220 research outputs found

    Risk factors for breast cancer in postmenopausal Caucasian and Chinese-Canadian women

    Get PDF
    Abstract Introduction Striking differences exist between countries in the incidence of breast cancer. The causes of these differences are unknown, but because incidence rates change in migrants, they are thought to be due to lifestyle rather than genetic differences. The goal of this cross-sectional study was to examine breast cancer risk factors in populations with different risks for breast cancer. Methods We compared breast cancer risk factors among three groups of postmenopausal Canadian women at substantially different risk of developing breast cancer - Caucasians (N = 413), Chinese women born in the West or who migrated to the West before age 21 (N = 216), and recent Chinese migrants (N = 421). Information on risk factors and dietary acculturation were collected by telephone interviews using questionnaires, and anthropometric measurements were taken at a home visit. Results Compared to Caucasians, recent Chinese migrants weighed on average 14 kg less, were 6 cm shorter, had menarche a year later, were more often parous, less often had a family history of breast cancer or a benign breast biopsy, a higher Chinese dietary score, and a lower Western dietary score. For most of these variables, Western born Chinese and early Chinese migrants had values intermediate between those of Caucasians and recent Chinese migrants. We estimated five-year absolute risks for breast cancer using the Gail Model and found that risk estimates in Caucasians would be reduced by only 11% if they had the risk factor profile of recent Chinese migrants for the risk factors in the Gail Model. Conclusions Our results suggest that in addition to the risk factors in the Gail Model, there likely are other factors that also contribute to the large difference in breast cancer risk between Canada and China

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure

    Smaller Gene Networks Permit Longer Persistence in Fast-Changing Environments

    Get PDF
    The environments in which organisms live and reproduce are rarely static, and as the environment changes, populations must evolve so that phenotypes match the challenges presented. The quantitative traits that map to environmental variables are underlain by hundreds or thousands of interacting genes whose allele frequencies and epistatic relationships must change appropriately for adaptation to occur. Extending an earlier model in which individuals possess an ecologically-critical trait encoded by gene networks of 16 to 256 genes and random or scale-free topology, I test the hypothesis that smaller, scale-free networks permit longer persistence times in a constantly-changing environment. Genetic architecture interacting with the rate of environmental change accounts for 78% of the variance in trait heritability and 66% of the variance in population persistence times. When the rate of environmental change is high, the relationship between network size and heritability is apparent, with smaller and scale-free networks conferring a distinct advantage for persistence time. However, when the rate of environmental change is very slow, the relationship between network size and heritability disappears and populations persist the duration of the simulations, without regard to genetic architecture. These results provide a link between genes and population dynamics that may be tested as the -omics and bioinformatics fields mature, and as we are able to determine the genetic basis of ecologically-relevant quantitative traits

    Latitudinal Gradients in Degradation of Marine Dissolved Organic Carbon

    Get PDF
    Heterotrophic microbial communities cycle nearly half of net primary productivity in the ocean, and play a particularly important role in transformations of dissolved organic carbon (DOC). The specific means by which these communities mediate the transformations of organic carbon are largely unknown, since the vast majority of marine bacteria have not been isolated in culture, and most measurements of DOC degradation rates have focused on uptake and metabolism of either bulk DOC or of simple model compounds (e.g. specific amino acids or sugars). Genomic investigations provide information about the potential capabilities of organisms and communities but not the extent to which such potential is expressed. We tested directly the capabilities of heterotrophic microbial communities in surface ocean waters at 32 stations spanning latitudes from 76°S to 79°N to hydrolyze a range of high molecular weight organic substrates and thereby initiate organic matter degradation. These data demonstrate the existence of a latitudinal gradient in the range of complex substrates available to heterotrophic microbial communities, paralleling the global gradient in bacterial species richness. As changing climate increasingly affects the marine environment, changes in the spectrum of substrates accessible by microbial communities may lead to shifts in the location and rate at which marine DOC is respired. Since the inventory of DOC in the ocean is comparable in magnitude to the atmospheric CO2 reservoir, such a change could profoundly affect the global carbon cycle

    Is Evolution of Blind Mole Rats Determined by Climate Oscillations?

