11 research outputs found

    Mécanismes de sensibilité/résistance des cellules tumorales aux inhibiteurs de réparation de l'ADN Dbait.

    No full text
    Defects in the DNA repair pathways are now widely exploited for the treatment of cancer. Indeed, the ability of tumors to repair the damage induced by genotoxic treatments (chemotherapy and radiotherapy) gives them an intrinsic or acquired resistance to these treatments. Developing DNA repair inhibitors would help to counteract this resistance and sensitize tumors to these conventional therapies. Poly(ADP-ribose) polymerase inhibitors (PARPi), first candidates for this family of DNA repair inhibitors, have shown encouraging results but are nevertheless restricted to a tumor subpopulation with Deficiencies in the Homologous Recombination repair pathway (HRD). In addition, resistances to these PARPi were observed following the reactivation of the HR pathway or alternative pathways. It is therefore urgent to develop more effective agents to limit the resistance problem. In the laboratory, we have identified a new class of DNA repair inhibitors, Dbait, consisting of a small double-stranded DNA molecule that mimics a double-strand break (DSB). AsiDNA, a molecule of the Dbait family, acts by hijacking and hyper activating the PARP protein and its partners, as well as DNA-PK protein that modifies chromatin, thereby inhibiting recruitment at the damage site of several DNA repair proteins. In this manuscript, we studied the issue of mechanisms of sensitivity to AsiDNA, and we identified the genetic instability, generated mainly by defects in the DSBs’ repair, as major feature to be sensitive to AsiDNA in different models of tumor cells and xenografts. Interestingly, genetic instability does not correlate with sensitivity to PARPi, which also had a different action profile than AsiDNA. Based on these differences, and on the mode of action of AsiDNA acting as an inhibitor of the HR pathway, the combination of these two molecules would allow bypassing the genetic restriction (HRD) essential for PARPi efficiency. To validate this hypothesis, we have shown by molecular analyzes that olaparib, a PARPi, and AsiDNA prevent the recruitment at damage sites of the repair proteins XRCC1 and RAD51 / 53BP1, respectively. The combination of these two inhibitors allowed the accumulation of unrepaired damage resulting in an increase of tumor cells’ death, and a significant delay in the growth of xenografts. However, non-tumor cells were not sensitive to this combined treatment. These results highlight the therapeutic interest of combining AsiDNA with PARPi to recapitulate synthetic lethality in all tumors independently of their HR status. In this thesis, we also addressed the issue of acquired resistance to AsiDNA. Indeed, contrary to imatinib and 6-thioguanine, we didn’t recover resistant clones to AsiDNA after mutagenesis or after repeated cycles of treatment on different cell models. Such behavior challenges our common acceptation of a Darwin evolution theory to explain tumor cells resistance to treatment.Les dĂ©fauts dans les voies de rĂ©paration de l’ADN sont aujourd’hui largement exploitĂ©s pour le traitement du cancer. En effet, la capacitĂ© des tumeurs Ă  rĂ©parer les lĂ©sions induites par les traitements gĂ©notoxiques (chimio- et radiothĂ©rapie) leur