92 research outputs found

    Praktijkproeven blauwalgenbestrijding in Noord-Brabant

    Get PDF
    Overlast door blauwalgenbloei is een hardnekkig en veel voorkomend waterkwaliteitsprobleem. Het is niet alleen hinderlijk omdat het vaak in de woonomgeving of in zwemplassen voorkomt, maar er zijn ook risico’s voor dier- en volksgezondheid aan verbonden. Structurele bestrijding van blauwalgen blijkt in de praktijk een lastige opgave. Veel van de uitgevoerde bestrijdingsmaatregelen blijken onvoldoende effect te sorteren. Om de kennis van de effectiviteit, mogelijke neveneffecten en kosten van kansrijke maatregelen te vergroten, worden in Noord-Brabant praktijkproeven uitgevoerd. Maatregelen die worden onderzocht, zijn onder andere de recent beschikbaar gekomen Flock en Lock-methodiek, baggeren en actief biologisch beheer. De maatregelen worden in verschillende combinaties toegepast. De uitvoering van de eerste maatregelen begon in mei 2009. Het project loopt dit jaar in ieder geval door. In het onderzoek werken de Wageningen Universiteit, de waterschappen Brabantse Delta, Aa en Maas en De Dommel en STOWA same

    Physicochemical Salt Solution Parameters Limit the Survival of Planococcus halocryophilus in Martian Cryobrines

    Get PDF
    Microorganisms living in sub-zero environments can benefit from the presence of dissolved salts, as they significantly increase the temperature range of liquid water by lowering the freezing point. However, high concentrations of salts can reduce microbial growth and survival, and can evoke a physiological stress response. It remains poorly understood how the physicochemical parameters of brines (e.g. water activity, ionic strength, solubility and hydration shell strength between the ions and the surrounding water molecules) influence the survival of microorganisms. We used the cryo− and halotolerant bacterial strain Planococcus halocryophilus as a model organism to evaluate the degree of stress different salts assert. Cells were incubated in liquid media at −15°C containing single salts at eutectic concentrations (CaCl2, LiCl, LiI, MgBr2, MgCl2, NaBr, NaCl, NaClO4 and NaI). Four of these salts (LiCl, LiI, MgBr2 and NaClO4) were also investigated at concentrations with a low water activity (0.635) and, separately, with a high ionic strength (8 mol/L). Water activity of all solutions was measured at −15°C. This is the first time that water activity has been measured for such a large number of liquid salt solutions at constant sub-zero temperatures (−15°C). Colony-Forming Unit (CFU) counts show that the survival of P. halocryophilus has a negative correlation with the salt concentration, molecular weight of the anion and anion radius; and a positive correlation with the water activity and anions’ hydration shell strength. The survival of P. halocryophilus did not show a significant correlation with the ionic strength, the molecular weight of the cation, the hydrated and unhydrated cation and hydrated anion radius, and the cations’ hydration bond length. Thus, the water activity, salt concentration and anion parameters play the largest role in the survival of P. halocryophilus in concentrated brines. These findings improve our understanding of the limitations of microbial life in saline environments, which provides a basis for better evaluation of the habitability of extraterrestrial environments such as Martian cryobrines.EC/FP7/339231/EU/Habitability of Martian Environments: Exploring the Physiological and Environmental Limits of Life/HOMEDFG, 414044773, Open Access Publizieren 2019 - 2020 / Technische UniversitĂ€t Berli

    Bacterial Growth in Chloride and Perchlorate Brines: Halotolerances and Salt Stress Responses of Planococcus halocryophilus