    Get PDF
    The concept of climate variability facilitating adaptive radiation supported by the ‘‘Court Jester’’ hypothesis is disputed by the ‘‘Red Queen’’ one, but the prevalence of one or the other might be scale-dependent. We report on a detailed, comprehensive phylo-geographic study on the ,4 kb mtDNA sequence in underground blind mole rats of the family Spalacidae (or subfamily Spalacinae) from the East Mediterranean steppes. Our study aimed at testing the presence of periodicities in branching patterns on a constructed phylogenetic tree and at searching for congruence between branching events, tectonic history and paleoclimates. In contrast to the strong support for the majority of the branching events on the tree, the absence of support in a few instances indicates that network-like evolution could exist in spalacids. In our tree, robust support was given, in concordance with paleontological data, for the separation of spalacids from muroid rodents during the first half of the Miocene when open, grass-dominated habitats were established. Marine barriers formed between Anatolia and the Balkans could have facilitated the separation of the lineage ‘‘Spalax’’ from the lineage ‘‘Nannospalax’’ and of the clade ‘‘leucodon’’ from the clade ‘‘xanthodon’’. The separation of the clade ‘‘ehrenbergi’’ occurred during the late stages of the tectonically induced uplift of the Anatolian high plateaus and mountains, whereas the separation of the clade ‘‘vasvarii’’ took place when the rapidly uplifting Taurus mountain range prevented the Mediterranean rainfalls from reaching the Central Anatolian Plateau. The separation of Spalax antiquus and S. graecus occurred when the southeastern Carpathians were uplifted. Despite the role played by tectonic events, branching events that show periodicity corresponding to 400-kyr and 100-kyr eccentricity bands illuminate the important role of orbital fluctuations on adaptive radiation in spalacids. At the given scale, our results supports the ‘‘Court Jester’’ hypothesis over the ‘‘Red Queen’’ one

    The Peptidyl Prolyl Isomerase Rrd1 Regulates the Elongation of RNA Polymerase II during Transcriptional Stresses

    Get PDF
    Rapamycin is an anticancer agent and immunosuppressant that acts by inhibiting the TOR signaling pathway. In yeast, rapamycin mediates a profound transcriptional response for which the RRD1 gene is required. To further investigate this connection, we performed genome-wide location analysis of RNA polymerase II (RNAPII) and Rrd1 in response to rapamycin and found that Rrd1 colocalizes with RNAPII on actively transcribed genes and that both are recruited to rapamycin responsive genes. Strikingly, when Rrd1 is lacking, RNAPII remains inappropriately associated to ribosomal genes and fails to be recruited to rapamycin responsive genes. This occurs independently of TATA box binding protein recruitment but involves the modulation of the phosphorylation status of RNAPII CTD by Rrd1. Further, we demonstrate that Rrd1 is also involved in various other transcriptional stress responses besides rapamycin. We propose that Rrd1 is a novel transcription elongation factor that fine-tunes the transcriptional stress response of RNAPII

    Niclosamide Prevents the Formation of Large Ubiquitin-Containing Aggregates Caused by Proteasome Inhibition

    Get PDF
    Protein aggregation is a hallmark of many neurodegenerative diseases and has been linked to the failure to degrade misfolded and damaged proteins. In the cell, aberrant proteins are degraded by the ubiquitin proteasome system that mainly targets short-lived proteins, or by the lysosomes that mostly clear long-lived and poorly soluble proteins. Both systems are interconnected and, in some instances, autophagy can redirect proteasome substrates to the lysosomes.To better understand the interplay between these two systems, we established a neuroblastoma cell population stably expressing the GFP-ubiquitin fusion protein. We show that inhibition of the proteasome leads to the formation of large ubiquitin-containing inclusions accompanied by lower solubility of the ubiquitin conjugates. Strikingly, the formation of the ubiquitin-containing aggregates does not require ectopic expression of disease-specific proteins. Moreover, formation of these focused inclusions caused by proteasome inhibition requires the lysine 63 (K63) of ubiquitin. We then assessed selected compounds that stimulate autophagy and found that the antihelmintic chemical niclosamide prevents large aggregate formation induced by proteasome inhibition, while the prototypical mTORC1 inhibitor rapamycin had no apparent effect. Niclosamide also precludes the accumulation of poly-ubiquitinated proteins and of p62 upon proteasome inhibition. Moreover, niclosamide induces a change in lysosome distribution in the cell that, in the absence of proteasome activity, may favor the uptake into lysosomes of ubiquitinated proteins before they form large aggregates.Our results indicate that proteasome inhibition provokes the formation of large ubiquitin containing aggregates in tissue culture cells, even in the absence of disease specific proteins. Furthermore our study suggests that the autophagy-inducing compound niclosamide may promote the selective clearance of ubiquitinated proteins in the absence of proteasome activity

