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Comparative transcriptomics of a complex
of four European pine species

Witold Wachowiak1,2*, Urmi Trivedi3, Annika Perry1 and Stephen Cavers1
Abstract

Background: Pinus sylvestris, P. mugo, P. uliginosa and P. uncinata are closely related but phenotypically and ecologically
very distinct European pine species providing an excellent study system for analysis of the genetic basis of adaptive
variation and speciation. For comparative genomic analysis of the species, transcriptome sequence was generated for 17
samples collected across the European distribution range using Illumina paired-end sequencing technology.

Results: De novo transcriptome assembly of a reference sample of P. sylvestris contained 40968 unigenes, of which fewer
than 0.5% were identified as putative retrotransposon sequences. Based on gene annotation approaches, 19659 contigs
were identified and assigned to unique genes covering a broad range of gene ontology categories. About 80% of the
reads from each sample were successfully mapped to the reference transcriptome of P. sylvestris. Single nucleotide
polymorphisms were identified in 22041-24096 of the unigenes providing a set of ~220-262 k SNPs identified for each
species. Very similar levels of nucleotide polymorphism were observed across species (π=0.0044-0.0053) and highest
pairwise nucleotide divergence (0.006) was found between P. mugo and P. sylvestris at a common set of unigenes.

Conclusions: The study provides whole transcriptome sequence and a large set of SNPs to advance population and
association genetic studies in pines. Our study demonstrates that transcriptome sequencing can be a very useful
approach for development of novel genomic resources in species with large and complex genomes.

Keywords: Whole transcriptome sequencing, Ontology, SNPs, Nucleotide divergence, Species complex
Background
Forest trees constitute over 80% of terrestrial biomass
and harbour more than 50% of terrestrial biodiversity
providing wood material and fundamental ecosystem
services for humans including preservation of biodiversity,
carbon cycling, climate regulation and preservation of
water quality and soils [1,2]. Understanding the genomic
basis of adaptation and architecture of complex phenotypic
traits is needed for development of diagnostic tools for the
conservation, restoration and management of natural
populations and for genetic improvement programmes
[2]. Understanding plant adaptation is also one of the
main interests of evolutionary biology. So far however,
knowledge of the mutations, genes and biochemical
pathways involved in species evolution and underlying
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phenotypic and adaptive variation remain scarce
mostly due to a lack of efficient methods for accessing the
polymorphisms at the whole genome scale. Recent
advances in cost-effective, high-throughput sequencing
technologies provide new tools for development of
genomic resources with huge potential for downstream
applications in virtually any species. In particular, these
Next-Generation Sequencing (NGS) methods provide a
unique opportunity to advance studies of non-model
plants, including economically important trees with
complex genomes such as conifers [3-5].
Here, we focus on a group of four closely related

European pines: Scots pine (Pinus sylvestris L.) and the
three taxa comprising the P. mugo complex including P.
mugo Turra (dwarf mountain pine), P. uncinata Ramond
(mountain pine) and P. uliginosa Neumann (peat-bog
pine). These species differ from each other in phenotype,
total population size, geographical distribution and ecology,
in particular for traits related to dehydrative stress and
temperature [6-8]. Pinus sylvestris is one of the most
ecologically and economically important forest tree species
ss article distributed under the terms of the Creative Commons Attribution
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in the world and has the largest distribution of all pines,
being found from western Scotland to eastern Siberia and
from Turkey and Spain north to the Arctic Circle. It
is locally adapted to environmental conditions related to
photoperiod and temperature and shows clinal latitudinal
variation in timing of bud set and cold hardiness [9]. Pinus
mugo is a high-altitude polycormic European pine of up to
a few meters in height, which forms shrub populations
above the tree line in the mountainous regions of central
and southeastern Europe. Pinus uncinata and P. uliginosa
are trees of up to 20 m height; the former is a forest
forming component in the high mountains of Western
Europe, the latter is adapted to peatbogs in lowland areas
of Central Europe.
Despite clear morphological and ecological differentiation,