    Get PDF
    Extraterrestrial environments encompass physicochemical conditions and habitats that are unknown on Earth, such as perchlorate-rich brines that can be at least temporarily stable on the martian surface. To better understand the potential for life in these cold briny environments, we determined the maximum salt concentrations suitable for growth (MSCg) of six different chloride and perchlorate salts at 25°C and 4°C for the extremotolerant cold- and salt-adapted bacterial strain Planococcus halocryophilus. Growth was measured through colony-forming unit (CFU) counts, while cellular and colonial phenotypic stress responses were observed through visible light, fluorescence, and scanning electron microscopy. Our data show the following: (1) The tolerance to high salt concentrations can be increased through a stepwise inoculation toward higher concentrations. (2) Ion-specific factors are more relevant for the growth limitation of P. halocryophilus in saline solutions than single physicochemical parameters like ionic strength or water activity. (3) P. halocryophilus shows the highest microbial sodium perchlorate tolerance described so far. However, (4) MSCg values are higher for all chlorides compared to perchlorates. (5) The MSCg for calcium chloride was increased by lowering the temperature from 25°C to 4°C, while sodium- and magnesium-containing salts can be tolerated at 25°C to higher concentrations than at 4°C. (6) Depending on salt type and concentration, P. halocryophilus cells show distinct phenotypic stress responses such as novel types of colony morphology on agar plates and biofilm-like cell clustering, encrustation, and development of intercellular nanofilaments. This study, taken in context with previous work on the survival of extremophiles in Mars-like environments, suggests that high-concentrated perchlorate brines on Mars might not be habitable to any present organism on Earth, but extremophilic microorganisms might be able to evolve thriving in such environments.EC/FP7/339231/EU/Habitability of Martian Environments: Exploring the Physiological and Environmental Limits of Life/HOM

    A phase I study of ridaforolimus in adult Chinese patients with advanced solid tumors

    Get PDF
    PURPOSE: Ridaforolimus (AP23573, MK-8669 or deforolimus) is an inhibitor of mammalian target of rapamycin (mTOR), an important regulator in the cell survival pathway. This open-label, single center phase I study aimed to investigate the pharmacokinetic (PK) and safety profiles of ridaforolimus in Chinese patients with treatment-refractory advanced or relapsed solid tumors. The PK data generated from these Chinese patients were further compared with those previously reported in Caucasian and Japanese patient populations. EXPERIMENTAL DESIGN: The patients were given an oral dose of 40 mg of ridaforolimus on Day 1 of the study. On Day 8, patients were initiated on a treatment regimen that comprised a once daily dose of 40 mg of ridaforolimus for five consecutive days, followed by a 2-day off-drug interval. Patients repeated this regimen until disease progression or intolerance. Blood samples were collected at specific times pre- and post-treatment to establish the PK profile of ridaforolimus in all patients. RESULTS: Fifteen patients were given at least one dose of 40 mg of ridaforolimus. The median absorption lag-time was 2 hours, the median T(max) was 4 hours and the mean elimination half-life was 53 hours. The accumulation ratio for AUC(0-24hr) was 1.3 on day 19 (steady state)/day 1 (after a single dose). The most common drug-related adverse events (AEs) that occurred in ≄40% of patients were stomatitis, proteinuria, leukopenia, hyperglycemia, and pyrexia. Grade 3/4 drug-related AEs were anemia, stomatitis, fatigue, thrombocytopenia, constipation, gamma glutamyltransferase increase, and proteinuria. All 11 evaluable patients achieved stable disease. CONCLUSIONS: Oral ridaforolimus at a daily dose of 40 mg were generally well tolerated in Chinese patients with advanced or refractory solid tumors. Adverse events and PK profiles of ridaforolimus in this study were similar to those from Caucasian and Japanese patients reported previously

    Self-facilitation and negative species interactions could drive microscale vegetation mosaic in a floating fen