confĂšre une rĂ©sistance intrinsĂšque ou acquise Ă  ces traitements. DĂ©velopper des inhibiteurs de rĂ©paration de l’ADN permettrait de contrecarrer cette rĂ©sistance et de sensibiliser les tumeurs Ă  ces thĂ©rapies conventionnelles. Les inhibiteurs de la Poly(ADP-ribose) polymĂ©rase (PARPi), premiers candidats de cette famille d’inhibiteurs de rĂ©paration de l’ADN, ont montrĂ© des rĂ©sultats encourageants mais sont nĂ©anmoins restreints Ă  une sous-population de tumeurs avec une dĂ©ficience dans la voie de rĂ©paration par recombinaison homologue (DRH). De plus, des rĂ©sistances Ă  ces PARPi ont Ă©tĂ© constatĂ©es suite Ă  la rĂ©activation de la voie RH ou de voies alternatives. Il est donc urgent de dĂ©velopper des agents plus efficaces qui permettraient de limiter la problĂ©matique de rĂ©sistance. Dans le laboratoire, nous avons identifiĂ© une nouvelle classe d’inhibiteurs de rĂ©paration de l’ADN, les Dbait, consistant en une petite molĂ©cule d’ADN double-brin qui miment une cassure double-brin (CDB). AsiDNA, une molĂ©cule de la famille Dbait, agit en sĂ©questrant et hyper activant la protĂ©ine PARP et ses partenaires, ainsi que la protĂ©ine DNA-PK qui modifie la chromatine, inhibant ainsi le recrutement au niveau du site du dommage de plusieurs protĂ©ines de rĂ©paration des voies RH ou NHEJ. Dans ce manuscrit, nous avons Ă©tudiĂ© la question des mĂ©canismes de sensibilitĂ© Ă  AsiDNA, et nous avons identifiĂ© l’instabilitĂ© gĂ©nĂ©tique, gĂ©nĂ©rĂ©e essentiellement par des dĂ©fauts dans les voies de rĂ©paration des CDBs, comme caractĂ©ristique majeure pour ĂȘtre sensible Ă  AsiDNA dans diffĂ©rents modĂšles de cellules et de xĂ©nogreffes. De façon intĂ©ressante, l’instabilitĂ© gĂ©nĂ©tique ne corrĂ©lait pas avec la sensibilitĂ© aux PARPi, qui prĂ©sentaient Ă©galement un profil d’action diffĂ©rent d’AsiDNA. En se basant sur ces diffĂ©rences, et sur le mode d’action d’AsiDNA agissant en tant qu’inhibiteur de la voie RH, la combinaison de ces deux molĂ©cules permettrait de s’affranchir de la restriction gĂ©nĂ©tique (DRH) essentielle pour l’efficacitĂ© des PARPi. Pour valider cette hypothĂšse, nous avons montrĂ© par des analyses molĂ©culaires que l’olaparib, un PARPi, et AsiDNA prĂ©viennent le recrutement au niveau des sites des dommages de XRCC1 et de RAD51/53BP1, respectivement. La combinaison de ces deux inhibiteurs permettait l’accumulation des dommages non rĂ©parĂ©s rĂ©sultant en une augmentation de la mort de cellules tumorales de diffĂ©rentes origines, et un retard significatif de la croissance des xĂ©nogreffes. Cependant, les cellules non tumorales ne prĂ©sentaient ni une augmentation des dommages ni de la mort cellulaire. Ces rĂ©sultats soulignent l’intĂ©rĂȘt thĂ©rapeutique de la combinaison d’AsiDNA avec les PARPi qui permettrait de s’affranchir de la dĂ©pendance au statut DRH et d’élargir leur champ d’application. Dans cette thĂšse, nous avons Ă©galement traitĂ© la question de la rĂ©sistance acquise Ă  AsiDNA. En effet, contrairement Ă  l’imatinib et au 6-thioguanine, nous n’avons pas isolĂ© de clones rĂ©sistants Ă  AsiDNA aprĂšs des expĂ©riences de mutagĂ©nĂšse ou aprĂšs des traitements rĂ©pĂ©tĂ©s sur diffĂ©rents modĂšles cellulaires. Un tel comportement dĂ©fie notre acceptation commune de la thĂ©orie Darwinienne pour expliquer la rĂ©sistance des cellules tumorales aux traitements

