212 research outputs found

    Characterization of oxylipins and dioxygenase genes in the asexual fungus Aspergillus niger

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Aspergillus niger </it>is an ascomycetous fungus that is known to reproduce through asexual spores, only. Interestingly, recent genome analysis of <it>A. niger </it>has revealed the presence of a full complement of functional genes related to sexual reproduction <abbrgrp><abbr bid="B1">1</abbr></abbrgrp>. An example of such genes are the dioxygenase genes which in <it>Aspergillus nidulans</it>, have been shown to be connected to oxylipin production and regulation of both sexual and asexual sporulation <abbrgrp><abbr bid="B2">2</abbr><abbr bid="B3">3</abbr><abbr bid="B4">4</abbr></abbrgrp>. Nevertheless, the presence of sex related genes alone does not confirm sexual sporulation in <it>A. niger</it>.</p> <p>Results</p> <p>The current study shows experimentally that <it>A. niger </it>produces the oxylipins 8,11-dihydroxy octadecadienoic acid (8,11-diHOD), 5,8-dihydroxy octadecadienoic acid (5,8-diHOD), lactonized 5,8-diHOD, 8-hydroxy octadecadienoic acid (8-HOD), 10-hydroxy octadecadienoic acid (10-HOD), small amounts of 8-hydroxy octadecamonoenoic acid (8-HOM), 9-hydroxy octadecadienoic acid (9-HOD) and 13-hydroxy octadecadienoic acid (13-HOD). Importantly, this study shows that the <it>A. niger </it>genome contains three putative dioxygenase genes, <it>ppoA</it>, <it>ppoC </it>and <it>ppoD</it>. Expression analysis confirmed that all three genes are indeed expressed under the conditions tested.</p> <p>Conclusion</p> <p><it>A. niger </it>produces the same oxylipins and has similar dioxygenase genes as <it>A. nidulans</it>. Their presence could point towards the existence of sexual reproduction in <it>A. niger </it>or a broader role for the gene products in physiology, than just sexual development.</p

    Quantification of disease progression in spinal muscular atrophy with muscle MRI-a pilot study

    Get PDF
    Objectives: Quantitative MRI (qMRI) of muscles is a promising tool to measure disease progression or to assess therapeutic effects in neuromuscular diseases. Longitudinal imaging studies are needed to show sensitivity of qMRI in detecting disease progression in spinal muscular atrophy (SMA). In this pilot study we therefore studied one-year changes in quantitative MR parameters in relation to clinical scores. Methods: We repeated quantitative 3 T MR analysis of thigh muscles and clinical testing one year after baseline in 10 treatment-naïve patients with SMA, 5 with Type 2 (21.6 ± 7.0 years) and 5 with Type 3 (33.4 ± 11.9 years). MR protocol consisted of Dixon, T 2 mapping and diffusion tensor imaging (DTI). The temporal relation of parameters was examined with a mixed model. Results: We detected a significant increase in fat fraction (baseline, 38.2% SE 0.6; follow-up, 39.5% SE 0.6; +1.3%, p = 0.001) in all muscles. Muscles with moderate to high fat infiltration at baseline show a larger increase over time (+1.6%, p < 0.001). We did not find any changes in DTI parameters except for low fat-infiltration muscles (m. adductor longus and m. biceps femoris (short head)). The T 2 of muscles decreased from 28.2 ms to 28.0 ms (p = 0.07). Muscle strength and motor function scores were not significantly different between follow-up and baseline. Conclusion: Longitudinal imaging data show slow disease progression in skeletal muscle of the thigh of (young-) adult patients with SMA despite stable strength and motor function scores. Quantitative muscle imaging demonstrates potential as a biomarker for disease activity and monitoring of therapy response

    Enhanced low-threshold motor unit capacity during endurance tasks in patients with spinal muscular atrophy using pyridostigmine

