝐴 𝐴𝐴 = 𝐷𝐷 + 𝑑𝑑𝑔𝑔 = 40 mm and normalized vertical distance 𝐴𝐴 𝐴𝐴∗ = 𝐴𝐴

𝐿𝐿
 are used to spatially define the domain, which 

has dimensions of 15 𝐴𝐴 𝐴𝐴 × 7 𝐴𝐴 𝐴𝐴 × 6 𝐴𝐴 𝐴𝐴 in 𝐴𝐴 𝐴𝐴 , 𝐴𝐴 𝐴𝐴 , and 𝐴𝐴 𝐴𝐴 directions, respectively. This domain was found to be large 
enough to allow for the formation of the largest structures, diminishing the impact of spanwise locking on 
simulation results (Lian et al., 2019). The gap 𝐴𝐴 𝐴𝐴𝑔𝑔 was chosen to be as small as possible without requiring 
meshing near a singular contact point. This spacing was shown to have no impact on the solution because 
flow between the spheres remains within the viscous sublayer and is significantly smaller than flow through 
the open pore spaces (Lian et al., 2019).

An unstructured, sphere-surface conforming mesh consisting of both wedge and tetrahedral element types 
is applied to the computational domain. The mesh was created using the mesh generation software Trelis 
Pro 16.0 (Trelis 16, csimsoft). Two main characteristic element sizes are used for different domain regions. 
In the subsurface flow region, the element size 𝐴𝐴 𝐴𝐵𝐵 = 0.16 mm is used. In the overlying flow region, an ele-
ment size of 𝐴𝐴 𝐴𝐹𝐹 = 0.40 mm is used for 𝐴𝐴 𝐴𝐴∗ > 1 , while the unstructured mesh size is graded between 𝐴𝐴 𝐴𝐹𝐹 and 

𝐴𝐴 𝐴𝐵𝐵 for 𝐴𝐴 0 < 𝑧𝑧∗ < 1 . The sphere surfaces are meshed using a surface conforming mesh. Therefore, a no-slip 
boundary condition is enforced at sphere boundary nodes and a layer of wedge elements is created by ex-
truding the surface mesh in the wall-normal direction. The first off-surface grid point is located less than 
two normalized wall units, 𝐴𝐴 𝐴𝐴∗ = 𝜇𝜇∕𝜌𝜌𝜌𝜌∗ from the boundary. A four-element-thick boundary layer mesh is 
applied to each sphere: the initial element height is set to 𝐴𝐴 𝐴𝐴𝑔𝑔∕20 , each layer grows by a factor of 1.2. A mesh 
refinement study was conducted to ensure that sufficiently small elements were used (Lian et al., 2019).

To ensure a fully developed flow (Reynolds averaged quantities no longer varied), we conducted the sim-
ulation involving a three-phase process (Lian et al., 2019). The first phase is run using a large time step 

𝐴𝐴 Δ𝑡𝑡 = 1 s without an imposed turbulence closure so that a reasonable initial condition can be established for 
the ensuing phase in a less computational time. Taking the Phase I results as an initial condition, Phase II is 
run with the WALE closure scheme and a smaller time step of 𝐴𝐴 Δ𝑡𝑡 = 0.03 s so that the Courant number never 
exceeds 1.3. Phase II is run for more than 117 flow-through-times to ensure that changes in the temporal 
average for both the velocity and pressure are negligible. Using the results of Phase II as an initial condition, 
Phase III keeps the same simulation parameters and begins collecting running temporal data.

𝐴𝐴 𝐴𝐴𝐴𝐴𝐾𝐾𝐴𝐴 𝐴𝐴𝐴𝐴𝐵𝐵𝐴𝐴 𝐴𝐴𝑏𝑏(𝑚𝑚∕𝑠𝑠)𝐴𝐴 𝐴𝐴(𝑚𝑚𝑚𝑚)𝐴𝐴 𝐴𝐴∗(𝑚𝑚∕𝑠𝑠)

Simulation 24.2 6,260 0.078 38 0.0094

Experiment 31.2 5,588 0.254 12 0.0215

Note. These dimensionless numbers are similar to the experiments of 
Manes et al. (2009).

Table 1 
Permeability Reynolds Number, Bulk Reynolds Number, Bulk Velocity, 
Sphere Diameter, and Shear Velocity for the DA-LES Simulation Results



Water Resources Research

LIAN ET AL.

10.1029/2021WR029918

7 of 21

3.2. Data Analysis Post-Processing

Double averaged results are reported using three different types of aver-
aging volumes (as shown in Figure 2). The first averaging volume is a rec-
tangular slab that spans the entire 𝐴𝐴 𝐴𝐴 - 𝐴𝐴 𝐴𝐴 plane and has a thickness 𝐴𝐴 𝐴𝐴   =  𝐴𝐴 𝐴𝐴 , 
ensuring a constant porosity for slabs within the bed itself, independent 
of 𝐴𝐴 𝐴𝐴∗ . As all the available fluid is sampled, this averaging domain ensures 
that the various contributing factors to the momentum balance can be 
evaluated as a function of 𝐴𝐴 𝐴𝐴∗ alone in both the overlying, subsurface and 
transition regions. Slab averaging volumes were centered at 𝐴𝐴 𝐴𝐴∗ locations 
separated by increments of 𝐴𝐴 Δ𝑧𝑧∗ = 1

30
 from 𝐴𝐴 𝐴𝐴∗ = −3.5 to 𝐴𝐴 𝐴𝐴∗ = 1.5 . To inves-

tigate the impacts of the averaging volume size, a smaller averaging vol-
ume ( 𝐴𝐴 𝐴𝐴 = 0.25𝐿𝐿 ) was also used.

To compare simulation results with existing experimental data of Manes 
et al.  (2009), cylindrical volumes are used to evaluate mean velocity in 
bed open pore throats. These volumes allow for comparison with experi-
mental results (that are obtained from open pores). Streamwise cylinders 
extend the length of the domain in the 𝐴𝐴 𝐴𝐴 -direction and are centered in 
between two spheres in the 𝐴𝐴 𝐴𝐴 -direction. Spanwise cylinders extend the 

length of the domain in the 𝐴𝐴 𝐴𝐴 -direction and are centered in between two spheres in the 𝐴𝐴 𝐴𝐴 -direction. Stream-
wise cylinders of radii 12 mm, are used for all values of 𝐴𝐴 𝐴𝐴∗ while spanwise cylinders of radii 8.333 mm are 
only used for 𝐴𝐴 − 0.17 < 𝑧𝑧∗ < 0 to emulate the experimental measurement volumes.