analysis of nuclear genes showed that the species share a
similar genetic background, indicating recent divergence
[10]. However, despite significant inter- and intra-specific
gene flow during historical range shifts, local adaptation to
highly contrasting environments has occurred [10,11]. The
species are not completely reproductively isolated, can occur
and hybridize in sympatry and have the same number of
chromosomes (2n = 24). Considering their genetic similarity,
but distinctive phenotypes (tree/shrub), geographical ranges
(widespread/restricted) and ecology (generalist/specialist)
the species comprise a promising system for study of the
genomic basis of adaptation and the genetic architecture of
phenotypic traits. Taking advantage of the system for com-
parative studies requires development of a comprehensive
array of genomic resources and methods addressing
variation at the whole genome scale.
For large and complex genomes, transcriptome sequen-

cing is an attractive alternative to whole genome sequen-
cing, and yields a comparatively high content of functional
information from coding regions. By constructing a com-
parative analysis within a phylogenetic framework we
aimed to develop genomic resources relevant to molecular
evolution in the genes and gene complexes underlying
inter- and intra-specific variation in this important group
of tree species.

Results and discussion
Characteristics of the transcript sequence
Comparative studies of closely related species can
advance our understanding of the genetic architecture of
adaptive traits. For many species these studies have been
seriously limited by a lack of genomic resources from
which to develop genetic markers for topics such as species
divergence, adaptation and demographic processes in
natural populations. In our study we applied Illumina
sequencing for successful de novo transcriptome character-
isation and development of new genomic resources in a
complex of four pine species from across the species
distribution range in Europe (Figure 1, Table 1). From
each insert of the cDNA library, 2 × 100 bp independent
reads can be obtained using Illumina paired-end sequencing
technology. Our results show that this highly cost and time
efficient technology is a very useful and reliable tool for
transcriptome characterization, gene discovery and marker
development, even for species with large and complex
genomes. Sequencing of the reference Scots pine sample
(2_GT_31) used for de novo transcriptome assembly
produced a total of 258,401,512 raw 100 bp sequen-
cing reads. Raw assembly of the reads produced over
151,932 contigs greater than 100 bp that contained
over 119 × 106 bp (Table 2). After a series of filtering
steps including searches for ORF sequences those
contigs were aligned into 40968 unigenes. Retrotransposons
comprise a substantial proportion of most plant genomes
and they can be transcriptionally active. However, we found
less than 0.5% of the unigenes contained such sequences,
which is lower than has been found in other plants and
pine species. For instance, in the Pinus contorta transcrip-
tome, about 6% of contigs represented retrotransposon-like
sequences [12]. The low number of retrotransposon se-
quences may also result from our strict filtering criteria, in
which many low quality sequences were discarded before
alignment. In our dataset, 170 contigs were identified as
putative retrotransposon sequences and they were dis-
carded providing a final set of 40798 high quality unigenes
(with mean length of ~1500 bp) and a total reference
transcriptome of 61,246,267 bp (Table 2, Additional file 1).
Lack of a reference genome prevented us from esti-

mating the number of genes and transcript coverage for
the focal species. However, 48% of the unigenes matched
known proteins, providing large set of target genes repre-
senting various metabolic pathways. The functions of
unigenes covered a broad range of gene ontology categories
that were assigned to 19659 unique genes with BLAST
matches to known proteins. There were a total of 13653
gene ontology terms associated with those genes. Based on
the Kyoto Encyclopedia of Genes and Genomes (KEGG)
Pathway 12387 unigenes (~30%) had significant matches in
the database and were assigned to 304 pathways. 9529 of
the unigenes that had enzyme commission (EC) numbers
were assigned to 2130 enzyme pathways. Based on
biological processes the most numerous contigs were
classified as related to metabolism (19727) and regulation
of biological processes (18483). The function of about 43%
of the unigenes was related to binding activity. About 78%
of all unigenes were classified as intracellular or mem-
brane components (Figure 2, Additional file 1: Table S1).
The number of assigned contigs was similar to studies in
P. contorta, when about 17000 unique genes were found
across 63657 contigs developed using a 454 GS XLR70
Titanium pyrosequencer [12]. From the published gene
numbers for Pinus taeda (~50,000 genes [3]) and other
conifer species [4,5] we estimate that we have identified



Figure 1 Locations of the populations of the four pine species sampled for the study. Populations labelled PS - P. sylvestris, M - P. mugo, UN -
P. uncinata, UG - P. uliginosa.
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around half of the total number of Scots pine genes.
Considering that the focal species are known to be highly
diverged for adaptive traits, polymorphisms in the genes
belonging to metabolic and regulation pathways are likely
to be particularly useful for searching for the genetic basis
of quantitative trait variation and local adaptation.

