326 research outputs found

    From regional to national clouds: TV coverage in the Czech Republic

    Get PDF
    Media, and particularly TV media, have a great impact on the general public. In recent years, spatial patterns of information and the relevance of intangible geographies have become increasingly important. Gatekeeping plays a critical role in the selection of information that is transformed into media. Therefore, gatekeeping, through national media, also co-forms the generation of mental maps. In this paper, correspondence analysis (a statistical method) combined with cloud lines (a new visual analytics technique) is used to analyze how individual major regional events in one of the post-communist countries, the Czech Republic, penetrate into the media on a national scale. Although national news should minimize distortions about regions, this assumption has not been verified by our research. Impressions presented by the media of selected regions that were markedly influenced by one or several events in those regions demonstrate that gatekeepers, especially news reporters, functioned as a filter by selecting only a few specific, and in many cases, unusual events for dissemination.Web of Science1111art. no. e016552

    On topological spin excitations on a rigid torus

    Full text link
    We study Heisenberg model of classical spins lying on the toroidal support, whose internal and external radii are rr and RR, respectively. The isotropic regime is characterized by a fractional soliton solution. Whenever the torus size is very large, R→∞R\to\infty, its charge equals unity and the soliton effectively lies on an infinite cylinder. However, for R=0 the spherical geometry is recovered and we obtain that configuration and energy of a soliton lying on a sphere. Vortex-like configurations are also supported: in a ring torus (R>rR>r) such excitations present no core where energy could blow up. At the limit R→∞R\to\infty we are effectively describing it on an infinite cylinder, where the spins appear to be practically parallel to each other, yielding no net energy. On the other hand, in a horn torus (R=rR=r) a singular core takes place, while for R<rR<r (spindle torus) two such singularities appear. If RR is further diminished until vanish we recover vortex configuration on a sphere.Comment: 11 pages, 9 figure

    Mapping odorant sensitivities reveals a sparse but structured representation of olfactory chemical space by sensory input to the mouse olfactory bulb

    Get PDF
    © 2022, Burton et al. This article is distributed under the terms of the Creative Commons Attribution License. https://creativecommons.org/licenses/by/4.0/In olfactory systems, convergence of sensory neurons onto glomeruli generates a map of odorant receptor identity. How glomerular maps relate to sensory space remains unclear. We sought to better characterize this relationship in the mouse olfactory system by defining glomeruli in terms of the odorants to which they are most sensitive. Using high-throughput odorant delivery and ultrasensitive imaging of sensory inputs, we imaged responses to 185 odorants presented at concentrations determined to activate only one or a few glomeruli across the dorsal olfactory bulb. The resulting datasets defined the tuning properties of glomeruli - and, by inference, their cognate odorant receptors - in a low-concentration regime, and yielded consensus maps of glomerular sensitivity across a wide range of chemical space. Glomeruli were extremely narrowly tuned, with ~25% responding to only one odorant, and extremely sensitive, responding to their effective odorants at sub-picomolar to nanomolar concentrations. Such narrow tuning in this concentration regime allowed for reliable functional identification of many glomeruli based on a single diagnostic odorant. At the same time, the response spectra of glomeruli responding to multiple odorants was best predicted by straightforward odorant structural features, and glomeruli sensitive to distinct odorants with common structural features were spatially clustered. These results define an underlying structure to the primary representation of sensory space by the mouse olfactory system.Peer reviewe

    Response of electrically coupled spiking neurons: a cellular automaton approach

    Full text link
    Experimental data suggest that some classes of spiking neurons in the first layers of sensory systems are electrically coupled via gap junctions or ephaptic interactions. When the electrical coupling is removed, the response function (firing rate {\it vs.} stimulus intensity) of the uncoupled neurons typically shows a decrease in dynamic range and sensitivity. In order to assess the effect of electrical coupling in the sensory periphery, we calculate the response to a Poisson stimulus of a chain of excitable neurons modeled by nn-state Greenberg-Hastings cellular automata in two approximation levels. The single-site mean field approximation is shown to give poor results, failing to predict the absorbing state of the lattice, while the results for the pair approximation are in good agreement with computer simulations in the whole stimulus range. In particular, the dynamic range is substantially enlarged due to the propagation of excitable waves, which suggests a functional role for lateral electrical coupling. For probabilistic spike propagation the Hill exponent of the response function is α=1\alpha=1, while for deterministic spike propagation we obtain α=1/2\alpha=1/2, which is close to the experimental values of the psychophysical Stevens exponents for odor and light intensities. Our calculations are in qualitative agreement with experimental response functions of ganglion cells in the mammalian retina.Comment: 11 pages, 8 figures, to appear in the Phys. Rev.