4. Results
4.1. Mean Flow

Figure  3 compares the freestream velocity between the simulation and experimental data collected by 
Manes et  al.  (2009). Velocities are normalized by the surface bulk velocity 𝐴𝐴 𝐴𝐴𝑏𝑏 , calculated as the double 

Figure 2. Averaging volumes and lines used. Cylinder averages are 
used to evaluate flow in pore throats. Slab averages are used to calculate 
averages over the entire porewater. Probe lines capture instantaneous 
values in vertical pore throats.

Figure 3. Comparison of the streamwise velocity profiles ( 𝐴𝐴 𝐴𝐴𝐴∕𝑈𝑈𝑏𝑏 and 𝐴𝐴 �̄�𝑤∕𝑈𝑈𝑏𝑏 ) between the PIV experimental data from Manes et al. (2009) and the simulation 
results. The subfigures—(a, c, e, g)—show the experimental results and the subfigures—(b, d, f, h)—show the simulation results. Subfigures (a, b, e, and f) 
are from a 𝐴𝐴 𝐴𝐴 - 𝐴𝐴 𝐴𝐴 plane of minimum porosity subfigures (c, d, g, and h) are from a 𝐴𝐴 𝐴𝐴 - 𝐴𝐴 𝐴𝐴 plane of maximum porosity. The white semicircles present near bottom of 
the subfigures are projections of the spheres, showing fluid that is not visible experimentally. As can be seen by comparing (c and d) at 𝐴𝐴 𝐴𝐴∗  = 1, there is high 
velocity fluid below 𝐴𝐴 𝐴𝐴∗  = 0 that is obstructed. This high velocity fluid near the interface and associated turbulent fluxes into the porewater will not be measured 
experimentally.
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averaged streamwise velocity between 𝐴𝐴 − 0.5 < 𝑧𝑧∗ < 2 . Bulk flow variables 
are shown in Figure 3. In the experiment, for 𝐴𝐴 𝐴𝐴∗ > −0.17 , a particle image 
velocimetry (PIV) sidewall measurement was used to capture the mean 
velocity in a plane. This technique leads to flow near the interface being 
obstructed for planes other than the minimum porosity plane, as shown 
in Figures 3c and 3g. The simulation adds to the experimental results by 
showing increased 𝐴𝐴 𝐴𝐴𝐴∕𝑈𝑈𝑏𝑏 at 𝐴𝐴 𝐴𝐴∗ = 1 and the high and low values of 𝐴𝐴 �̄�𝑤∕𝑈𝑈𝑏𝑏 in 
the experimentally obstructed region. Particularly for 𝐴𝐴 �̄�𝑤∕𝑈𝑈𝑏𝑏 (Figures 3e–
3h), the magnitude of the simulation velocity near the sphere surfaces 
exceeds the measured velocity. This is attributable to notorious difficul-
ties involved in using PIV near curved walls (Jia et  al.,  2017; Nguyen 
et al., 2010), which can lead to both overestimates and underestimates of 
velocity magnitude (Kähler et al., 2012) Notably, there is close agreement 
between the simulation and experiment on the location of the local min-
ima and maxima of 𝐴𝐴 �̄�𝑤∕𝑈𝑈𝑏𝑏 on the surfaces of spheres.

Using the averaging volumes detailed in Section  3.2, 𝐴𝐴 ⟨�̄�𝑢⟩ as a function 
of depth is plotted in Figure 4 for both the simulation and experiment 
(Manes et  al.,  2009). In the experiment, an ultrasonic velocity profiler 
(UVP) was used with PIV to collect streamwise velocity data, which were 
then averaged to produce vertical double averaged streamwise velocity 
profiles. Both types of experimental data are represented by the green cir-

cles in Figure 4. UVP was used to measure the velocity along pore-throats, which was averaged in time and 
then space. For the UVP data, the spatial averaging volume consists of a truncated cone with a radius that 
varies with distance from the profiler, beginning at 5/12 𝐴𝐴 𝐴𝐴 and ending at an indeterminate value. To match 
the porewater measurement scheme, we averaged LES results using streamwise cylinder volumes with radii 
of 12 mm (equivalent to 12/19 𝐴𝐴 𝐴𝐴 ), as shown by the open blue circles in Figure 4. For 𝐴𝐴 𝐴𝐴∗ > −0.17 , PIV side-
wall measurements were used to capture the mean velocity in a plane. This technique leads to flow near 
the interface being obstructed for planes other than the minimum porosity plane, as shown in Figures 3c 
and 3g. To capture the impact of this obstruction, spanwise cylinders with a radius of 8.3 mm (equivalent 
to 5/12 𝐴𝐴 𝐴𝐴 ) were chosen and placed down spanwise pores in the minimum porosity plane, as shown by the 
open purple circles in Figure 4.

The slab averages show a transition from rapid overlying flow above the spheres to a slower flow in the 
subsurface region. Velocity magnitude in the overlying flow decreases approaching the bed and continues 
to decrease steeply through the first layer of spheres. The profile shows a sharp transition near the bottom of 
the first layer of spheres before a global mean velocity minimum occurs near 𝐴𝐴 𝐴𝐴∗ = −1.4 . The velocity profile 
is relatively uniform after the minimum. Slight local minima are located at 𝐴𝐴 𝐴𝐴∗ = −2.2 and 𝐴𝐴 𝐴𝐴∗ = −3.23 while 
local maxima are located at 𝐴𝐴 𝐴𝐴∗ = −1.73 and 𝐴𝐴 𝐴𝐴∗ = −2.78 . Minima are 𝐴𝐴 1∕4 sphere diameter below open pore 
throats while maxima are 𝐴𝐴 1∕4 sphere diameter above open pore throats. Note that intrinsic averaging was 
conducted for both the measurements of Manes et al. (2009) and the simulation results, so the differences 
are indicative of the choice of averaging volume, rather than averaging methodology.

In the overlying flow (i.e., 𝐴𝐴 𝐴𝐴∗ > 0 ), the slab averaging volume simulation results closely match the experi-
mental data. At the interface between the overlying and porewater flows, the experimental mean velocity is 
smaller than the mean velocity captured by the slab averages. The reason for this difference is that behind 
the projection of the spheres ( 𝐴𝐴 − 0.17 < 𝑧𝑧∗ < 0 ), high momentum fluid is physically obstructed from view 
and therefore unmeasured using the experimental methodology as demonstrated in Figure 3c. Averaging 
along spanwise cylinders reproduces PIV measurements that primarily sample flow in open spanwise pore 
throats. In the subsurface flow (i.e., 𝐴𝐴 𝐴𝐴∗ < −0.5 ), averaging in streamwise cylinders at pore throats also repro-
duces the experimental UVP data, which sample subsurface pore throats rather than the full velocity field. 
Because regions of lower velocity between spheres are obscured in experiments, the experimental mean 
velocity is larger in the subsurface when compared with the slab averages computed from simulations. The 
magnitude of the local minima calculated using DA-LES are between 48% and 53% of the values reported by 
Manes et al., and the subsurface local maxima are less than 65% of the lowest experimental value.