Marker development
The focal pine species are evolutionarily closely related
[10,13] but differ in ecology, geographical distribution and
population size. Therefore, they form a very attractive
model for studies of the genetic basis of local adaptation
and speciation. So far, genetic studies of the species (mostly
Pinus sylvestris) have focused on assessments of quantita-
tive trait variation and underlying QTLs [14], genetic struc-
ture, demography and selection [15-18]. These studies were
mostly based on microsatellite loci and/or sequence vari-
ation at candidate genes and consequently their conclusions
were limited by the low number and resolution of markers
or genomic regions. Several QTLs for phenology and poly-
morphism due to natural selection at a few candidate genes
related to stress response were found for Scots pine
[14,16,17]. Recent studies have also provided nucleotide
polymorphism information for P. mugo based on amplicon
sequencing and candidate gene studies [6,19]. However, no
genomic resources currently exist for this group of pine
species to address fundamental questions about the genetic
basis of adaptation and divergence. Our study makes a large
proportion of the functional variation in coding regions of
the genome available for downstream research with the use
of high throughput genotyping platforms. In our dataset,
the 16 samples of the four pine species sequenced in lower
depth produced a total of ~714 × 106 reads with their num-
ber varying between 30–69 × 106 per sample (Table 3). The
vast majority of all reads for each sample (about 80%)
were successfully mapped to the reference transcriptome
sequence of the Scottish Pinus sylvestris sample from Glen
Tanar (2_GT_31 sample). Compared to the reference,
from ~64 × 103 (P. sylvestris from Finland) to ~148 × 103

SNPs (P. uliginosa from Germany) were called for each
sample (Table 3). SNPs were found in 54-59% of all
unigenes including 22041 unigenes with SNPs identi-
fied for P. sylvestris, 24096 for P. mugo, 22416 for P.
uncinata and 22710 for P. uliginosa. Filtering of all avail-
able SNPs from merged contigs across the species that
were at least 50 bp apart from each other provided a set



Table 1 Plant material used for transcriptome sequencing

Species Acronym Sample ID Population Latitude N Longitude E Altitude (m)

P. sylvestris

PS1 1_SD_30 Scotland, Shieldaig 57°30′35″ −5°38′24″ 81

PS2 2_GT_31 Scotland, Glen Tanar 57°2′60″ −2°51′36″ 334

PS3 3_Punk_39 Finland, Punkaharju 61°45′33″ 29°23′21″ 80

PS4 4_Jar_43 Poland, Jarocin 51°58′20″ 17°28′40″ 120

PS5 5_Trev_37 Spain, Trevenque 37°05′47″ 3°32′51″ 1170

P. mugo

M1 6_SC_5 Romania, Southern Carpathians, Busteni 45°25′55″ 25°27′06″ 2070

M2 7_BH_9 Bosnia and Herzegovina, Bjelasnica Mts 43°45′00″ 18°13′08″ 2120

M3 8_Abr_16 Italy, Abruzzi, La Maiella 41°46′20″ 13°58′30″ 2200

M4 9_Alps_12 Austria, Karwendel Mts., Scharnitz 47°22′42″ 11°17′45″ 1400

M5 10_Sdt_1 Poland, Sudety Mts, Śląskie Kamienie 50°46′35″ 15°36′08″ 1400

P. uncinata

UN1 11_CC_28 France, Col de la Croix de Morand 45°35′58″ 2°50′44″ 1200

UN2 12_LaT_23 Spain, Pyrenees, La Trapa 0°32′12″ 42°41′19″ 1720

UN3 13_VdR_17 Andorra, Eastern Pyrenees, Vall de Ransol 42°35′02″ 1°38′21″ 2025

UN4 14_Val_24 Spain, Sierra de Gudar 40°28′49″ -0°41′51″ 2000

P. uliginosa

UG1 15_Weg_57 Poland, Low Silesian Pinewood, Węgliniec 51°17′50″ 15°14′20″ 190

UG2 16_Bat_59 Poland, Wielkie Torfowisko Batorowskie reserve 50°27′32″ 16°23′01″ 750

