177 research outputs found

    Underperforming policy networks : the biopesticides network in the United Kingdom

    Get PDF
    Loosely integrated and incomplete policy networks have been neglected in the literature. They are important to consider in terms of understanding network underperformance. The effective delivery and formulation of policy requires networks that are not incomplete or underperforming. The biopesticides policy network in the United Kingdom is considered and its components identified with an emphasis on the lack of integration of retailers and environmental groups. The nature of the network constrains the actions of its agents and frustrates the achievement of policy goals. A study of this relatively immature policy network also allows for a focus on network formation. The state, via an external central government department, has been a key factor in the development of the network. Therefore, it is important to incorporate such factors more systematically into understandings of network formation. Feedback efforts from policy have increased interactions between productionist actors but the sphere of consumption remains insufficiently articulated

    The fitness of African malaria vectors in the presence and limitation of host behaviour

    Get PDF
    <p>Background Host responses are important sources of selection upon the host species range of ectoparasites and phytophagous insects. However little is known about the role of host responses in defining the host species range of malaria vectors. This study aimed to estimate the relative importance of host behaviour to the feeding success and fitness of African malaria vectors, and assess its ability to predict their known host species preferences in nature.</p> <p>Methods Paired evaluations of the feeding success and fitness of African vectors Anopheles arabiensis and Anopheles gambiae s.s in the presence and limitation of host behaviour were conducted in a semi-field system (SFS) at Ifakara Health Institute, Tanzania. In one set of trials, mosquitoes were released within the SFS and allowed to forage overnight on a host that was free to exhibit natural behaviour in response to insect biting. In the other, mosquitoes were allowed to feed directly on from the skin surface of immobile hosts. The feeding success and subsequent fitness of vectors under these conditions were investigated on 6 host types (humans, calves, chickens, cows, dogs and goats) to assess whether physical movements of preferred host species (cattle for An. arabiensis, humans for An. gambiae s.s.) were less effective at preventing mosquito bites than those of common alternatives.</p> <p>Results Anopheles arabiensis generally had greater feeding success when applied directly to host skin than when foraging on unrestricted hosts (in five of six host species). However, An. gambiae s.s obtained blood meals from free and restrained hosts with similar success from most host types (four out of six). Overall, the blood meal size, oviposition rate, fecundity and post-feeding survival of mosquito vectors were significantly higher after feeding on hosts free to exhibit behaviour, than those who were immobilized during feeding trials.</p> <p>Conclusions Allowing hosts to move freely during exposure to mosquitoes was associated with moderate reductions in mosquito feeding success, but no detrimental impact to the subsequent fitness of mosquitoes that were able to feed upon them. This suggests that physical defensive behaviours exhibited by common host species including humans do not impose substantial fitness costs on African malaria vectors.</p&gt

    Host Suitability of a Gregarious Parasitoid on Beetle Hosts: Flexibility between Fitness of Adult and Offspring

    Get PDF
    Behavioral tactics play a crucial role in the evolution of species and are likely to be found in host-parasitoid interactions where host quality may differ between host developmental stages. We investigated foraging decisions, parasitism and related fitness in a gregarious ectoparasitoid, Sclerodermus harmandi in relation to two distinct host developmental stages: larvae and pupae. Two colonies of parasitoids were reared on larvae of Monochamus alternatus and Saperda populnea (Cerambycidae: Lamiinae). Paired-choice and non-choice experiments were used to evaluate the preference and performance of S. harmandi on larvae and pupae of the two species. Foraging decisions and offspring fitness-related consequences of S. harmandi led to the selection of the most profitable host stage for parasitoid development. Adult females from the two colonies oviposited more quickly on pupae as compared to larvae of M. alternatus. Subsequently, their offspring development time was faster and they gained higher body weight on the pupal hosts. This study demonstrates optimal foraging of intraspecific détente that can occur during host-parasitoid interactions, of which the quality of the parasitism (highest fitness benefit and profitability) is related to the host developmental stage utilized. We conclude that S. harmandi is able to perfectly discriminate among host species or stages in a manner that maximizes its offspring fitness. The results indicated that foraging potential of adults may not be driven by its maternal effects, also induced flexibly with encountering prior host quality