    Invasive fungal infections in neutropenic enterocolitis: A systematic analysis of pathogens, incidence, treatment and mortality in adult patients

    Get PDF
    BACKGROUND: Neutropenic enterocolitis is a life-threatening complication most frequently occurring after intensive chemotherapy in acute leukaemias. Gramnegative bacteria constitute the most important group of causative pathogens. Fungi have also been reported, but their practical relevance remains unclear. The guidelines do not address concrete treatment recommendations for fungal neutropenic enterocolitis. METHODS: Here, we conducted a metaanalysis to answer the questions: What are frequency and mortality of fungal neutropenic enterocolitis? Do frequencies and microbiological distribution of causative fungi support empirical antimycotic therapy? Do reported results of antimycotic therapy in documented fungal neutropenic enterocolitis help with the selection of appropriate drugs? Following a systematic search, we extracted and summarised all detail data from the complete literature. RESULTS: Among 186 articles describing patients with neutropenic enterocolitis, we found 29 reports describing 53 patients with causative fungal pathogens. We found no randomised controlled trial, no good quality cohort study and no good quality case control study on the role of antifungal treatment. The pooled frequency of fungal neutropenic enterocolitis was 6.2% calculated from all 860 reported patients and 3.4% calculated from selected representative studies only. In 94% of the patients, Candida spp. were involved. The pooled mortality rate was 81.8%. Most authors did not report or perform antifungal therapy. CONCLUSION: In patients with neutropenic enterocolitis, fungal pathogens play a relevant, but secondary role compared to bacteria. Evidence concerning therapy is very poor, but epidemiological data from this study may provide helpful clues to select empiric antifungal therapy in neutropenic enterocolitis

    A Conserved PHD Finger Protein and Endogenous RNAi Modulate Insulin Signaling in Caenorhabditis elegans

    Get PDF
    Insulin signaling has a profound effect on longevity and the oxidative stress resistance of animals. Inhibition of insulin signaling results in the activation of DAF-16/FOXO and SKN-1/Nrf transcription factors and increased animal fitness. By studying the biological functions of the endogenous RNA interference factor RDE-4 and conserved PHD zinc finger protein ZFP-1 (AF10), which regulate overlapping sets of genes in Caenorhabditis elegans, we identified an important role for these factors in the negative modulation of transcription of the insulin/PI3 signaling-dependent kinase PDK-1. Consistently, increased expression of pdk-1 in zfp-1 and rde-4 mutants contributed to their reduced lifespan and sensitivity to oxidative stress and pathogens due to the reduction in the expression of DAF-16 and SKN-1 targets. We found that the function of ZFP-1 in modulating pdk-1 transcription was important for the extended lifespan of the age-1(hx546) reduction-of-function PI3 kinase mutant, since the lifespan of the age-1; zfp-1 double mutant strain was significantly shorter compared to age-1(hx546). We further demonstrate that overexpression of ZFP-1 caused an increased resistance to oxidative stress in a DAF-16–dependent manner. Our findings suggest that epigenetic regulation of key upstream signaling components in signal transduction pathways through chromatin and RNAi may have a large impact on the outcome of signaling and expression of numerous downstream genes.Leukemia & Lymphoma Society of America (3260-07 Special Fellow Award)Arnold and Mabel Beckman Foundation (Young Investigator Award)United States. National Institutes of Health (Director's New Innovator Award (1 DP2 OD006412-01))United States. National Institutes of Health (grant GM66269)modENCODE (grant U01 HG004270)United States. National Institutes of Health (training grant 5T32 GM07088-34
    corecore