UG3 17_Mit_58 Germany, Mittenwald 47°28′50″ 11°16′27″ 856
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of 259,087 SNPs (Additional file 1). The availability of cost
and time efficient genotyping methods for SNPs using
next-generation sequencing platforms will certainly
advance comparative genomic and population genetic
studies of these species. The resources could also be
useful in breeding and silviculture, through marker-
assisted and genomic selection approaches [20], for
genetic improvement of phenotypic traits of economic
and ecological importance, especially in Scots pine.
Table 2 Statistics for de novo transcriptome assembly of
the reference sample (2_GT_31)

Assembly metric Raw assembly generated
from Trinity

Unigene
set

Max contig length 16652 16652

Num contigs >100 151932 40798

Total bases in contigs >100 119849194 61246267

N50 for contigs >100 1555 2118

Contigs >100 in N50 22593 9640

GC contigs >100 41.8 42.5

nonATGC in contigs >100 0 0

Mean length for contigs >100 788.8 1501.2

N50 - the contig length for which the collection of all contigs of equal or
longer length produces half the bases of the contigs.
Non ATGC - non ATGC bases (such as Ns).
Nucleotide polymorphism and genetic relationships
between species
The samples from which transcriptome data were
generated were collected across broad environmental
gradients, throughout the species distribution range.
Despite clear differences in range and total population
sizes, we observed very similar levels of nucleotide
polymorphism in each species. Comparing among
species, and across the whole transcriptome, most
SNPs were found in P. mugo (~295 × 103) relative to the
reference. This species showed much greater similarity to
the other two taxa from the P. mugo complex than to
P. sylvestris, as evident from the higher proportion of
common (~144-163 × 103) and lower proportion of
unique SNPs (~93-145 × 103) between the P. mugo
complex taxa as compared to P. sylvestris (~65-69 × 103

and ~190-230 × 103, respectively) (Table 4, Figure 3). All
four species showed similar levels of nucleotide poly-
morphism (πtot = 0.0044-0.0053) and an excess of low
frequency variation (D = ~ −0.2) (Table 5). Our estimates
of total nucleotide polymorphism were very similar to
estimates obtained from much smaller candidate gene
datasets [6,16-18]. In our study nearly half of the tran-
scriptome sequences were monomorphic across species.
Overall, the species showed a high level of genetic similar-
ity marked by similar proportions of reads from different
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Figure 2 Gene ontology classification of the unigenes.
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species that mapped to the reference Scots pine tran-
scriptome and many shared SNPs segregating between
species. Our study provides evidence for closer genetic re-
lationships between P. mugo and P. uliginosa as compared
to P. sylvestris (Additional file 1: Figure S1). Pinus
uncinata also showed a closer relationship to the taxa
from the P. mugo complex (Figure 4, Additional file 1:
Table S2) except for one outlier sample from Spain that
showed closer genetic similarity to P. sylvestris. This indi-
vidual may represent an admixed genotype of both species
as cryptic hybrids between P. uncinata and P. sylvestris
were described in Spain in morphological and molecular
studies [11]. No significant genetic differentiation (p < 0.05)
was found between P. mugo and P. uncinata vs. P. uliginosa
(Table 6). Our results are in line with previous evolutionary
assessments in these species that showed high genetic
identity between the taxa from the P. mugo complex
and outgroup Scots pine. The close genetic similarity
between taxa (especially in the P. mugo complex) but
high divergence makes them a very promising system for
comparative genomic studies. Searches for loci of high
divergence against the genetic background of the focal
taxa will help to identify regions under selection, which
have played a role in adaptation and speciation.
Conclusions

1. We provide a reference transcriptome sequence for
Scots pine, a conifer tree species of great ecological
and economic importance in the world. We
annotated the transcriptome in reference to many
genes and metabolic pathways described in open
access databases.

2. Putting our study in a phylogenetic framework we
provide novel genomic resources comprising a
publicly-available database of SNP markers for a set
of four closely related pine species. Information
about nucleotide polymorphism in coding regions
will facilitate genotyping, population genetic and
association studies to better understand the genetic
basis of plant adaptation and speciation.

3. Our study shows the largest genetic divergence
between P. mugo and P. sylvestris. Despite large
differences in distribution range and total population
size, all species showed very similar patterns of
nucleotide polymorphism.

