168 research outputs found

    A SIMPLE Pipeline for Mapping Point Mutations

    Get PDF
    A forward genetic screen is one of the best methods for revealing the function of genes. In plants, this technique is highly efficient, as it is relatively easy to grow and screen hundreds or thousands of individuals. The cost efficiency and ease of data production afforded by next-generation sequencing have created new opportunities for rapid mapping of induced mutations. Current mapping tools are often not user friendly, are complicated, or require extensive preparation steps. To simplify the process of mapping new mutations, we developed a pipeline that takes next-generation sequencing fastq files as input, calls on several well-established and freely available genome-analysis tools, and outputs the most likely causal DNA changes. The pipeline has been validated in Arabidopsis thaliana (Arabidopsis) and can be readily applied to other species, with the possibility of mapping either dominant or recessive mutations

    A family of oxide ion conductors based on the ferroelectric perovskite Na0.5Bi0.5TiO3

    Get PDF
    Oxide ion conductors find important technical applications in electrochemical devices such as solid-oxide fuel cells (SOFCs), oxygen separation membranes and sensors1, 2, 3, 4, 5, 6, 7, 8, 9. Na0.5Bi0.5TiO3 (NBT) is a well-known lead-free piezoelectric material; however, it is often reported to possess high leakage conductivity that is problematic for its piezo- and ferroelectric applications10, 11, 12, 13, 14, 15. Here we report this high leakage to be oxide ion conduction due to Bi-deficiency and oxygen vacancies induced during materials processing. Mg-doping on the Ti-site increases the ionic conductivity to ~0.01 S cm−1 at 600 °C, improves the electrolyte stability in reducing atmospheres and lowers the sintering temperature. This study not only demonstrates how to adjust the nominal NBT composition for dielectric-based applications, but also, more importantly, gives NBT-based materials an unexpected role as a completely new family of oxide ion conductors with potential applications in intermediate-temperature SOFCs and opens up a new direction to design oxide ion conductors in perovskite oxides

    Inter-observer variability of radiologists for Cambridge classification of chronic pancreatitis using CT and MRCP: results from a large multi-center study

    Get PDF
    Purpose: Determine inter-observer variability among radiologists in assigning Cambridge Classification (CC) of chronic pancreatitis (CP) based on magnetic resonance imaging (MRI)/magnetic resonance cholangiopancreatography (MRCP) and contrast-enhanced CT (CECT). Methods: Among 422 eligible subjects enrolled into the PROCEED study between 6/2017 and 8/2018, 39 were selected randomly for this study (chronic abdominal pain (n = 8; CC of 0), suspected CP (n = 22; CC of 0, 1 or 2) or definite CP (n = 9; CC of 3 or 4). Each imaging was scored by the local radiologist (LRs) and three of five central radiologists (CRs) at other consortium sites. The CRs were blinded to clinical data and site information of the participants. We compared the CC score assigned by the LR with the consensus CC score assigned by the CRs. The weighted kappa statistic (K) was used to estimate the inter-observer agreement. Results: For the majority of subjects (34/39), the group assignment by LR agreed with the consensus composite CT/MRCP score by the CRs (concordance ranging from 75 to 89% depending on cohort group). There was moderate agreement (63% and 67% agreed, respectively) between CRs and LRs in both the CT score (weighted Kappa [95% CI] = 0.56 [0.34, 0.78]; p-value = 0.57) and the MR score (weighted Kappa [95% CI] = 0.68 [0.49, 0.86]; p-value = 0.72). The composite CT/MR score showed moderate agreement (weighted Kappa [95% CI] = 0.62 [0.43, 0.81]; p-value = 0.80). Conclusion: There is a high degree of concordance among radiologists for assignment of CC using MRI and CT

    An auxin-regulable oscillatory circuit drives the root clock in Arabidopsis

    Get PDF
    CSIC - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)In Arabidopsis, the root clock regulates the spacing of lateral organs along the primary root through oscillating gene expression. The core molecular mechanism that drives the root clock periodicity and how it is modified by exogenous cues such as auxin and gravity remain unknown. We identified the key elements of the oscillator (AUXIN RESPONSE FACTOR 7, its auxin-sensitive inhibitor IAA18/POTENT, and auxin) that form a negative regulatory loop circuit in the oscillation zone. Through multilevel computer modeling fitted to experimental data, we explain how gene expression oscillations coordinate with cell division and growth to create the periodic pattern of organ spacing. Furthermore, gravistimulation experiments based on the model predictions show that external auxin stimuli can lead to entrainment of the root clock. Our work demonstrates the mechanism underlying a robust biological clock and how it can respond to external stimuli.This work was funded by the Ministerio de Economía y Competitividad of Spain (MINECO) and/or the ERDF (BFU2016-80315-P to M.A.M.-R., BIO2017-82209-R to J.C.d.P., and TIN2016-81079-R to A.R.-P.), the Comunidad de Madrid and/or ERDF and ESF (2017-T1/BIO-5654 to K.W. and S2017/BMD-3691 to A.R.-P.), the Howard Hughes Medical Institute and the NIH (R35-GM131725 to P.N.B.), the Fonds Wetenschappelijk Onderzoek (FWO Flanders) (G022516N, G020918N, and G024118N to T.B.), and the “Severo Ochoa Program for Centres of Excellence in R&D” from the Agencia Estatal de Investigacion of Spain [SEV-2016-0672 (2017–2021)] to K.W., P.P.-G., and M.A.M.-R. through CBGP. M.M. was supported by a postdoctoral contract associated to SEV-2016-0672, E.B.-A. by Ayudante de Investigacion contract PEJ-2017-AI/BIO-7360 from the Comunidad de Madrid, A.S.-C. and L.S.-R. by FPI contracts from MINECO (BES-2014-068852 and BES-2017-080155, respectively), J.C. by a Juan de la Cierva contract from MINECO (FJCI-2016-28607), P.P.-G. by a Juan de la Cierva contract from MINECO (FJCI-2015-24905) and Programa Atraccion Talento from Comunidad Madrid (2017-T2/BIO-3453), A.S. by a Torres Quevedo contract from MINECO (PTQ-15-07915), and K.W. by program PGC2018-093387-A-I00 from the Ministerio de Ciencia e Innovacion (MICIU)Peer reviewe

    Cell wall remodeling and vesicle trafficking mediate the root clock in Arabidopsis

    No full text
    6 Pág.In Arabidopsis thaliana, lateral roots initiate in a process preceded by periodic gene expression known as the root clock. We identified the vesicle-trafficking regulator GNOM and its suppressor, ADENOSINE PHOSPHATE RIBOSYLATION FACTOR GTPase ACTIVATION PROTEIN DOMAIN3, as root clock regulators. GNOM is required for the proper distribution of pectin, a mediator of intercellular adhesion, whereas the pectin esterification state is essential for a functional root clock. In sites of lateral root primordia emergence, both esterified and de-esterified pectin variants are differentially distributed. Using a reverse-genetics approach, we show that genes controlling pectin esterification regulate the root clock and lateral root initiation. These results indicate that the balance between esterified and de-esterified pectin states is essential for proper root clock function and the subsequent initiation of lateral root primordia.This work was supported by grants to P.N.B. from the National Institutes of Health (grant nos. R01-GM043778 and R35-GM131725), the Howard Hughes Medical Institute, and the Gordon and Betty Moore Foundation (grant no. GBMF3405). M.A.M.-R. was funded by Ministerio de Economía y Competitividad of Spain (MINECO) and ERDF (grant no. BFU2016-80315-P).Peer reviewe
    corecore