    Mechanisms of tumor cells' sensitivity/resistance to the DNA repair inhibitors Dbait.

    No full text
    Les dĂ©fauts dans les voies de rĂ©paration de l’ADN sont aujourd’hui largement exploitĂ©s pour le traitement du cancer. En effet, la capacitĂ© des tumeurs Ă  rĂ©parer les lĂ©sions induites par les traitements gĂ©notoxiques (chimio- et radiothĂ©rapie) leur confĂšre une rĂ©sistance intrinsĂšque ou acquise Ă  ces traitements. DĂ©velopper des inhibiteurs de rĂ©paration de l’ADN permettrait de contrecarrer cette rĂ©sistance et de sensibiliser les tumeurs Ă  ces thĂ©rapies conventionnelles. Les inhibiteurs de la Poly(ADP-ribose) polymĂ©rase (PARPi), premiers candidats de cette famille d’inhibiteurs de rĂ©paration de l’ADN, ont montrĂ© des rĂ©sultats encourageants mais sont nĂ©anmoins restreints Ă  une sous-population de tumeurs avec une dĂ©ficience dans la voie de rĂ©paration par recombinaison homologue (DRH). De plus, des rĂ©sistances Ă  ces PARPi ont Ă©tĂ© constatĂ©es suite Ă  la rĂ©activation de la voie RH ou de voies alternatives. Il est donc urgent de dĂ©velopper des agents plus efficaces qui permettraient de limiter la problĂ©matique de rĂ©sistance. Dans le laboratoire, nous avons identifiĂ© une nouvelle classe d’inhibiteurs de rĂ©paration de l’ADN, les Dbait, consistant en une petite molĂ©cule d’ADN double-brin qui miment une cassure double-brin (CDB). AsiDNA, une molĂ©cule de la famille Dbait, agit en sĂ©questrant et hyper activant la protĂ©ine PARP et ses partenaires, ainsi que la protĂ©ine DNA-PK qui modifie la chromatine, inhibant ainsi le recrutement au niveau du site du dommage de plusieurs protĂ©ines de rĂ©paration des voies RH ou NHEJ. Dans ce manuscrit, nous avons Ă©tudiĂ© la question des mĂ©canismes de sensibilitĂ© Ă  AsiDNA, et nous avons identifiĂ© l’instabilitĂ© gĂ©nĂ©tique, gĂ©nĂ©rĂ©e essentiellement par des dĂ©fauts dans les voies de rĂ©paration des CDBs, comme caractĂ©ristique majeure pour ĂȘtre sensible Ă  AsiDNA dans diffĂ©rents modĂšles de cellules et de xĂ©nogreffes. De façon intĂ©ressante, l’instabilitĂ© gĂ©nĂ©tique ne corrĂ©lait pas avec la sensibilitĂ© aux PARPi, qui prĂ©sentaient Ă©galement un profil d’action diffĂ©rent d’AsiDNA. En se basant sur ces diffĂ©rences, et sur le mode d’action d’AsiDNA agissant en tant qu’inhibiteur de la voie RH, la combinaison de ces deux molĂ©cules permettrait de s’affranchir de la restriction gĂ©nĂ©tique (DRH) essentielle pour l’efficacitĂ© des PARPi. Pour valider cette hypothĂšse, nous avons montrĂ© par des analyses molĂ©culaires que l’olaparib, un PARPi, et AsiDNA prĂ©viennent le recrutement au niveau des sites des dommages de XRCC1 et de RAD51/53BP1, respectivement. La combinaison de ces deux inhibiteurs permettait l’accumulation des dommages non rĂ©parĂ©s rĂ©sultant en une augmentation de la mort de cellules tumorales de diffĂ©rentes origines, et un retard significatif de la croissance des xĂ©nogreffes. Cependant, les cellules non tumorales ne prĂ©sentaient ni une augmentation des dommages ni de la mort cellulaire. Ces rĂ©sultats soulignent l’intĂ©rĂȘt thĂ©rapeutique de la combinaison d’AsiDNA avec les PARPi qui permettrait de s’affranchir de la dĂ©pendance au statut DRH et d’élargir leur champ d’application. Dans cette thĂšse, nous avons Ă©galement traitĂ© la question de la rĂ©sistance acquise Ă  AsiDNA. En effet, contrairement Ă  l’imatinib et au 6-thioguanine, nous n’avons pas isolĂ© de clones rĂ©sistants Ă  AsiDNA aprĂšs des expĂ©riences de mutagĂ©nĂšse ou aprĂšs des traitements rĂ©pĂ©tĂ©s sur diffĂ©rents modĂšles cellulaires. Un tel comportement dĂ©fie notre acceptation commune de la thĂ©orie Darwinienne pour expliquer la rĂ©sistance des cellules tumorales aux traitements.Defects in the DNA repair pathways are now widely exploited for the treatment of cancer. Indeed, the ability of tumors to repair the damage induced by genotoxic treatments (chemotherapy and radiotherapy) gives them an intrinsic or acquired resistance to these treatments. Developing DNA repair inhibitors would help to counteract this resistance and sensitize tumors to these conventional therapies. Poly(ADP-ribose) polymerase inhibitors (PARPi), first candidates for this family of DNA repair inhibitors, have shown encouraging results but are nevertheless restricted to a tumor subpopulation with Deficiencies in the Homologous Recombination repair pathway (HRD). In addition, resistances to these PARPi were observed following the reactivation of the HR pathway or alternative pathways. It is therefore urgent to develop more effective agents to limit the resistance problem. In the laboratory, we have identified a new class of DNA repair inhibitors, Dbait, consisting of a small double-stranded DNA molecule that mimics a double-strand break (DSB). AsiDNA, a molecule of the Dbait family, acts by hijacking and hyper activating the PARP protein and its partners, as well as DNA-PK protein that modifies chromatin, thereby inhibiting recruitment at the damage site of several DNA repair proteins. In this manuscript, we studied the issue of mechanisms of sensitivity to AsiDNA, and we identified the genetic instability, generated mainly by defects in the DSBs’ repair, as major feature to be sensitive to AsiDNA in different models of tumor cells and xenografts. Interestingly, genetic instability does not correlate with sensitivity to PARPi, which also had a different action profile than AsiDNA. Based on these differences, and on the mode of action of AsiDNA acting as an inhibitor of the HR pathway, the combination of these two molecules would allow bypassing the genetic restriction (HRD) essential for PARPi efficiency. To validate this hypothesis, we have shown by molecular analyzes that olaparib, a PARPi, and AsiDNA prevent the recruitment at damage sites of the repair proteins XRCC1 and RAD51 / 53BP1, respectively. The combination of these two inhibitors allowed the accumulation of unrepaired damage resulting in an increase of tumor cells’ death, and a significant delay in the growth of xenografts. However, non-tumor cells were not sensitive to this combined treatment. These results highlight the therapeutic interest of combining AsiDNA with PARPi to recapitulate synthetic lethality in all tumors independently of their HR status. In this thesis, we also addressed the issue of acquired resistance to AsiDNA. Indeed, contrary to imatinib and 6-thioguanine, we didn’t recover resistant clones to AsiDNA after mutagenesis or after repeated cycles of treatment on different cell models. Such behavior challenges our common acceptation of a Darwin evolution theory to explain tumor cells resistance to treatment