    Get PDF
    Objective: To investigate the electrophysiological basis of pyridostigmine enhancement of endurance performance documented earlier in patients with spinal muscular atrophy (SMA). Methods: We recorded surface electromyography (sEMG) in four upper extremity muscles of 31 patients with SMA types 2 and 3 performing endurance shuttle tests (EST) and maximal voluntary contraction (MVC) measurements during a randomized, double blind, cross-over, phase II trial. Linear mixed effect models (LMM) were used to assess the effect of pyridostigmine on (i) time courses of median frequencies and of root mean square (RMS) amplitudes of sEMG signals and (ii) maximal RMS amplitudes during MVC measurements. These sEMG changes over time indicate levels of peripheral muscle fatigue and recruitment of new motor units, respectively. Results: In comparison to a placebo, patients with SMA using pyridostigmine had fourfold smaller decreases in frequency and twofold smaller increases in amplitudes of sEMG signals in some muscles, recorded during ESTs (p < 0.05). We found no effect of pyridostigmine on MVC RMS amplitudes. Conclusions: sEMG parameters indicate enhanced low-threshold (LT) motor unit (MU) function in upper-extremity muscles of patients with SMA treated with pyridostigmine. This may underlie their improved endurance. Significance: Our results suggest that enhancing LT MU function may constitute a therapeutic strategy to reduce fatigability in patients with SMA

    Green and animal manure use in organic field crop systems

    Get PDF
    Dual-use cover/green manure (CGM) crops and animal manure are used to supply nitrogen (N) and phosphorus (P) to organically grown field crops. A comprehensive review of previous research was conducted to identify how CGM crops and animal manure have been used to meet N and P needs of organic field crops, and to identify knowledge gaps to direct future research efforts. Results indicate that: (a) CGM crops are used to provide N to subsequent cash crops in rotations; (b) CGM-supplied N generally can meet field crop needs in warm, humid regions but is insufficient for organic grain crops grown in cool and sub-humid regions; (c) adoption of conservation tillage practices can create or exacerbate N deficiencies; (d) excess N and P can result where animal manures are accessible if application rates are not carefully managed; and (e) integrating animal grazing into organic field crop systems has potential benefits but is generally not practiced. Work is needed to better understand the mechanisms governing the release of N by CGM crops to subsequent cash crops, and the legacy effects of animal manure applications in cool and sub-humid regions. The benefits and synergies that can occur by combining targeted animal grazing and CGMs on soil N, P, and other nutrients should be investigated. Improved communication and networking among researchers can aid efforts to solve soil fertility challenges faced by organic farmers when growing field crops in North America and elsewhere

    A multiscale model of virus pandemic: Heterogeneous interactive entities in a globally connected world

    Get PDF
    This paper is devoted to the multidisciplinary modelling of a pandemic initiated by an aggressive virus, specifically the so-called SARS–CoV–2 Severe Acute Respiratory Syndrome, corona virus n.2. The study is developed within a multiscale framework accounting for the interaction of different spatial scales, from the small scale of the virus itself and cells, to the large scale of individuals and further up to the collective behaviour of populations. An interdisciplinary vision is developed thanks to the contributions of epidemiologists, immunologists and economists as well as those of mathematical modellers. The first part of the contents is devoted to understanding the complex features of the system and to the design of a modelling rationale. The modelling approach is treated in the second part of the paper by showing both how the virus propagates into infected individuals, successfully and not successfully recovered, and also the spatial patterns, which are subsequently studied by kinetic and lattice models. The third part reports the contribution of research in the fields of virology, epidemiology, immune competition, and economy focussed also on social behaviours. Finally, a critical analysis is proposed looking ahead to research perspectives.publishedVersionFil: Bellomo, Nicola. Universidad de Granada. Departamento de Matemática Aplicada; España.Fil: Bingham, Richard. University of York. Departments of Mathematics and Biology. Cross-disciplinary Centre for Systems Analysis; United Kingdom.Fil: Chaplain, Mark A. J. University of St Andrews. School of Mathematics and Statistics; Scotland.Fil: Dosi, Giovanni. Scuola Superiore Sant’Anna. Institute of Economics and EMbeDS; Italia.Fil: Forni, Guido. Accademia Nazionale dei Lincei; Italia.Fil: Knopoff, Damian A. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.Fil: Knopoff, Damian A. Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina. Centro de Investigacion y Estudios de Matematica; Argentina.Fil: Lowengrub, John. University California Irvine. Department of Mathematics; United States.Fil: Twarock, Reidun. University of York. Departments of Mathematics and Biology. Cross-disciplinary Centre for Systems Analysis; United Kingdom.Fil: Virgillito, Maria Enrica.Scuola Superiore Sant’Anna. Institute of Economics and EMbeDS; Italia

