290 research outputs found

    The recurrent missense mutation p.(Arg367Trp) in YARS1 causes a distinct neurodevelopmental phenotype

    Get PDF
    Abstract: Pathogenic variants in aminoacyl-tRNA synthetases (ARS1) cause a diverse spectrum of autosomal recessive disorders. Tyrosyl tRNA synthetase (TyrRS) is encoded by YARS1 (cytosolic, OMIM*603,623) and is responsible of coupling tyrosine to its specific tRNA. Next to the enzymatic domain, TyrRS has two additional functional domains (N-Terminal TyrRSMini and C-terminal EMAP-II-like domain) which confer cytokine-like functions. Mutations in YARS1 have been associated with autosomal-dominant Charcot-Marie-Tooth (CMT) neuropathy type C and a heterogenous group of autosomal recessive, multisystem diseases. We identified 12 individuals from 6 families with the recurrent homozygous missense variant c.1099C > T;p.(Arg367Trp) (NM_003680.3) in YARS1. This variant causes a multisystem disorder with developmental delay, microcephaly, failure to thrive, short stature, muscular hypotonia, ataxia, brain anomalies, microcytic anemia, hepatomegaly, and hypothyroidism. In silico analyses show that the p.(Arg367Trp) does not affect the catalytic domain responsible of enzymatic coupling, but destabilizes the cytokine-like C-terminal domain. The phenotype associated with p.(Arg367Trp) is distinct from the other biallelic pathogenic variants that reside in different functional domains of TyrRS which all show some common, but also divergent clinical signs [(e.g., p.(Phe269Ser)—retinal anomalies, p.(Pro213Leu)/p.(Gly525Arg)—mild ID, p.(Pro167Thr)—high fatality)]. The diverse clinical spectrum of ARS1-associated disorders is related to mutations affecting the various non-canonical domains of ARS1, and impaired protein translation is likely not the exclusive disease-causing mechanism of YARS1- and ARS1-associated neurodevelopmental disorders. Key messages: The missense variant p.(Arg367Trp) in YARS1 causes a distinct multisystem disorder.p.(Arg367Trp) affects a non-canonical domain with cytokine-like functions.Phenotypic heterogeneity associates with the different affected YARS1 domains.Impaired protein translation is likely not the exclusive mechanism of ARS1-associated disorders

    Characterization of Pseudomonas aeruginosa isolates: Occurrence rates, antimicrobial susceptibility patterns, and molecular typing in the global SENTRY Antimicrobial Surveillance Program, 1997-1999

    Get PDF
    During 1997–1999, a total of 70,067 isolates (6631 Pseudomonas aeruginosa isolates) were analyzed in the SENTRY program by geographic region and body site of infection. The respiratory tract was the most common source of P. aeruginosa. P. aeruginosa isolation rates increased during the study interval. Europe was the only region to show a significant decline in β-lactam and aminoglycoside susceptibility rates. There was a reduction in the rates of susceptibility of Canadian isolates to imipenem and of Latin American isolates to meropenem. A total of 218 multidrug-resistant P. aeruginosa isolates (MDR-PSA; resistant to piperacillin, ceftazidime, imipenem, and gentamicin) were observed; MDR-PSA occurrence rates (percentages of all isolates) ranged from 8.2% (Latin America) to 0.9% (Canada). No antimicrobial inhibited >50% of MDR-PSA strains. Molecular characterization of selected, generally resistant strains was performed. Isolates showing unique ribogroups were found in Europe, Latin America, and the United States, but clonal spread was documented in several medical centers.A. C. Gales, R. N. Jones, J. Turnidge, R. Rennie, and R. Rampha

    Depression and Anxiety Change from Adolescence to Adulthood in Individuals with and without Language Impairment

    Get PDF
    This prospective longitudinal study aims to determine patterns and predictors of change in depression and anxiety from adolescence to adulthood in individuals with language impairment (LI). Individuals with LI originally recruited at age 7 years and a comparison group of age-matched peers (AMPs) were followed from adolescence (16 years) to adulthood (24 years). We determine patterns of change in depression and anxiety using the Child Manifest Anxiety Scale-Revised (CMAS-R) and Short Moods and Feelings Questionnaire (SMFQ). In addition to examining associations with gender, verbal and nonverbal skills, we use a time-varying variable to investigate relationships between depression and anxiety symptoms and transitions in educational/employment circumstances. The results show that anxiety was higher in participants with LI than age matched peers and remained so from adolescence to adulthood. Individuals with LI had higher levels of depression symptoms than did AMPs at 16 years. Levels in those with LI decreased post-compulsory schooling but rose again by 24 years of age. Those who left compulsory school provision (regardless of school type) for more choice-driven college but who were not in full-time employment or study by 24 years of age were more likely to show this depression pathway. Verbal and nonverbal skills were not predictive of this pattern of depression over time. The typical female vulnerability for depression and anxiety was observed for AMPs but not for individuals with LI. These findings have implications for service provision, career/employment advice and support for individuals with a history of LI during different transitions from adolescence to adulthood

    Antimicrobial Nanoplexes meet Model Bacterial Membranes: the key role of Cardiolipin