Figure 4. Comparison of double-averaged mean velocity profiles 
normalized by the bulk velocity ( 𝐴𝐴 𝐴𝐴𝑏𝑏 ) between the experimental data from 
Manes et al. (2009) and the simulation results.
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4.2. Reynolds Shear Stress and TKE Analysis

Figures 5a–5c show comparisons between the simulation and experiment of Manes et al.  (2009) for the 
spatially averaged turbulence intensities ( ⟨

√

�′�′⟩ and ⟨
√

�′�′
⟩ ) and the Reynolds shear stress ( ⟨��13⟩ ). The 

spatially averaged turbulence intensities are normalized by the wall shear velocity, which is approximated 
as �∗ =

√

���∕� and is discussed in more detail in Lian et al. (2019). As shown in Figures 5a and 5b, the 
simulation results of turbulence intensities are in good agreement with the experimental data for 𝐴𝐴 𝐴𝐴∗ > 0 . 
The experimental values are smaller just below 𝐴𝐴 𝐴𝐴∗ = 0 , which is probably due to variations in sampling 
volume (see the obstructions discussed in Section 4.1), noise in the UVP measurement at depth, and under-
estimation of the 𝐴𝐴 𝐴𝐴 velocity near the spheres due to difficulties with near-wall PIV measurements (Kähler 
et al., 2012; Jia et al., 2017; Nguyen et al., 2010). Moreover, for the 𝐴𝐴 𝐴𝐴′ turbulence intensity, both the experi-
ment and simulation show a secondary peak near 𝐴𝐴 𝐴𝐴∗ = −0.4 . For the Reynolds shear stress profiles shown 
Figure 5c, the simulation profile is in general agreement with the experimental profile, though the experi-
mental profile shows a peak above the first row of spheres while the simulation peak is at 𝐴𝐴 𝐴𝐴∗ = 0 . It should 
be noted that the simulation peak location in Figure 5c is consistent with other simulation result of similar 
geometries (Fang et al., 2018).

The vertical profile of the spatially averaged Reynolds shear stresses 𝐴𝐴 ⟨𝜏𝜏𝑅𝑅13⟩ is presented in Figures 5d and 5e. 
Using an averaging volume with 𝐴𝐴 𝐴𝐴 = 𝐿𝐿 (as shown in Figure 5d), the curve increases linearly with decreas-
ing 𝐴𝐴 𝐴𝐴 when approaching 𝐴𝐴 𝐴𝐴∗ = 0 from the overlying flow and then decreases rapidly with penetration into 
the bed. At 𝐴𝐴 𝐴𝐴∗ = −1 , 𝐴𝐴 ⟨𝜏𝜏𝑅𝑅13⟩ is essentially non-existent. By contrast, an averaging volume with 𝐴𝐴 𝐴𝐴 = 0.25𝐿𝐿 (as 
shown in Figure 5e), shows regions of negative shear that appear 1/4 of the way down sphere surfaces while 
positive peaks appear 3/4 of the way down. Thus, the transition region (here defined as between 𝐴𝐴 𝐴𝐴∗ = 0 and 

Figure 5. The first row shows comparisons between the simulation and experiment of Manes et al. (2009) for (a) the spatially averaged 𝐴𝐴 𝐴𝐴′ turbulence intensity, 
(b) the spatially averaged 𝐴𝐴 𝐴𝐴′ turbulence intensity, and (c) the shear Reynolds stress. An averaging volume of 𝐴𝐴 𝐴𝐴   = 0.25 𝐴𝐴 𝐴𝐴 is used for the numerical results and all 
values are normalized by 𝐴𝐴 𝐴𝐴∗ . In the second row, the vertical profile of spatially averaged Reynolds shear stress ⟨��13⟩ is shown for an averaging volume of 𝐴𝐴 𝐴𝐴   =  𝐴𝐴 𝐴𝐴 
(d) and 𝐴𝐴 𝐴𝐴   = 0.25 𝐴𝐴 𝐴𝐴 (e) and the turbulent kinetic energy measured along a vertical probe line in one of the maximum porosity pores is shown in (f). The dashed 
line shows the sediment-water interface.

（ ） （ ）

（ ）

（ ）
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𝐴𝐴 𝐴𝐴∗ = −1.0 ) emerges as a critical region where turbulence generated at the interface between the overlying 
and subsurface flows diminishes with depth.

The turbulent kinetic energy (TKE) shows a similar pattern as the Reynolds shear stresses around the in-
terface, as shown in Figure 5f. The spike in the TKE curve just below the top of the first layer of spheres 
aligns well with the location of the horseshoe vortices and the strongest burst events, showing the increased 
turbulence generation at this location. Below the interface, TKE is diminished mainly within the transition 
region. The contribution of each fluctuation ( �′�′, �′�′, �′�′ ) to the total TKE along a vertical probe line is 
plotted in Figure 5f as well. The streamwise component ( �′�′ ) is dominant throughout. The wall-normal 
component ( �′�′ ) is largest in the transition region, but is continuously nonzero to a depth of around 

𝐴𝐴 𝐴𝐴∗ = −2.3 , showing that turbulent transport between the freestream and the bed can occur over multiple 
sphere layers. The TKE is also nonzero for pore throats deeper in the bed, indicating unsteady flow in these 
regions.

Both the Reynolds shear stress and TKE are controlled by the coherent structures that can be shown by 
quadrant analysis and Q-criterion (Hunt et al., 1988) as presented in the following section.

4.3. Visualization of Coherent Turbulent Structures

The quadrant analysis and Q-criterion are used to visualize the coherent structures in the transition region 
to give physical insight into the double averaged results and the means by which momentum is exchanged 
between the overlying flow and the porewater.