    Postcopulatory sexual selection

    Get PDF
    The female reproductive tract is where competition between the sperm of different males takes place, aided and abetted by the female herself. Intense postcopulatory sexual selection fosters inter-sexual conflict and drives rapid evolutionary change to generate a startling diversity of morphological, behavioural and physiological adaptations. We identify three main issues that should be resolved to advance our understanding of postcopulatory sexual selection. We need to determine the genetic basis of different male fertility traits and female traits that mediate sperm selection; identify the genes or genomic regions that control these traits; and establish the coevolutionary trajectory of sexes

    Sperm displacement behavior of the cuttlefish Sepia esculenta (Cephalopoda: Sepiidae)

    Get PDF
    Sperm displacement behavior of cuttlefish (Sepia esculenta) was observed in a tank. Before ejaculation, male cuttlefish used their arms III to scrape out sperm masses attached to the buccal membranes of females. The removed sperm mass debris was directly visible and countable. Active sperm were present within the removed sperm debris, implying that the aim of this behavior is to remove competing male sperm. However, many sperm masses remained on the female buccal membrane even after the removal behavior, showing that sperm removal in S. esculenta is incomplete. The duration of sperm removal (an indicator of male investment in that process) was unaffected by the body sizes of mated pair, the duration of spermatangia placement at the current mating (for the hypothesis that the sperm removal serves to creat attachment space of spermatophores), or the estimated amount of sperm masses deposited from previous matings. Moreover, male S. esculenta performed sperm removal regardless of whether the last male to mate with the partner was himself, suggesting males remove not only the sperm of rivals but also their own. Although the number of removed sperm masses increased with the time spent on removal of sperm, male cuttlefish may shorten the duration of sperm removal to avoid the risk of mating interruption. We conclude that this time restriction would likely influence the degree of partial sperm removal in S. esculenta. A digital video image relating to the article is available at http://www.momo-p.com/showdetail-e.php?movieid=momo040729se01a

    Temporal variation in sex allocation in the mealybug <em>Planococcus citri</em>:Adaptation, constraint, or both?

    Get PDF
    Sex ratio theory has been very successful in predicting under which circumstances parents should bias their investment towards a particular offspring sex. However, most examples of adaptive sex ratio bias come from species with well-defined mating systems and sex determining mechanisms, while in many other groups there is still an on-going debate about the adaptive nature of sex allocation. Here we study the sex allocation in the mealybug Planococcus citri, a species in which it is currently unclear how females adjust their sex ratio, even though experiments have shown support for facultative sex ratio adjustment. Previous work has shown that the sex ratio females produce changes over the oviposition period, with males being overproduced early and late in the laying sequence. Here we investigate this complex pattern further, examining both the robustness of the pattern and possible explanations for it. We first show that this sex allocation behaviour is indeed consistent across lines from three geographical regions. Second, we test whether females produce sons first in order to synchronize reproductive maturation of her offspring, although our data provide little evidence for this adaptive explanation. Finally we test the age at which females are able to mate successfully and show that females are able to mate and store sperm before adult eclosion. Whilst early-male production may still function in promoting protandry in mealybugs, we discuss whether mechanistic constraints limit how female allocate sex across their lifetime

    Modelling Transmission of Vector-Borne Pathogens Shows Complex Dynamics When Vector Feeding Sites Are Limited