4. Our results demonstrate the high relevance of
Illumina technology for de novo assembly,
transcriptome characterization and marker discovery



Table 3 Mapping statistics of the samples to the reference transcriptome sequence (2_GT_31)

Sample ID Species Total reads Mapped reads % Mapped reads % Duplicate reads % Mapped reads
as proper pairs

Number of SNPs

1_SD_30 P. sylvestris 31116472 26922787 86.52 26.36 84.14 67817

2_GT_31 P. sylvestris 258401512 229042493 88.64 43.22 85.34 81519

3_Punk_39 P. sylvestris 37849782 31980676 84.49 34.37 80.21 63874

4_Jar_43 P. sylvestris 38970706 31951845 81.99 19.34 79.47 94021

5_Trev_37 P. sylvestris 45140044 38150182 84.52 19.44 81.73 95814

6_SC_5 P. mugo 43752078 35804512 81.83 24.08 78.50 116762

7_BH_9 P. mugo 32600000 26565484 81.49 26.23 78.40 103818

8_Abr_16 P. mugo 40104880 33111153 82.56 29.18 78.19 100602

9_Alps_12 P. mugo 52934684 43411825 82.01 23.36 78.67 130942

10_Sdt_1 P. mugo 69248828 57560565 83.12 28.02 80.03 138989

11_CC_28 P. uncinata 34805254 28627271 82.25 16.74 79.34 102037

12_LaT_23 P. uncinata 30291214 24678075 81.47 36.80 78.06 87181

13_VdR_17 P. uncinata 45834740 36942040 80.60 18.27 77.85 118800

14_Val_24 P. uncinata 48550644 39819426 82.02 21.98 79.12 115050

15_Weg_57 P. uliginosa 52718596 42948249 81.47 18.33 78.55 127068

16_Bat_59 P. uliginosa 40729720 33913094 83.26 21.04 80.38 116297

17_Mit_58 P. uliginosa 69457322 57212028 82.37 22.07 79.37 147646

Merged All 976529136 817402576 83.70 26.12 80.58 164104

Sample ID with reference to Table 1.
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in a species with large and complex genomes, which
lack draft genome sequence information.

Methods
Plant material and RNA extraction
Needles of the four pine species were collected from two
year old seedlings grown in a glasshouse at the Centre
for Ecology and Hydrology, Edinburgh, UK. The seedlings
were obtained from seeds collected in seventeen
populations of the species (five for each of P. sylvestris and
Table 4 Common and unique SNPs in pair-wise comparisons
between species

Whole transcriptome

COMMON SNPs

P. sylv. P. mugo P. uncin. P. ulig.

P. sylvestris 119387

P. mugo 65646 294958

P. uncinata 69345 149679 246367

P. uliginosa 65390 162769 144422 255447

UNIQUE SNPs (in reference to the species in each column)

P. sylvestris 229312 189735 190084

P. mugo 53728 109363 92675

P. uncinata 50042 145279 111026

P. uliginosa 53997 132189 114644

Total number of SNPs within each species is marked in bold.
P. mugo, four for P. uncinata and three for P. uliginosa)
from across the species distribution range and environ-
mental gradients in Europe (Table 1, Figure 1). After sam-
pling, the needles were immediately frozen in liquid
nitrogen and homogenized with a pestle and mortar. Total
RNA for generation of transcript sequence was extracted
from 100 mg of the needle powder using Spectrum™ Plant
Total RNA Kit (Sigma) following the manufacturer’s
protocol. RNA concentration and quality was assessed
with the use of a Qubit® Fluorometer (Life Technologies).
A total of 10 μg of input RNA for each sample was used
for normalized cDNA library preparation.

cDNA library construction and sequencing
Template cDNA libraries for each sample were prepared
using TruSeq™ RNA Sample Preparation Kits (Illumina).
The poly‐A containing mRNA molecules were purified
in two steps from 10 μg of total RNA using poly‐T
oligo‐attached magnetic beads. During the second elution of
the poly‐A RNA, the RNA was fragmented to 120-210 bp
inserts (by incubation of the samples at 94°C for 8 minutes)
and primed for cDNA synthesis. The cleaved RNA
fragments primed with random hexamers were reverse
transcribed into first strand cDNA followed by DNA
Polymerase I second strand cDNA synthesis and RNase H
treatment. Ampure XP beads were used to separate the
double strand cDNA from the 2nd strand reaction mix.
The synthesized cDNA was subjected to end-repair to
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Figure 4 Principal Coordinates Analysis (PCoA) based on
pairwise nucleotide difference matrix at 676 contigs (>1.3Mbp,
27929 SNPs) showing genetic relationships between P.
sylvestris (●), P. mugo (■), P. uncinata (♦) and P. uliginosa
(▲) samples.