    Get PDF
    Antimicrobial resistance to traditional antibiotics is a crucial challenge of medical research. Oligonucleotide therapeutics, such as antisense or Transcription Factor Decoys (TFDs), have the potential to circumvent current resistance mechanisms by acting on novel targets. However, their full translation into clinical application requires efficient delivery strategies and fundamental comprehension of their interaction with target bacterial cells. To address these points, we employed a novel cationic bolaamphiphile that binds TFDs with high affinity to form self-assembled complexes (nanoplexes). Confocal microscopy revealed that nanoplexes efficiently transfect bacterial cells, consistently with biological efficacy on animal models. To understand the factors affecting the delivery process, liposomes with varying compositions, taken as model synthetic bilayers, were challenged with nanoplexes and investigated with Scattering and Fluorescence techniques. Thanks to the combination of results on bacteria and synthetic membrane models we demonstrate for the first time that the prokaryotic-enriched anionic lipid Cardiolipin (CL) plays a key-role in the TFDs delivery to bacteria. Moreover, we can hypothesize an overall TFD delivery mechanism, where bacterial membrane reorganization with permeability increase and release of the TFD from the nanoplexes are the main factors. These results will be of great benefit to boost the development of oligonucleotides-based antimicrobials of superior efficacy

    Green and animal manure use in organic field crop systems

    Get PDF
    Dual-use cover/green manure (CGM) crops and animal manure are used to supply nitrogen (N) and phosphorus (P) to organically grown field crops. A comprehensive review of previous research was conducted to identify how CGM crops and animal manure have been used to meet N and P needs of organic field crops, and to identify knowledge gaps to direct future research efforts. Results indicate that: (a) CGM crops are used to provide N to subsequent cash crops in rotations; (b) CGM-supplied N generally can meet field crop needs in warm, humid regions but is insufficient for organic grain crops grown in cool and sub-humid regions; (c) adoption of conservation tillage practices can create or exacerbate N deficiencies; (d) excess N and P can result where animal manures are accessible if application rates are not carefully managed; and (e) integrating animal grazing into organic field crop systems has potential benefits but is generally not practiced. Work is needed to better understand the mechanisms governing the release of N by CGM crops to subsequent cash crops, and the legacy effects of animal manure applications in cool and sub-humid regions. The benefits and synergies that can occur by combining targeted animal grazing and CGMs on soil N, P, and other nutrients should be investigated. Improved communication and networking among researchers can aid efforts to solve soil fertility challenges faced by organic farmers when growing field crops in North America and elsewhere

    A hyperactive sleeping beauty transposase enhances transgenesis in zebrafish embryos

    Get PDF
    Extent: 4p.Background: Transposons are useful molecular tools for transgenesis. The 'sleeping beauty' transposon is a synthetic member of the Tc1/mariner transposon family. Davidson et al. (2003) previously described a vector for zebrafish transgenesis consisting of the inverted repeats of 'sleeping beauty' flanking the gene to be transposed. Subsequently, there have been attempts to enhance the transpositional activity of 'sleeping beauty' by increasing the activity of its transposase. Recently, Mates et al. (2009) generated a hyperactive transposase giving a 100-fold increased transposition rate in mouse embryos. Findings: The aim of this experiment was to determine whether this novel hyperactive transposase enhances transgenesis in zebrafish embryos. Using our previously characterised mitfa-amyloidβ-GFP transgene, we observed an eight-fold enhancement in transient transgenesis following detection of transgene expression in melanophores by whole mount in-situ hybridisation. However, high rates of defective embryogenesis were also observed. Conclusion: The novel hyperactive 'sleeping beauty' transposase enhances the rate of transgenesis in zebrafish embryos.Morgan Newman, Michael Lardell

    Protection of flunarizine on cerebral mitochondria injury induced by cortical spreading depression under hypoxic conditions

    Get PDF
    A rat cortical spreading depression (CSD) model was established to explore whether cerebral mitochondria injury was induced by CSD under both normoxic and hypoxic conditions and whether flunarizine had a protective effect on cerebral mitochondria. SD rats, which were divided into seven groups, received treatment as follows: no intervention (control Group I); 1 M NaCl injections (Group II); 1 M KCl injections (Group III); intraperitoneal flunarizine (3 mg/kg) 30 min before KCl injections (Group IV); 14% O2 inhalation before NaCl injections (Group V); 14% O2 inhalation followed by KCl injections (Group VI); 14% O2 inhalation and intraperitoneal flunarizine followed by KCl injections (Group VII). Following treatment, brains were removed for the analysis of mitochondria transmembrane potential (MMP) and oxidative respiratory function after recording the number, amplitude and duration of CSD. The duration of CSD was significantly longer in Group VI than that in Group III. The number and duration of CSD in Group VII was significantly lower than that in Group VI. MMP in Group VI was significantly lower than that in Group III, and MMP in Group VII was significantly higher than that in Group VI. State 4 respiration in Group VI was significantly higher than that in Group III, and state 3 respiration in Group VII was significantly higher than that in Group VI. Respiration control of rate in Group VII was also significantly higher than that in Group VI. Thus, we concluded that aggravated cerebral mitochondria injury might be attributed to CSD under hypoxic conditions. Flunarizine can alleviate such cerebral mitochondria injury under both normoxic and hypoxic conditions
    corecore