Using quadrant analysis, the burst events occuring at the sediment-water interface (Stoesser et al., 2007) can 
be revealed. The burst events include sweep, ejection, inward, and outward burst events, which can be cat-
egorized by the velocity fluctuation ( 𝐴𝐴 𝐴𝐴′, 𝑤𝑤′ ). Sweep events are defined as 𝐴𝐴 𝐴𝐴′ > 0 and 𝐴𝐴 𝐴𝐴′ < 0 and correspond 
to influx of higher-momentum fluid from the overlying flow to the subsurface flow. Ejection events are de-
fined as 𝐴𝐴 𝐴𝐴′ < 0 and 𝐴𝐴 𝐴𝐴′ > 0 and correspond to the expulsion of low-momentum porewater into the overlying 
flow. In addition to sweeps and ejections, outward ( 𝐴𝐴 𝐴𝐴′ > 0 and 𝐴𝐴 𝐴𝐴′ > 0 ) and inward ( 𝐴𝐴 𝐴𝐴′ < 0 and 𝐴𝐴 𝐴𝐴′ < 0 ) events 
can also be detected. Burst events were characterized by interpolating computed velocities fields at vertical 
arrays of points (probe lines) shown in Figure 2. The Reynolds averaged velocity was subtracted from the 
instantaneous measurement at every point and at every stored timestep along the probe line. Based on the 
sign of 𝐴𝐴 𝐴𝐴′ and 𝐴𝐴 𝐴𝐴′ , each event was classified as either a sweep, ejection, inward or outward event. To keep the 
plot from becoming too densely populated by burst events while still ensuring that a representative sample 
of events is displayed, each recorded event was separated by 20 𝐴𝐴 Δ𝑡𝑡 . A total of 4,000 events were sampled.

The variation in the intensity of sweep events is presented in Figure 6a. In the overlying flow ( 𝐴𝐴 𝐴𝐴∗ = 1 ), the 
intensity and frequency of each event are almost the same, but this begins to change at the sediment-water 
interface. At the interface ( 𝐴𝐴 𝐴𝐴∗ = 0 ), inward events are the weakest and least frequent, accounting for only 
13.8% of all events. By contrast, the magnitude of the average ejection and sweep event is 3.3 and 5.0 times 
that of the average inward event, respectively, and these two events account for over 72% of all events. Sweep 
and ejection events also predominate above 𝐴𝐴 𝐴𝐴∗ = −0.5 . The ejection events appear to reach the largest rel-
ative contribution at 𝐴𝐴 𝐴𝐴∗ = −0.125 while the sweep events peak at 𝐴𝐴 𝐴𝐴∗ = −0.375 . At 𝐴𝐴 𝐴𝐴∗ = −0.5 , inward events 
surpass ejection events in relative magnitude, though ejection events are still frequent. Sweeps continue 
to play a dominant role well into the first pore space ( 𝐴𝐴 𝐴𝐴∗ = −1.0 ). With depth into the subsurface flow, all 
events diminish in intensity as turbulence is damped.

An example of the key role that ejection and sweep events play in the transition region can be seen in the 
contour plots in Figures 6b–6d. A single coherent structure can encompass multiple streamwise spheres. 
The presence of these events is indicative of hyporheic exchange, as the ejection events serve to remove 
low-momentum fluid from the transition layer, which is replaced by high momentum fluid via sweeps. 
This process can be seen in Figures 6c and 6d, as a sweep follows closely upon an ejection. The figure also 
shows the extent to which both coherent structures span multiple sphere diameters, with events including 
between three and five spheres in the streamwise direction and encompassing at least two spheres in the 
vertical direction. Stronger sweep events like this one inject momentum vertically downward a significant 
distance through open vertical pores because the flow is constrained and contribute to the unsteady flow 
found deeper in the bed (Figure 5f).
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𝐴𝐴 𝐴𝐴 is defined as the difference between the vorticity 𝐴𝐴 |Ω𝑖𝑖𝑖𝑖| and the strain rate tensor:

𝑄𝑄 = 0.5(|Ω𝑖𝑖𝑖𝑖|
2 − |𝑆𝑆𝑖𝑖𝑖𝑖|

2) (16)

Plots of 𝐴𝐴 𝐴𝐴 for the flow overlying and in the transition region are shown in Figure 7. The most obvious co-
herent structures are the horseshoe vortices that form around spheres in the transition region. The hairpin 
vortices that are often found in flow over impermeable beds (Blois et al., 2012, 2014; Sinha et al., 2017; 
Stoesser et al., 2007) are not observed here. The horseshoe vortices form on the upstream face of the spheres, 
between 𝐴𝐴 − 0.5 < 𝑧𝑧∗ < 0 , and have arms that extend downstream around the spheres. The vorticity upstream 
of each sphere is perpendicular to the 𝐴𝐴 𝐴𝐴− direction (see the inserts in Figure 7), and varies in both time and 
space. The two arms of the horseshoe vortex are counter-rotating within a 𝐴𝐴 𝐴𝐴 - 𝐴𝐴 𝐴𝐴 plane, with vorticity rough-
ly parallel to the sediment-water interface in the 𝐴𝐴 𝐴𝐴− direction. Depending on the orientation of the arms, 
vortex tubes either break up as they extend into the first pore or travel along the surface of the bed, up to 
several sphere lengths, before being swept into the overlying flow. In Figure 7a, the left arm is breaking up 
as it enters the first pore, while the right arm is being ejected into the overlying flow. 𝐴𝐴 𝐴𝐴 is largest when the 
horseshoe vortices are first created between 𝐴𝐴 − 0.5 < 𝑧𝑧∗ < 0 .

4.4. Momentum Balance Analysis and Drag Forces

The double averaged results show the importance of the transition region in the production and dissipation 
of turbulence independent of streamwise and spanwise heterogeneity. Figures 8a and 8b show the vertical 

Figure 6. (a) Quadrant mapping of 4,000 burst events, where the relative strength of each event is given by its distance from the origin and different types 
of events and color show different events. Blue dots denote ejection events, purple are sweeps, green are inward and red are outward. (b–d) Contour plots of 
instantaneous streamwise velocity in representative 𝐴𝐴 𝐴𝐴𝐴𝐴 planes. In (b), the streamwise velocity in a minimum porosity plane ( 𝐴𝐴 𝐴𝐴  = 0.14 m) is shown, while (c) 
gives the streamwise velocity in an adjacent maximum porosity plane ( 𝐴𝐴 𝐴𝐴  = 0.12 m). Interfacial regions of high and low velocity in (b) are visible in (c) showing 
that the coherent structure has spanwise depth. In (d), the vertical velocity in the maximum porosity plane is shown. The relatively low streamwise and high 
vertical velocity region indicates the presence of an ejection while the relatively low vertical and high streamwise velocity indicates a sweep event, as indicated. 
The ejection and sweep events clearly span multiple sphere diameters and inject fluid to a depth of several pores.
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profile of each term in Equation 15 for slabs of thickness 𝐴𝐴 𝐴𝐴 = 𝐿𝐿 and 𝐴𝐴 𝐴𝐴 = 0.25𝐿𝐿 . For both averaging do-
mains, the sum of all the momentum balance terms is nearly zero, as expected. Averaging volumes of even 
smaller size ( 𝐴𝐴 𝐴𝐴 𝐴 0.25𝐿𝐿 ) were also used and gave profiles with the same shape as the 𝐴𝐴 𝐴𝐴 = 0.25𝐿𝐿 averaging 
volume. Small non-zero peaks in the sum occur near 𝐴𝐴 𝐴𝐴∗ = 0.5 and 𝐴𝐴 𝐴𝐴∗ = −0.5 for 𝐴𝐴 𝐴𝐴 = 𝐿𝐿 and 𝐴𝐴 𝐴𝐴∗ = 0.125 and 

