4 research outputs found

    High-sensitivity troponin in the evaluation of patients with suspected acute coronary syndrome: a stepped-wedge, cluster-randomised controlled trial.

    Get PDF
    BACKGROUND: High-sensitivity cardiac troponin assays permit use of lower thresholds for the diagnosis of myocardial infarction, but whether this improves clinical outcomes is unknown. We aimed to determine whether the introduction of a high-sensitivity cardiac troponin I (hs-cTnI) assay with a sex-specific 99th centile diagnostic threshold would reduce subsequent myocardial infarction or cardiovascular death in patients with suspected acute coronary syndrome. METHODS: In this stepped-wedge, cluster-randomised controlled trial across ten secondary or tertiary care hospitals in Scotland, we evaluated the implementation of an hs-cTnI assay in consecutive patients who had been admitted to the hospitals' emergency departments with suspected acute coronary syndrome. Patients were eligible for inclusion if they presented with suspected acute coronary syndrome and had paired cardiac troponin measurements from the standard care and trial assays. During a validation phase of 6-12 months, results from the hs-cTnI assay were concealed from the attending clinician, and a contemporary cardiac troponin I (cTnI) assay was used to guide care. Hospitals were randomly allocated to early (n=5 hospitals) or late (n=5 hospitals) implementation, in which the high-sensitivity assay and sex-specific 99th centile diagnostic threshold was introduced immediately after the 6-month validation phase or was deferred for a further 6 months. Patients reclassified by the high-sensitivity assay were defined as those with an increased hs-cTnI concentration in whom cTnI concentrations were below the diagnostic threshold on the contemporary assay. The primary outcome was subsequent myocardial infarction or death from cardiovascular causes at 1 year after initial presentation. Outcomes were compared in patients reclassified by the high-sensitivity assay before and after its implementation by use of an adjusted generalised linear mixed model. This trial is registered with ClinicalTrials.gov, number NCT01852123. FINDINGS: Between June 10, 2013, and March 3, 2016, we enrolled 48 282 consecutive patients (61 [SD 17] years, 47% women) of whom 10 360 (21%) patients had cTnI concentrations greater than those of the 99th centile of the normal range of values, who were identified by the contemporary assay or the high-sensitivity assay. The high-sensitivity assay reclassified 1771 (17%) of 10 360 patients with myocardial injury or infarction who were not identified by the contemporary assay. In those reclassified, subsequent myocardial infarction or cardiovascular death within 1 year occurred in 105 (15%) of 720 patients in the validation phase and 131 (12%) of 1051 patients in the implementation phase (adjusted odds ratio for implementation vs validation phase 1·10, 95% CI 0·75 to 1·61; p=0·620). INTERPRETATION: Use of a high-sensitivity assay prompted reclassification of 1771 (17%) of 10 360 patients with myocardial injury or infarction, but was not associated with a lower subsequent incidence of myocardial infarction or cardiovascular death at 1 year. Our findings question whether the diagnostic threshold for myocardial infarction should be based on the 99th centile derived from a normal reference population. FUNDING: The British Heart Foundation

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Assessment of oxygen supply-demand imbalance and outcomes among patients with type 2 myocardial infarction: a secondary analysis of the High-STEACS cluster randomized clinical trial