    Get PDF
    Aim: The formation of a local vegetation mosaic may be attributed to local variation in abiotic environmental conditions. Recent research, however, indicates that self-facilitating organisms and negative species interactions may be a driving factor. In this study, we explore whether heterogeneous geohydrological conditions or vegetation feedbacks and interactions could be responsible for a vegetation mosaic of rich and poor fen species. Location: Lake Aturtaun, Roundstone Bog, Ireland. Methods: In a floating fen, transects were set out to analyze the relation between vegetation type and rock–peat distance and porewater electrical conductivity. Furthermore, three distinct vegetation types were studied: rich fen, poor fen and patches of poor fen within rich fen vegetation. Biogeochemical measurements were conducted in a vertical profile to distinguish abiotic conditions of distinct vegetation types. Results: Geohydrological conditions may drive the distribution of poor and rich fen species at a larger scale in the floating fen, due to the supply of minerotrophic groundwater. Interestingly, both rich and poor fen vegetation occurred in a mosaic, when electrical conductivity values at 50 cm depth were between 300 ”S/cm and 450 ”S/cm. Although environmental conditions were homogeneous at 50 cm, they differed markedly between rich and poor fen vegetation at 10 cm depth. Specifically, our measurements indicate that poor fen vegetation lowered porewater alkalinity, bicarbonate concentrations and pH. No effects of rich fen vegetation at 10 cm depth on biogeochemistry was measured. However, rich fen litter had a higher mineralization rate than poor fen litter, which increases the influence of minerotrophic water in rich fen habitat. Conclusions: These results strengthen our hypothesis that species can drive formation of vegetation mosaics under environmentally homogeneous conditions in a floating fen. Positive intraspecific self-facilitating mechanisms and negative species interactions could be responsible for a stable coexistence of species, even leading to local ecosystem engineering by the species, explaining the local vegetation mosaic at the microscale level in a floating fen

    Microbial interaction with terrestrial and extraterrestrial rocks on the International Space Station

    Get PDF
    As space agencies plan to expand human presence in space and to settle on the Moon first and Mars later, developing strategies to achieve this goal in a sustainable way is necessary. These include in situ resource utilization (ISRU) and recovering of materials by waste recycling (1). Microbe based technologies may be pivotal to the success of human space exploration. Potential roles of microorganisms in space include manufacturing, as building blocks of ecosystems, in waste recycling and in biomining (2). Understanding microbial response to space conditions is therefore essential to harness their potential. [...

    No Effect of Microgravity and Simulated Mars Gravity on Final Bacterial Cell Concentrations on the International Space Station: Applications to Space Bioproduction

    Get PDF
    Microorganisms perform countless tasks on Earth and they are expected to be essential for human space exploration. Despite the interest in the responses of bacteria to space conditions, the findings on the effects of microgravity have been contradictory, while the effects of Martian gravity are nearly unknown. We performed the ESA BioRock experiment on the International Space Station to study microbe-mineral interactions in microgravity, simulated Mars gravity and simulated Earth gravity, as well as in ground gravity controls, with three bacterial species: Sphingomonas desiccabilis, Bacillus subtilis, and Cupriavidus metallidurans. To our knowledge, this was the first experiment to study simulated Martian gravity on bacteria using a space platform. Here, we tested the hypothesis that different gravity regimens can influence the final cell concentrations achieved after a multi-week period in space. Despite the different sedimentation rates predicted, we found no significant differences in final cell counts and optical densities between the three gravity regimens on the ISS. This suggests that possible gravityrelated effects on bacterial growth were overcome by the end of the experiment. The results indicate that microbial-supported bioproduction and life support systems can be effectively performed in space (e.g., Mars), as on Earth

    Guiding principles for the development and application of solid-phase phosphorus adsorbents for freshwater ecosystems

    Get PDF
    While a diverse array of phosphorus (P)-adsorbent materials is currently available for application to freshwater aquatic systems, selection of the most appropriate P-adsorbents remains problematic. In particular, there has to be a close correspondence between attributes of the P-adsorbent, its field performance, and the management goals for treatment. These management goals may vary from a rapid reduction in dissolved P to address seasonal enrichments from internal loading, targeting external fluxes due to anthropogenic sources, or long term inactivation of internal P inventories contained within bottom sediments. It also remains a challenge to develop new methods and materials that are ecologically benign and cost-effective. We draw on evidence in the literature and the authors’ personal experiences in the field, to summarise the attributes of a range of P-adsorbent materials. We offer 'guiding principles' to support practical use of existing materials and outline key development needs for new materials
    • 

    corecore