𝐴𝐴 𝐴𝐴∗ = −0.125 for 𝐴𝐴 𝐴𝐴 = 0.25𝐿𝐿 , where the porosity of the averaging volume changes substantially near the sed-
iment-water interface. In the overlying flow, the body force is balanced by the Reynolds shear stress. When 
both averaging volumes transition from the overlying flow to include the interface, increased turbulence 
generation leads to a rapid increase in the Reynolds shear stress, which is balanced by an increase in both 
the form and viscous drag forces. The Reynolds shear stress remains an important part of the momentum 
balance in the first pore space but becomes negligible below 𝐴𝐴 𝐴𝐴∗ = −1 for the 𝐴𝐴 𝐴𝐴 = 𝐿𝐿 slabs. For 𝐴𝐴 𝐴𝐴 = 0.25𝐿𝐿 , the 
Reynolds shear stress oscillates and is positive in planes of low porosity and becomes negative in planes of 
high porosity. Throughout the homogeneous porous region below 𝐴𝐴 𝐴𝐴∗ = −1 , the form and viscous drag forces 
balance the body force and Reynolds shear stress. The form drag force is consistently larger than the viscous 
drag force in the near-bed and subsurface regions. In the subsurface, the form drag force is over 1.5 times 
greater than the viscous drag force. These results indicate that form drag force is the major resistance force 
to flow, as well as the major factor extracting momentum in the subsurface. The value of double averaged 
subgrid stress contribution to the momentum balance is minimal, showing that our mesh resolution is 
small enough to capture all but the smallest vortical structures.

The form and viscous drag forces are shown in Figures 8c and 8d. Since a conforming mesh is used, they can 
be directly compared with the drag forces calculated via Equations 7 and 8. Figures 8c and 8d compare the 
form and viscous drag profiles with the time-averaged drag and viscous drag force imposed on each sphere 
at a given bed elevation. The continuous profiles obtained from slab-averaging agree well with the forces 
integrated over each row of spheres. On the first layer of spheres, the viscous drag force and form drag force 
are positive, indicating an upwards lift on these spheres. The 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 components of the form drag force are 
larger contributors to the lift force than the viscous drag force components. For the form drag force, the 𝐴𝐴 𝐴𝐴 
component is less than the 𝐴𝐴 𝐴𝐴 component, while for the viscous drag force, the 𝐴𝐴 𝐴𝐴 component is larger than the 

Figure 7. Visualization of coherent structures in the coupled overlying and subsurface flow based on Q-Criteria (scale 
of 0–100) for all events. Insert shows an example of a horseshoe vortex forming around a sphere centered at 𝐴𝐴 𝐴𝐴  = 0.38 m 
and 𝐴𝐴 𝐴𝐴  = 0.14 m in the first layers of spheres at an instant in time. Note that in the insert, (a) shows a 𝐴𝐴 𝐴𝐴 - 𝐴𝐴 𝐴𝐴 plane and (b) 
shows the 𝐴𝐴 𝐴𝐴 - 𝐴𝐴 𝐴𝐴 plane, with the direction of mean flow is to the left to allow for visualization of the structure.
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𝐴𝐴 𝐴𝐴 component. Deeper in the bed, the 𝐴𝐴 𝐴𝐴 component of form drag force remains the largest contributor, but all 
drag forces are less than those occurring in the first layer of spheres.

5. Discussion
The results presented in Section 4 advance the understanding of the structure of turbulence at the interface 
between the overlying flow and the porous bed and the associated coupling between the overlying and 
porewater flows.

We identify multiple scales of turbulence, including grain-scale vortices and large coherent structures span-
ning multiple grains, that are generated at the interface and propagate into the porewater. This turbulent 
transport couples the flow above and within the porous bed. Sweep and ejection events are important con-
tributors to the transfer of momentum into the bed. Ejection events transfer low-momentum fluid to the 
overlying flow and are strongest just before the low momentum fluid clears the crest of the first sphere 
( 𝐴𝐴 𝐴𝐴∗ = 0 ). In contrast, sweep events inject high momentum into the pore space, as has been observed ex-
perimentally using refractive index matching techniques (Voermans et al., 2018). These events diminish 
in intensity after the first plane of minimum porosity in the bed ( 𝐴𝐴 𝐴𝐴∗ = −0.5 ) as the streamwise velocity is 

Figure 8. The first row contains the vertical profile of each double averaged momentum term from Equation 15, shown using an averaging volume of 𝐴𝐴 𝐴𝐴   =  
𝐴𝐴 𝐴𝐴 (a) and 𝐴𝐴 𝐴𝐴   = 0.25 𝐴𝐴 𝐴𝐴 (b). In the second row, the comparison between the double averaging technique and surface integration technique for the drag forces 

calculation are shown for the 𝐴𝐴 𝐴𝐴 component (c) and the 𝐴𝐴 𝐴𝐴 component (d). Superscripts 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 denote the form and viscous drag forces.
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significantly diminished by interaction with bed sediment grains (as shown in Figure 4). In addition to 
sweep and ejection events, complex small-scale structures are generated around the first layer of spheres. 
Horseshoe vortices sporadically form on spheres at the interface. The vortex arms that form on the upstream 
ends of the sphere are carried downstream by the flow. These vortices primarily propagate upward into the 
freestream, but some also propagate downward and inject turbulence into underlying pores. 𝐴𝐴 𝐴𝐴 is largest 
when the horseshoe vortices are created in the region between 𝐴𝐴 𝐴𝐴∗ = 0 and 𝐴𝐴 − 0.5 . The maximum TKE in the 
bed also occurs in this region. Generation of turbulence at the interface yields large-scale freestream flow 
structures. In turn, these large structures (Figures 6b–6d) modulate local-scale turbulence by either forcing 
the arms of the horseshoe vortices into the first pore or ejecting them into the overlying flow (Figure 7). 
These multi-scale interactions control interfacial fluxes and are important to hyporheic biogeochemistry, 
as interfacial turbulence is known to control hyporheic nutrient dynamics and transformation rates (Grant, 
Gomez-Velez, et al., 2018; Manes et al., 2011; Reidenbach et al., 2010; Roche et al., 2018).