    Bmp4 Is Essential for the Formation of the Vestibular Apparatus that Detects Angular Head Movements

    Get PDF
    Angular head movements in vertebrates are detected by the three semicircular canals of the inner ear and their associated sensory tissues, the cristae. Bone morphogenetic protein 4 (Bmp4), a member of the Transforming growth factor family (TGF-β), is conservatively expressed in the developing cristae in several species, including zebrafish, frog, chicken, and mouse. Using mouse models in which Bmp4 is conditionally deleted within the inner ear, as well as chicken models in which Bmp signaling is knocked down specifically in the cristae, we show that Bmp4 is essential for the formation of all three cristae and their associated canals. Our results indicate that Bmp4 does not mediate the formation of sensory hair and supporting cells within the cristae by directly regulating genes required for prosensory development in the inner ear such as Serrate1 (Jagged1 in mouse), Fgf10, and Sox2. Instead, Bmp4 most likely mediates crista formation by regulating Lmo4 and Msx1 in the sensory region and Gata3, p75Ngfr, and Lmo4 in the non-sensory region of the crista, the septum cruciatum. In the canals, Bmp2 and Dlx5 are regulated by Bmp4, either directly or indirectly. Mechanisms involved in the formation of sensory organs of the vertebrate inner ear are thought to be analogous to those regulating sensory bristle formation in Drosophila. Our results suggest that, in comparison to sensory bristles, crista formation within the inner ear requires an additional step of sensory and non-sensory fate specification

    Quantitative MRI of skeletal muscle in a cross-sectional cohort of patients with spinal muscular atrophy types 2 and 3

    Get PDF
    The aim of this study was to document upper leg involvement in spinal muscular atrophy (SMA) with quantitative MRI (qMRI) in a cross-sectional cohort of patients of varying type, disease severity and age. Thirty-one patients with SMA types 2 and 3 (aged 29.6 [7.6-73.9] years) and 20 healthy controls (aged 37.9 [17.7-71.6] years) were evaluated in a 3 T MRI with a protocol consisting of DIXON, T2 mapping and diffusion tensor imaging (DTI). qMRI measures were compared with clinical scores of motor function (Hammersmith Functional Motor Scale Expanded [HFMSE]) and muscle strength. Patients exhibited an increased fat fraction and fractional anisotropy (FA), and decreased mean diffusivity (MD) and T2 compared with controls (all P < .001). DTI parameters FA and MD manifest stronger effects than can be accounted for the effect of fatty replacement. Fat fraction, FA and MD show moderate correlation with muscle strength and motor function: FA is negatively associated with HFMSE and Medical Research Council sum score (τ = -0.56 and -0.59; both P < .001) whereas for fat fraction values are τ = -0.50 and -0.58, respectively (both P < .001). This study shows that DTI parameters correlate with muscle strength and motor function. DTI findings indirectly indicate cell atrophy and act as a measure independently of fat fraction. Combined these data suggest the potential of muscle DTI in monitoring disease progression and to study SMA pathogenesis in muscle

    Gene expression in the rat brain: High similarity but unique differences between frontomedial-, temporal- and occipital cortex