Figure 3 Shared and unique SNPs in pairwise comparisons
between P. sylvestris (S), P. mugo (M), P. uncinata (UN) and
P. uliginosa (UG). SNPs total: P. sylvestris (225544), P. mugo (262582),
P. uncinata (220365), P. uliginosa (232822).
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convert the overhangs resulting from fragmentation
into blunt ends. These repaired cDNA fragments were
adenylated at 3′ ends to prevent them from ligating
to one another during the adapter ligation reaction.
Paired-end adapters were ligated to the ends of these
double strand cDNA preparing them for hybridization
onto a flow cell. DNA fragments that had adapter
molecules on both ends were enriched by PCR to
amplify the amount of DNA in the final cDNA
library. Normalization of cDNA was conducted to
increase the chance of discovering genes of low expression
level. Quality control of the sample libraries and
quantification of the DNA templates was conducted
using Agilent Technologies 2100 Bioanalyzer using
Agilent DNA1000 chip. The cDNA libraries were
sequenced using Illumina HiSeq 2000 platform at
Edinburgh Genomics, the University of Edinburgh,
Scotland according to the manufacturer’s instructions
(Illumina, San Diego, CA). Sequencing was conducted
to generate 100 base paired-end reads for all samples in-
cluding the Scots pine sample (2_GT_31, Scotland, Glen
Tanar) used as a reference. Raw data for all samples were
deposited in European Nucleotide Archive [ENA acces-
sion number: PRJEB6877].
Table 5 Nucleotide variation at 676 merged nuclear
(nDNA) contigs in the pine species

Species N L SNPs Sing. πtot D

P. sylvestris 5 1364676 12920 8674 0.0044 −0.243

P. mugo 5 1364676 13129 8710 0.0045 −0.221

P. uncinata 4 1364676 13420 10374 0.0053 −0.169

P. uliginosa 3 1364676 9581 9581 0.0047 -

Total/Aver. 17 1364676 27929 12181 0.0047 −0.211

N- number of samples analysed; L – length of the sequences in base pairs;
SNPs- number of polymorphic sites detected; Sing – number of singleton
mutations; πtot – total nucleotide diversity (Nei [31]); D – multilocus Tajima’s
D statistics [32].
Reference transcriptome assembly and gene annotation
Prior to assembly, filtering of the raw reads for the reference
sample 2_GT_31 was carried out to increase the quality of
data and eliminate any sequencing errors. Reads with
adapter contamination, potential contaminant, and poor-
quality reads with ambiguous sequences “N” were discarded.
Reads were de novo assembled into contigs using Trinity
(version r2012-06-08) [21]. We got 151932 potential
transcripts as an output. In order to reduce the
redundancy in this dataset, only transcripts with ORFs
were retained, and highly similar sequences were clustered
(similarity level of >95%) using CD-HIT [22]. A final set of
40968 clustered transcripts was BLASTx scanned for
the presence of known retrotransposons and repetitive
elements known to be present in conifer genome. Several
search approaches were used including queries of known
retrotransposon sequences in plants (IFG7, GYMNY,
PtIFG7, Ta1-3, PpRT1) and searches for terms associated
with retroelements such as copia, gypsy, gag, retrotrans-
poson, integrase, retroelement, reverse transcriptase
[23-25]. Using the above approaches 170 contigs were
identified that may represent transcriptionally active
retroelements. They were excluded from final reference
transcriptome sequences of 40798 contigs. Annotation of
the clustered transcripts based on the functional category
Table 6 Pairwise Fst between species at 27929 SNPs
identified at 676 merged nuclear (nDNA) contigs