The extent of the transition region can also be identified using double averaging. In Figure 8, the maximum 
Reynolds stresses and drag forces occur at around 𝐴𝐴 𝐴𝐴∗ = −0.5 , half a sphere diameter below the bed surface 
for 𝐴𝐴 𝐴𝐴 = 𝐿𝐿 , and at 𝐴𝐴 𝐴𝐴∗ = −0.3 for 𝐴𝐴 𝐴𝐴 = 0.25𝐿𝐿 . This region is influenced by coherent structures originating from 
the tops of the first row of spheres, where burst events increase in strength and horseshoe vortices form. 
In addition, the Reynolds shear stress peaks at 𝐴𝐴 𝐴𝐴∗ = 0.0 for both averaging volumes in Figures 5d and 5e, 
indicating that the transition region begins directly at the interface ( 𝐴𝐴 𝐴𝐴∗ = 0.0 ).

While point measurements (Figure 5f) and instantaneous observations (Figures 6b–6d) show that turbu-
lence events can extend from the freestream to at least a depth of 𝐴𝐴 𝐴𝐴∗ = −2 , DA-LES averaging more clear-
ly identifies the extent of turbulent exchange corresponding to the bottom of the transition region. The 
Reynolds shear stress (Figures 5d and 5e) rapidly declines with depth below 𝐴𝐴 𝐴𝐴∗ = 0.0 , becoming small near 

𝐴𝐴 𝐴𝐴∗ = −1.0 and very close to zero beyond a depth of 𝐴𝐴 𝐴𝐴∗ = −1.5 . Because of variations in the porosity of the 
bed below 𝐴𝐴 𝐴𝐴∗ = −1.0 , smaller averaging volumes show a great deal of variability in the form drag, viscous 
drag and Reynolds shear stress. It is noteworthy that the larger averaging volume—which gives constant 
porosity below 𝐴𝐴 𝐴𝐴∗ = 0.5 —shows negligible variation in drag and Reynolds stress below 𝐴𝐴 𝐴𝐴∗ = −1.0 . Therefore, 
the variations in the 𝐴𝐴 𝐴𝐴 = 0.25𝐿𝐿 case result only from the alignment of spheres in bed, while 𝐴𝐴 𝐴𝐴 = 𝐿𝐿 allows 
for a better identification of the transition region.

Taken together, these results indicate that the region between 𝐴𝐴 𝐴𝐴∗ = 0 and 𝐴𝐴 𝐴𝐴∗ = −1.0 is the primary transition 
region from highly turbulent overlying flow to Darcy flow deeper in the bed. For the given 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴𝐴𝐴𝐾𝐾 , pri-
or work (Voermans et al., 2018) suggests that the lower bound of the transition region should occur near 

𝐴𝐴 𝐴𝐴∗ = −0.7 . The close alignment between the bottom of the first row of spheres and the transition region at 
𝐴𝐴 𝐴𝐴∗ = −1.0 highlights the importance of pore connectivity and bed heterogeneity in determining the extent of 

the transition region. The connected pores in the cubically packed bed contain enhanced porewater velocity 
and turbulence, resulting in a deeper transition region. In rivers, both the distribution of gravel orientation 
and the formation of aligned and layered structures (e.g., armor layers and preferential flow paths) control 
the depth of the transition region (Packman et al., 2004; Tonina & Buffington, 2009).

The extent of the transition region is important for modeling coupled freestream-porewater flows such as 
rivers. Because the turbulence induced by the interaction between the freestream and porous bed is strong-
est in the transition region, semi-coupled models risk oversimplifying the system by simply specifying a 
boundary condition at 𝐴𝐴 𝐴𝐴∗ = 0 . Accurate modeling of the full domain requires consideration of turbulence 
in the transition region. Double averaging techniques, in this case DA-LES, advance understanding of this 
problem by determining the relative importance of internal fluid forces (viscous drag) and fluid-solid in-
teraction forces (form drag). Figures 8c and 8d show the form and viscous drag forces computed as smooth 
functions of depth through a volume. We found that the form drag is significantly greater than the viscous 
drag in the transition region (Figure  8d), but viscous and form drag forces have similar magnitudes in 
deeper pores. Interaction between the highly turbulent overlying flow and the first row of spheres increases 
the form drag. We also found that the velocity in the first pore throat (below the first row of spheres in the 
bed) is less than in deeper pore throats. This behavior has been observed previously in experimental studies 
(Pokrajac et al., 2007), but experimental measurements have not been able to resolve the mechanism for this 
apparently anomalous velocity minimum in the first layer of pores. Our simulations show that the velocity 
minimum results from the injected turbulence making the first pore hydraulically rough, which increases 
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form drag and reduces mean velocity relative to deeper pores that are less turbulent. This new process un-
derstanding also clarifies the role of turbulence in mobilizing particles in the active layer of bed sediment 
transport (Church & Haschenburger, 2017; Dey & Ali, 2019). Our results support the concept that coherent 
structures entrain sediments (Hardy et al., 2016) by showing that these turbulent structures increase lift 
forces on grains in the transition region. Recent numerical studies have investigated the implications of 
these processes for sediment transport (Leonardi et al., 2018; Maniatis et al., 2020; Yang & Nepf, 2018). DA-
LES aids this work by enabling the smooth calculation of spatially and temporally averaged lift and drag 
forces independent of surface integration over a single bed sphere.

DA-LES provides more information than can be obtained via typical experimental observations because, 
while LES completely resolves the entire porewater flow field, many experimental measurements are lim-
ited by physical access and are therefore constrained toward the more open parts of the flow. As a result, 
available observations only sample the overlying unobstructed flow and open pores within the bed. Because 
these open pore throats contain the highest velocity fluid in the subsurface, they do not capture the mean 
subsurface velocity or transport in the bed. Double averaging, in this case by DA-LES, significantly improves 
understanding of the velocity profile by averaging over regions that are not accessible to physical measure-
ment. We find that the average subsurface velocity is approximately half what would be expected solely on 
sampling from open pore throats, as shown in Figure 4. Although it has not been used in this work, the 
combination of POD with DA-LES applied to simulation results might further clarify flow structures at the 
hyporheic interface.