    Get PDF
    Importance: Type 2 myocardial infarction occurs owing to multiple factors associated with myocardial oxygen supply-demand imbalance, which may confer different risks of adverse outcomes. Objective: To evaluate the prevalence and outcomes of different factors associated with oxygen supply-demand imbalance among patients with type 2 myocardial infarction. Design, Setting, and Participants: In this secondary analysis of a stepped-wedge, cluster randomized clinical trial conducted at 10 secondary and tertiary care hospitals in Scotland, 6096 patients with an adjudicated diagnosis of type 1 or type 2 myocardial infarction from June 10, 2013, to March 3, 2016, were identified, and the findings were reported on August 28, 2018. The trial enrolled consecutive patients with suspected acute coronary syndrome. The diagnosis of myocardial infarction was adjudicated according to the Fourth Universal Definition of Myocardial Infarction and the primary factor associated with oxygen supply-demand imbalance in type 2 myocardial infarction was defined. This secondary analysis was not prespecified. Statistical analysis was performed from July 7 to 30, 2020. Intervention: Implementation of a high-sensitivity cardiac troponin I assay. Main Outcomes and Measures: All-cause death at 1 year according to the factors associated with oxygen supply-demand imbalance among patients with type 2 myocardial infarction. Results: Of 6096 patients (2602 women [43%]; median age, 70 years [IQR, 58-80 years]), 4981 patients had type 1 myocardial infarction, and 1115 patients had type 2 myocardial infarction. The most common factor associated with oxygen supply-demand imbalance was tachyarrhythmia (616 of 1115 [55%]), followed by hypoxemia (219 of 1115 [20%]), anemia (95 of 1115 [9%]), hypotension (89 of 1115 [8%]), severe hypertension (61 of 1115 [5%]), and coronary mechanisms (35 of 1115 [3%]). At 1 year, all-cause mortality occurred for 15% of patients (720 of 4981) with type 1 myocardial infarction and 23% of patients (285 of 1115) with type 2 myocardial infarction. Compared with patients with type 1 myocardial infarction, those with type 2 myocardial infarction owing to hypoxemia (adjusted odds ratio [aOR], 2.35; 95% CI, 1.72-3.18) and anemia (aOR, 1.83; 95% CI, 1.14-2.88) were at greatest risk of death, whereas those with type 2 myocardial infarction owing to tachyarrhythmia (aOR, 0.83; 95% CI, 0.65-1.06) or coronary mechanisms (aOR, 1.07; 95% CI, 0.17-3.86) were at similar risk of death as patients with type 1 myocardial infarction. Conclusions and Relevance: In this secondary analysis of a randomized clinical trial, mortality after type 2 myocardial infarction was associated with the underlying etiologic factor associated with oxygen supply-demand imbalance. Most type 2 myocardial infarctions were associated with tachyarrhythmia, with better prognosis, whereas hypoxemia and anemia accounted for one-third of cases, with double the mortality of type 1 myocardial infarction. These differential outcomes should be considered by clinicians when determining which cases need to be managed if patient outcomes are to improve. Trial Registration: ClinicalTrials.gov Identifier: NCT01852123

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    No full text
    Altres ajuts: Department of Health and Social Care (DHSC); Illumina; LifeArc; Medical Research Council (MRC); UKRI; Sepsis Research (the Fiona Elizabeth Agnew Trust); the Intensive Care Society, Wellcome Trust Senior Research Fellowship (223164/Z/21/Z); BBSRC Institute Program Support Grant to the Roslin Institute (BBS/E/D/20002172, BBS/E/D/10002070, BBS/E/D/30002275); UKRI grants (MC_PC_20004, MC_PC_19025, MC_PC_1905, MRNO2995X/1); UK Research and Innovation (MC_PC_20029); the Wellcome PhD training fellowship for clinicians (204979/Z/16/Z); the Edinburgh Clinical Academic Track (ECAT) programme; the National Institute for Health Research, the Wellcome Trust; the MRC; Cancer Research UK; the DHSC; NHS England; the Smilow family; the National Center for Advancing Translational Sciences of the National Institutes of Health (CTSA award number UL1TR001878); the Perelman School of Medicine at the University of Pennsylvania; National Institute on Aging (NIA U01AG009740); the National Institute on Aging (RC2 AG036495, RC4 AG039029); the Common Fund of the Office of the Director of the National Institutes of Health; NCI; NHGRI; NHLBI; NIDA; NIMH; NINDS.Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care or hospitalization after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes-including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)-in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    corecore