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The six-layered neocortex of the mammalian brain may appear largely homologous, but is in reality a modular structure of anatomically and functionally distinct areas. However, global gene expression seems to be almost identical across the cerebral cortex and only a few genes have so far been reported to show regional enrichment in specific cortical areas.</p> <p>Results</p> <p>In the present study on adult rat brain, we have corroborated the strikingly similar gene expression among cortical areas. However, differential expression analysis has allowed for the identification of 30, 24 and 11 genes enriched in frontomedial -, temporal- or occipital cortex, respectively. A large proportion of these 65 genes appear to be involved in signal transduction, including the ion channel <it>Fxyd6</it>, the neuropeptide <it>Grp </it>and the nuclear receptor <it>Rorb</it>. We also find that the majority of these genes display increased expression levels around birth and show distinct preferences for certain cortical layers and cell types in rodents.</p> <p>Conclusions</p> <p>Since specific patterns of expression often are linked to equally specialised biological functions, we propose that these cortex sub-region enriched genes are important for proper functioning of the cortical regions in question.</p

    HOX-mediated LMO2 expression in embryonic mesoderm is recapitulated in acute leukaemias

    Get PDF
    The Lim Domain Only 2 (LMO2) leukaemia oncogene encodes an LIM domain transcriptional cofactor required for early haematopoiesis. During embryogenesis, LMO2 is also expressed in developing tail and limb buds, an expression pattern we now show to be recapitulated in transgenic mice by an enhancer in LMO2 intron 4. Limb bud expression depended on a cluster of HOX binding sites, while posterior tail expression required the HOX sites and two E-boxes. Given the importance of both LMO2 and HOX genes in acute leukaemias, we further demonstrated that the regulatory hierarchy of HOX control of LMO2 is activated in leukaemia mouse models as well as in patient samples. Moreover, Lmo2 knock-down impaired the growth of leukaemic cells, and high LMO2 expression at diagnosis correlated with poor survival in cytogenetically normal AML patients. Taken together, these results establish a regulatory hierarchy of HOX control of LMO2 in normal development, which can be resurrected during leukaemia development. Redeployment of embryonic regulatory hierarchies in an aberrant context is likely to be relevant in human pathologies beyond the specific example of ectopic activation of LMO2

    Transcriptional Regulation by CHIP/LDB Complexes

    Get PDF
    It is increasingly clear that transcription factors play versatile roles in turning genes “on” or “off” depending on cellular context via the various transcription complexes they form. This poses a major challenge in unraveling combinatorial transcription complex codes. Here we use the powerful genetics of Drosophila combined with microarray and bioinformatics analyses to tackle this challenge. The nuclear adaptor CHIP/LDB is a major developmental regulator capable of forming tissue-specific transcription complexes with various types of transcription factors and cofactors, making it a valuable model to study the intricacies of gene regulation. To date only few CHIP/LDB complexes target genes have been identified, and possible tissue-dependent crosstalk between these complexes has not been rigorously explored. SSDP proteins protect CHIP/LDB complexes from proteasome dependent degradation and are rate-limiting cofactors for these complexes. By using mutations in SSDP, we identified 189 down-stream targets of CHIP/LDB and show that these genes are enriched for the binding sites of APTEROUS (AP) and PANNIER (PNR), two well studied transcription factors associated with CHIP/LDB complexes. We performed extensive genetic screens and identified target genes that genetically interact with components of CHIP/LDB complexes in directing the development of the wings (28 genes) and thoracic bristles (23 genes). Moreover, by in vivo RNAi silencing we uncovered novel roles for two of the target genes, xbp1 and Gs-alpha, in early development of these structures. Taken together, our results suggest that loss of SSDP disrupts the normal balance between the CHIP-AP and the CHIP-PNR transcription complexes, resulting in down-regulation of CHIP-AP target genes and the concomitant up-regulation of CHIP-PNR target genes. Understanding the combinatorial nature of transcription complexes as presented here is crucial to the study of transcription regulation of gene batteries required for development
    corecore