In addition to clarifying the flow structure and mechanisms of turbulent momentum transport, our results 
directly apply to solute transport across the bed surface and within porewater. Our results show very strong 
turbulent interaction with the top few layers of bed sediment grains, as evidenced by the TKE depth profile 
in Figure 5f and the presence of sustained coherent structures in Figure 7. All of these turbulent process-
es accelerate mass transport across the bed surface and into porewater. Turbulent hyporheic exchange is 
known to influence biogeochemical processes at the scale of the entire stream by controlling hyporheic 
fluxes and residence times in the transition region, where microbial activity and chemical reactivity are both 
very high (Grant, Gomez-Velez, et al., 2018; Knapp et al., 2017; Li et al., 2017; Roche et al., 2019). While 
DNS remains useful for understanding small-scale processes in rivers, LES is better suited to the investiga-
tion of highly turbulent flow on reach-scale mass transport as is less computationally expensive. Moreover, 
the spatial averaging inherent in DA-LES means that this method can be used to identify the extent of the 
transition region for a wide range of spatial heterogeneity in the bed, potentially via the implementation 
of an immersed boundary framework (Mittal & Iaccarino, 2005), making it useful for investigating links 
between bed structure and flow structure in gravel-bed rivers. Further, the computational efficiency of LES 
and the ability to implement a consistent DA-LES approach across a wide range of scales provides a means 
to represent the complex, coupled flow and transport dynamics between rivers and hyporheic porewater. 
This framework can be used to meet the well-established need to relate turbulent porewater transport, 
flow structures generated by complex river channel geometries, and large-scale physical, morphological, 
and biogeochemical patterns in rivers (Boano et al., 2014; Grant, Gomez-Velez, et al., 2018; Ward & Pack-
man, 2019). The results presented here provide essential information on turbulent porewater flow and forc-
es on sediment grains in the hyporheic transition region and can be upscaled using either multiscale DA-
LES or to improve the parameterization of turbulent transport in existing hyporheic exchange models (e.g., 
Grant, Gomez-Velez, et al., 2018; Li et al., 2017; Roche et al., 2019).

6. Conclusions and Implications
Our simulations showed that strong coupling between the overlying turbulent flow and subsurface flow 
leads to a distinct transition region between these flow regimes. We found that the transition region  
( 𝐴𝐴 − 1.0 < 𝑧𝑧∗ < 0 ) is the primary location for the formation of coherent turbulent structures and thus the 
generation of TKE. For 𝐴𝐴 − 0.5 < 𝑧𝑧∗ < 0 , strong sweep and ejection events cause horseshoe vortices to form on 
the surfaces of the bed grains, and these events control the transfer of momentum from the overlying flow 
to the porewater. At the bottom of the first layer of spheres ( 𝐴𝐴 𝐴𝐴∗ = −1.0 ), the mean velocity, form drag, and 
viscous drag forces become constant and the layer-averaged Reynolds shear stress becomes very small. Our 
results clearly demonstrate that form drag is the major factor extracting momentum from the flow in the  
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subsurface and transition region, supporting previous assessments based on experimental observations. 
However, simulation results agreed well with experimental results from the literature only when the aver-
aging volume was restricted to open pore throats accessible to PIV and UVP measurements. The DA-LES 
velocity profile shows that porewater mean velocities are almost half what they would be based on simply 
sampling the pore throats, and that the minimum mean porewater velocity occurs at a depth of 𝐴𝐴 𝐴𝐴∗ = −1.4 
instead of in the first pore throat ( 𝐴𝐴 𝐴𝐴∗ = −1.0 ) suggested by experiments. The velocity minimum occurs at 

𝐴𝐴 𝐴𝐴∗ = −1.4 due to large-scale turbulent structures that preferentially propagate into open pore throats, yield-
ing stagnation points above the midline of the second row of spheres. These dynamics are better captured 
by experimental methods that enable observation of the entire porewater, such as refractive index matching 
(Kim et al., 2018; Voermans et al., 2017).

Double averaging supports proper determination of the momentum balance and profiles of key flow quanti-
ties with full consideration of streamwise and spanwise heterogeneities in the bed surface morphology and 
underlying pore structure. This makes DA-LES a useful tool for relating hydrodynamic processes to hypor-
heic exchange and mass transport in rivers. DA-LES provides a framework for directly parameterizing the 
effects of interfacial and porewater flows in upscaled transport models. Pairing DA-LES with Lagrangian 
particle tracking techniques may provide a useful pathway to achieving this long-term objective of hyporhe-
ic research. Particle tracking has recently been used to determine diffusion coefficients and residence times 
in surface waters, groundwaters, and across the stream-subsurface interface (Li et al., 2017, 2021; Sherman 
et al., 2019; Sund et al., 2015). With sufficient computing power and system information, profiles of mean 
velocity, Reynolds stress, and turbulent diffusion generated via LES can be double averaged and then used 
to directly calculate effective transport properties for both the water column and subsurface over the range 
of scales commonly encountered in rivers (Grant, Gomez-Velez, et al., 2018; Harvey et al., 2013). This ap-
proach represents an extension of the well-established eddy diffusivity approximation to correlate turbulent 
transport with mean flow quantities. While classical methods are only applicable in the water column, LES 
resolves turbulent flow in the entire fluid continuum, and double averaging can be used to obtain mean-
ingful space-averaged and time-averaged transport properties across the sediment-water interface. While 
considerable effort will be required to apply these methods in natural systems, the long-term potential of 
this approach is to obtain upscaled transport predictions in rivers that are directly informed by mechanistic 
understanding of the channel morphology, bed properties, and turbulent flow field.

Appendix A: Derivation of the DA-LES Equations
Appendix A1: Reynolds Decomposition Methodology

Based on well-known double averaging theory (Nikora et al., 2001; Whitaker, 1985), for a LES resolved flow 
variable, 𝐴𝐴 𝐴𝐴(𝑿𝑿, 𝑡𝑡) , the Reynolds decomposition is defined as

𝜃𝜃 = �̄�𝜃 + 𝜃𝜃′ (A1)

where an overbar denotes time averaging, and the prime represents the deviation from the mean. Using the 
Reynolds decomposition methodology on Equations 1 and 2 leads to the RA-LES equations.
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where ���� = −��′��
′
�  is the Reynolds stress (where fluctuations are calculated around the LES resolved veloc-

ity). The body force 𝐴𝐴 �̄�𝑏𝑖𝑖 is taken as a constant.
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Appendix A2: Double Average Methodology