P. sylvestris P. mugo P. uncinata

P. mugo 0.257**

P. uncinata 0.142* 0.121*

P. uliginosa 0.212* 0.030 0.075

Significance level: * p < 0.05, **p < 0.01.
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was conducted using Annot8r based on BLAST similarity
searches against annotated subsets of EMBL UniProt
protein sequence and functional information database using
an E-value threshold of 10−5 [26]. BLASTx search was
conducted against the Kyoto Encyclopedia of Genes and
Genomes (KEGG) Pathway with an E-value cutoff of <10−5

to annotate the genes to known proteins and to look at the
networks of molecular functions and interactions of the
unigenes. Gene Ontology (GO) classification of the uni-
genes based on BLAST matches to known proteins was
conducted based on biological processes, molecular
function and cellular component.

Alignment, SNP calling and filtering
The set of 40798 transcripts (2_GT_31) was used as
reference for mapping reads for the 16 other samples.
Alignment was performed using BWA (version 0.6.1)
[27]. Duplicates were marked using Picard [28]. To
eliminate errors due to indel misalignment, local realign-
ment was conducted using GATK [29]. SNPs were called
for each sample and species as compared to the reference
using Samtools (version samtools-0.1.18) [28]. A set of
SNPs identified across all samples was filtered to look for
those suitable for genotyping platforms such as Illumina
with a minimum spacing between SNPs of 50 base-pairs
(bp) flanking nucleotides on either side of a SNP.

Nucleotide polymorphisms and divergence
Polymorphism and divergence were quantified within
and among species to provide information about the
overall pattern of nucleotide variation in the samples.
The number of shared and unique SNPs was calculated
based on calls from pairwise comparisons between each
species. A subset of contigs were selected that were
common to, and polymorphic in, all samples relative to the
reference. Fasta files for each contig were produced using
vcf-tools [30] and concatenated into a single sequence for
each sample. In total 1,364,676 bp of DNA was aligned
across 676 contigs. Basic statistics including number of
polymorphic sites, nucleotide diversity (measured as the
average number of nucleotide differences per site (π)
between two sequences [31]) and divergence between
species were estimated using DnaSP v.5 [33]. Relationships
between samples were assessed using Principal Coordinate
Analysis (PCoA) based on a pairwise genetic distance
matrix (number of base differences per sequence) between
samples, and using the UPGMA method based on the
number of substitutions per site from averaging over all
sequence pairs between groups using the Tamura-Nei
model [34]. Polymorphism at the common set of 676
merged nuclear contigs was used to evaluate the genetic
differentiation in pairwise comparisons between species.
Significance was estimated by 1000 permutations of the
samples between species using Arlequin v.3.5 [35]. The
outlier Pinus uncinata sample (UN2), defined based on
PCoA analysis, was excluded from divergence estimates in
UPGMA and the species genetic differentiation analysis.
Supporting data
The datasets supporting the results of this article are
freely available through the NERC’s Environmental
Information Data Centre, as follows:

1. The sequence of 40798 transcripts of the reference
Scots pine sample (2_GT_31):

Filename: Reference_PS2_trinity.fasta; URL:
http://doi.org/10.5285/b6900166-ded6-4f7a-8734-
484b6f77b2f1

2. SNP files for each sample with reference to Scots
pine transcriptome sequence (2_GT_31):
Filenames: PS1_SNPs.vcf; PS2_SNPs.vcf; PS3_SNPs.
vcf; PS4_SNPs.vcf; PS5_SNPs.vcf; M1_SNPs.vcf;
M2_SNPs.vcf; M3_SNPs.vcf; M4_SNPs.vcf;
M5_SNPs.vcf; UN1_SNPs.vcf; UN2_SNPs.vcf;
UN3_SNPs.vcf; UN4_SNPs.vcf; UG1_SNPs.vcf;
UG2_SNPs.vcf; UG3_SNPs.vcf;
URL: http://doi.org/10.5285/b6900166-ded6-4f7a-
8734-484b6f77b2f1
Additional file

Additional file 1: Table S1. Gene ontology classification of the
unigenes based on biological processes, molecular function and cellular
component. Table S2. Pairwise nucleotide divergence between species.
Figure S1. Relationships between species based on pairwise genetic
distance at 676 unigenes (27929 SNPs). Outlier P. uncinata sample (UN2)
was excluded from the analysis.
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