    Comparative transcriptomics of a complex of four European pine species

    Get PDF
    Background: Pinus sylvestris, P. mugo, P. uliginosa and P. uncinata are closely related but phenotypically and ecologically very distinct European pine species providing an excellent study system for analysis of the genetic basis of adaptive variation and speciation. For comparative genomic analysis of the species, transcriptome sequence was generated for 17 samples collected across the European distribution range using Illumina paired-end sequencing technology. Results: De novo transcriptome assembly of a reference sample of P. sylvestris contained 40968 unigenes, of which fewer than 0.5% were identified as putative retrotransposon sequences. Based on gene annotation approaches, 19659 contigs were identified and assigned to unique genes covering a broad range of gene ontology categories. About 80% of the reads from each sample were successfully mapped to the reference transcriptome of P. sylvestris. Single nucleotide polymorphisms were identified in 22041-24096 of the unigenes providing a set of ~220-262 k SNPs identified for each species. Very similar levels of nucleotide polymorphism were observed across species (π=0.0044-0.0053) and highest pairwise nucleotide divergence (0.006) was found between P. mugo and P. sylvestris at a common set of unigenes. Conclusions: The study provides whole transcriptome sequence and a large set of SNPs to advance population and association genetic studies in pines. Our study demonstrates that transcriptome sequencing can be a very useful approach for development of novel genomic resources in species with large and complex genomes

    High genetic diversity at the extreme range edge: nucleotide variation at nuclear loci in Scots pine (Pinus sylvestris L.) in Scotland

    Get PDF
    Nucleotide polymorphism at 12 nuclear loci was studied in Scots pine populations across an environmental gradient in Scotland, to evaluate the impacts of demographic history and selection on genetic diversity. At eight loci, diversity patterns were compared between Scottish and continental European populations. At these loci, a similar level of diversity (Ξsil=~0.01) was found in Scottish vs mainland European populations, contrary to expectations for recent colonization, however, less rapid decay of linkage disequilibrium was observed in the former (ρ=0.0086±0.0009, ρ=0.0245±0.0022, respectively). Scottish populations also showed a deficit of rare nucleotide variants (multi-locus Tajima's D=0.316 vs D=−0.379) and differed significantly from mainland populations in allelic frequency and/or haplotype structure at several loci. Within Scotland, western populations showed slightly reduced nucleotide diversity (πtot=0.0068) compared with those from the south and east (0.0079 and 0.0083, respectively) and about three times higher recombination to diversity ratio (ρ/Ξ=0.71 vs 0.15 and 0.18, respectively). By comparison with results from coalescent simulations, the observed allelic frequency spectrum in the western populations was compatible with a relatively recent bottleneck (0.00175 × 4Ne generations) that reduced the population to about 2% of the present size. However, heterogeneity in the allelic frequency distribution among geographical regions in Scotland suggests that subsequent admixture of populations with different demographic histories may also have played a role

    Soliton pair dynamics in patterned ferromagnetic ellipses

    Full text link
    Confinement alters the energy landscape of nanoscale magnets, leading to the appearance of unusual magnetic states, such as vortices, for example. Many basic questions concerning dynamical and interaction effects remain unanswered, and nanomagnets are convenient model systems for studying these fundamental physical phenomena. A single vortex in restricted geometry, also known as a non-localized soliton, possesses a characteristic translational excitation mode that corresponds to spiral-like motion of the vortex core around its equilibrium position. Here, we investigate, by a microwave reflection technique, the dynamics of magnetic soliton pairs confined in lithographically defined, ferromagnetic Permalloy ellipses. Through a comparison with micromagnetic simulations, the observed strong resonances in the subgigahertz frequency range can be assigned to the translational modes of vortex pairs with parallel or antiparallel core polarizations. Vortex polarizations play a negligible role in the static interaction between two vortices, but their effect dominates the dynamics.Comment: supplemental movies on http://www.nature.com/nphys/journal/v1/n3/suppinfo/nphys173_S1.htm

    Pharmacological Analysis of Ionotropic Glutamate Receptor Function in Neuronal Circuits of the Zebrafish Olfactory Bulb

    Get PDF
    Although synaptic functions of ionotropic glutamate receptors in the olfactory bulb have been studied in vitro, their roles in pattern processing in the intact system remain controversial. We therefore examined the functions of ionotropic glutamate receptors during odor processing in the intact olfactory bulb of zebrafish using pharmacological manipulations. Odor responses of mitral cells and interneurons were recorded by electrophysiology and 2-photon Ca2+ imaging. The combined blockade of AMPA/kainate and NMDA receptors abolished odor-evoked excitation of mitral cells. The blockade of AMPA/kainate receptors alone, in contrast, increased the mean response of mitral cells and decreased the mean response of interneurons. The blockade of NMDA receptors caused little or no change in the mean responses of mitral cells and interneurons. However, antagonists of both receptor types had diverse effects on the magnitude and time course of individual mitral cell and interneuron responses and, thus, changed spatio-temporal activity patterns across neuronal populations. Oscillatory synchronization was abolished or reduced by AMPA/kainate and NMDA receptor antagonists, respectively. These results indicate that (1) interneuron responses depend mainly on AMPA/kainate receptor input during an odor response, (2) interactions among mitral cells and interneurons regulate the total olfactory bulb output activity, (3) AMPA/kainate receptors participate in the synchronization of odor-dependent neuronal ensembles, and (4) ionotropic glutamate receptor-containing synaptic circuits shape odor-specific patterns of olfactory bulb output activity. These mechanisms are likely to be important for the processing of odor-encoding activity patterns in the olfactory bulb
    • 

    corecore