The double averaging of a flow variable involves taking both a temporal and spatial average. The spatial 
averaging is typically done over a defined averaging volume, as will be done here. If 𝐴𝐴 𝐴𝐴𝑓𝑓 is the space occupied 
by fluid in the overall averaging volume 𝐴𝐴 𝐴𝐴𝑜𝑜 , for a general flow variable 𝐴𝐴 𝐴𝐴 the intrinsic spatial average and 
superficial spatial average are:

⟨𝜃𝜃⟩(𝑿𝑿, 𝑡𝑡) = 1
𝑉𝑉𝑓𝑓 ∫𝑉𝑉𝑓𝑓

𝜃𝜃d𝑉𝑉 , ⟨𝜃𝜃⟩𝑠𝑠(𝑿𝑿, 𝑡𝑡) = 1
𝑉𝑉𝑜𝑜 ∫𝑉𝑉𝑓𝑓

𝜃𝜃d𝑉𝑉 (A4)

where 𝐴𝐴 ⟨⋅⟩ denotes spatial averaging. The subscript 𝐴𝐴 𝐴𝐴 distinguishes the superficial and intrinsic averages, 
which are related through the porosity 𝐴𝐴 𝐴𝐴𝑠𝑠 , as follows:

⟨𝜃𝜃⟩𝑠𝑠 = 𝜙𝜙𝑠𝑠⟨𝜃𝜃⟩ (A5)

where 𝐴𝐴 𝐴𝐴𝑠𝑠 = 𝑉𝑉𝑓𝑓∕𝑉𝑉𝑜𝑜 . Above the top row of spheres, 𝐴𝐴 𝐴𝐴𝑠𝑠 = 1 while 𝐴𝐴 𝐴𝐴𝑠𝑠 ≤ 1 in the bed.

There are two options for ordering the decomposition of a temporally and spatially varying quantity—spa-
tial then temporal or temporal then spatial averaging. As it has been shown that both approaches lead to 
the same double average momentum equations (Pedras & de Lemos, 2001; Pokrajac, 2007), here we use 
the time-space ordering as it is consistent with traditional turbulence analysis and gives us understandable 
physical properties based on the temporal fluctuations (the Reynolds stress) (Nikora et al., 2007).

Using this averaging order, the spatial average of a time-averaged general flow variable 𝐴𝐴 𝐴𝐴 can be decomposed 
as

�̄ = ⟨�̄⟩+ ∼ � (A6)

where ⋅̃ indicates the spatial fluctuation around the double averaged variable.

Relationships between the double average operator with time and space differentiations are defined by the 
transport theorem and spatial-averaging theorem, as introduced in Whitaker (1985, 1986). Assuming that 
solids in the domain are immobile and impermeable and the fluid velocity is zero on solid surfaces, the 
intrinsic temporal-averaging and spatial-averaging theorems (Slattery, 1999; Whitaker, 1999) are as follows.

⟨

��̄
��

⟩

= 1
��

�(��⟨�⟩)
�� (A7)

⟨

��
���

⟩

= 1
��

�(��⟨�⟩)
���

− 1
�� ∫����

���d� (A8)

where 𝐴𝐴 𝐴𝐴 is the contact area between the fluid and the solid inside 𝐴𝐴 𝐴𝐴𝑜𝑜 , and 𝐴𝐴 𝐴𝐴𝑖𝑖 is the unit normal at 𝐴𝐴 𝐴𝐴 that 
points from the solid into the fluid.

Spatial averaging is applied to each term in the RA-LES continuity (Equation A2) and momentum (Equa-
tion A3) equations to obtain the DA-LES equations.

Appendix A3: Derivation Using Superficial Averaging

First, the spatial-averaging theorem (Equation A8) is applied to the continuity equation

0 =
⟨

���
���

⟩

�
=

���⟨��⟩
���

− 1
�� ∫����

����d� 

Because we define a no-slip condition on the surface of each sphere, the surface integral is zero and the 
above simplifies to the following superficial average which is Equation 5

𝜕𝜕⟨�̄�𝑢𝑖𝑖⟩𝑠𝑠
𝜕𝜕𝜕𝜕𝑖𝑖

= 0 
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Equation A3 can also be spatially averaged
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⟩
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�����
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⟩
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⟩
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+

⟨

−
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⟩
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+

⟨

�����
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⟩

�

+ ⟨��⟩� (A9)

Each term of Equation A9 can be spatially averaged. First, the transport theorem is used on the time deriv-
ative on the left-hand side of the RA-LES momentum equation (Equation A3)

⟨

����
��

⟩

�
= �

�⟨��⟩�
�� (A10)

The second term on the left-hand side of Equation A3 is spatially averaged using the spatial-averaging the-
orem and the no-slip condition on sphere surfaces

⟨

�
�����
���

⟩

�
= �

⟨

�����
���

⟩

�
= �

�⟨����⟩�
���

−
�
�� ∫����

������d� 

⟨

�
�����
���

⟩

�
= �

�⟨����⟩�
���

 (A11)

For the right-hand side, the spatial-averaging theorem is used to average the pressure derivative term
⟨

−
��
���

⟩

�
= −

�⟨�⟩�
���

+ 1
�� ∫����

���d� (A12)

The resolved and unresolved shear stress terms can be averaged and written in terms of the resolved rate of 
deformation as follows:
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The spatial averaging of the Reynolds stress also makes use of the no-slip condition on the sphere surfaces
⟨
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Equations A10–A15 are substituted into Equation A9

𝜌𝜌
𝜕𝜕⟨�̄�𝑢𝑖𝑖⟩𝑠𝑠
𝜕𝜕𝜕𝜕

+ 𝜌𝜌
𝜕𝜕⟨�̄�𝑢𝑖𝑖�̄�𝑢𝑗𝑗⟩𝑠𝑠
𝜕𝜕𝜕𝜕𝑗𝑗

= 

−
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which simplifies to Equation 6
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where 𝐴𝐴 𝐴𝐴𝑝𝑝𝑝𝑝𝑝
𝑖𝑖  and 𝐴𝐴 𝐴𝐴𝑣𝑣𝑣𝑣𝑣

𝑖𝑖  are defined in Equations 7 and 8, respectively.
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Appendix A4: Derivation Using Intrinsic Averaging

By converting into an intrinsic average using Equation A8, Equation A2 can be given in its intrinsic form as:

𝜕𝜕𝜕𝜕𝑠𝑠⟨�̄�𝑢𝑖𝑖⟩
𝜕𝜕𝜕𝜕𝑖𝑖

= 0 

Equation A3 becomes
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Each term can be evaluated individually using the following:
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Data Availability Statement
Data are publicly available from the Hydroshare repository (https://www.hydroshare.org/resource/5f0cbf2 
e646e4aafbf148088f1bb4d1a/).
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