    Evolution of tumour cells during AsiDNA treatment results in energy exhaustion, decrease of responsiveness to signal and higher sensitivity to the drug

    No full text
    International audienceIt is increasingly suggested that ecological and evolutionary sciences could inspire novel therapies against cancer but medical evidence of this remains scarce at the moment. The Achilles heel of conventional and targeted anticancer treatments is intrinsic or acquired resistance following Darwinian selection, i.e. treatment toxicity places the surviving cells under intense evolutionary selective pressure to develop resistance. Here, we review a set of data that demonstrate that Darwinian principles derived from the “smoke detector” principle can instead drive the evolution of malignant cells toward a different trajectory. Specifically, long term exposure of cancer cells to a strong alarm signal, generated by the DNA repair inhibitor AsiDNA, induces a stable new state characterized by a down‐regulation of the targeted pathways and does not generate resistant clones. This property is due to the original mechanism of action of AsiDNA, which acts by over‐activating a “false” signaling of DNA damage through DNA‐PK and PARP enzymes, and is not observed with classical DNA repair inhibitors such as the PARP inhibitors. Long‐term treatment with AsiDNA induces a new “alarm down” state in the tumor cells with decrease of NAD level and reactiveness to it. These results suggest that agonist drugs such as AsiDNA could promote a state‐dependent tumor cell evolution by lowering their ability to respond to high “danger” signal. This analysis provides a compelling argument that evolutionary ecology could help drug design development in overcoming fundamental limitation of novel therapies against cancer due to the modification of the targeted tumor cell population during treatment

    A Preclinical Study Combining the DNA Repair Inhibitor Dbait with Radiotherapy for the Treatment of Melanoma

    Get PDF
    Melanomas are highly radioresistant tumors, mainly due to efficient DNA double-strand break (DSB) repair. Dbait (which stands for DNA strand break bait) molecules mimic DSBs and trap DNA repair proteins, thereby inhibiting repair of DNA damage induced by radiation therapy (RT). First, the cytotoxic efficacy of Dbait in combination with RT was evaluated in vitro in SK28 and 501mel human melanoma cell lines. Though the extent of RT-induced damage was not increased by Dbait, it persisted for longer revealing a repair defect. Dbait enhanced RT efficacy independently of RT doses. We further assayed the capacity of DT01 (clinical form of Dbait) to enhance efficacy of “palliative” RT (10 × 3 Gy) or “radical” RT (20 × 3 Gy), in an SK28 xenografted model. Inhibition of repair of RT-induced DSB by DT01 was revealed by the significant increase of micronuclei in tumors treated with combined treatment. Mice treated with DT01 and RT combination had significantly better tumor growth control and longer survival compared to RT alone with the “palliative” protocol [tumor growth delay (TGD) by 5.7-fold; median survival: 119 vs 67 days] or the “radical” protocol (TGD by 3.2-fold; median survival: 221 vs 109 days). Only animals that received the combined treatment showed complete responses. No additional toxicity was observed in any DT01-treated groups. This preclinical study provides encouraging results for a combination of a new DNA repair inhibitor, DT01, with RT, in the absence of toxicity. A first-in-human phase I study is currently under way in the palliative management of melanoma in-transit metastases (DRIIM trial)

    Phenolic composition as measured by liquid chromatography/mass spectrometry and biological properties of Tunisian barley

    Get PDF
    In this work, phenolic composition, antioxidant and antibacterial activities of selected Tunisian barley varieties were studied. Swihli barley exhibited the highest total phenolic content and the strongest antioxidant and antibacterial activities. Liquid chromatography/mass spectrometry analysis revealed significant qualitative and quantitative differences in phenolic composition among the different varieties. Procyanidin B3 and catechin were the most abundant. Pearson\u2019s correlation test revealed significant correlations between the antioxidant activities of barley extracts and both hydroferuloyl glucose and catechin-3-glucose
    corecore