    Get PDF
    The relationship between species richness and the prevalence of vector-borne disease has been widely studied with a range of outcomes. Increasing the number of host species for a pathogen may decrease infection prevalence (dilution effect), increase it (amplification), or have no effect. We derive a general model, and a specific implementation, which show that when the number of vector feeding sites on each host is limiting, the effects on pathogen dynamics of host population size are more complex than previously thought. The model examines vector-borne disease in the presence of different host species that are either competent or incompetent (i.e. that cannot transmit the pathogen to vectors) as reservoirs for the pathogen. With a single host species present, the basic reproduction ratio R0 is a non-monotonic function of the population size of host individuals (H), i.e. a value exists that maximises R0. Surprisingly, if a reduction in host population size may actually increase R0. Extending this model to a two-host species system, incompetent individuals from the second host species can alter the value of which may reverse the effect on pathogen prevalence of host population reduction. We argue that when vector-feeding sites on hosts are limiting, the net effect of increasing host diversity might not be correctly predicted using simple frequency-dependent epidemiological models

    Does Global Warming Increase Establishment Rates of Invasive Alien Species? A Centurial Time Series Analysis

    Get PDF
    BACKGROUND: The establishment rate of invasive alien insect species has been increasing worldwide during the past century. This trend has been widely attributed to increased rates of international trade and associated species introductions, but rarely linked to environmental change. To better understand and manage the bioinvasion process, it is crucial to understand the relationship between global warming and establishment rate of invasive alien species, especially for poikilothermic invaders such as insects. METHODOLOGY/PRINCIPAL FINDINGS: We present data that demonstrate a significant positive relationship between the change in average annual surface air temperature and the establishment rate of invasive alien insects in mainland China during 1900-2005. This relationship was modeled by regression analysis, and indicated that a 1 °C increase in average annual surface temperature in mainland China was associated with an increase in the establishment rate of invasive alien insects of about 0.5 species year⁻¹. The relationship between rising surface air temperature and increasing establishment rate remained significant even after accounting for increases in international trade during the period 1950-2005. Moreover, similar relationships were detected using additional data from the United Kingdom and the contiguous United States. CONCLUSIONS/SIGNIFICANCE: These findings suggest that the perceived increase in establishments of invasive alien insects can be explained only in part by an increase in introduction rate or propagule pressure. Besides increasing propagule pressure, global warming is another driver that could favor worldwide bioinvasions. Our study highlights the need to consider global warming when designing strategies and policies to deal with bioinvasions

    Humans and Insects Decide in Similar Ways

    Get PDF
    Behavioral ecologists assume that animals use a motivational mechanism for decisions such as action selection and time allocation, allowing the maximization of their fitness. They consider both the proximate and ultimate causes of behavior in order to understand this type of decision-making in animals. Experimental psychologists and neuroeconomists also study how agents make decisions but they consider the proximate causes of the behavior. In the case of patch-leaving, motivation-based decision-making remains simple speculation. In contrast to other animals, human beings can assess and evaluate their own motivation by an introspection process. It is then possible to study the declared motivation of humans during decision-making and discuss the mechanism used as well as its evolutionary significance. In this study, we combine both the proximate and ultimate causes of behavior for a better understanding of the human decision-making process. We show for the first time ever that human subjects use a motivational mechanism similar to small insects such as parasitoids [1] and bumblebees [2] to decide when to leave a patch. This result is relevant for behavioral ecologists as it supports the biological realism of this mechanism. Humans seem to use a motivational mechanism of decision making known to be adaptive to a heterogeneously distributed resource. As hypothesized by Hutchinson et al. [3] and Wilke and Todd [4], our results are consistent with the evolutionary shaping of decision making because hominoids were hunters and gatherers on food patches for more than two million years. We discuss the plausibility of a neural basis for the motivation mechanism highlighted here, bridging the gap between behavioral ecology and neuroeconomy. Thus, both the motivational mechanism observed here and the neuroeconomy findings are most likely adaptations that were selected for during ancestral times

    Biosecurity and Yield Improvement Technologies Are Strategic Complements in the Fight against Food Insecurity

    Get PDF
    The delivery of food security via continued crop yield improvement alone is not an effective food security strategy, and must be supported by pre- and post-border biosecurity policies to guard against perverse outcomes. In the wake of the green revolution, yield gains have been in steady decline, while post-harvest crop losses have increased as a result of insufficiently resourced and uncoordinated efforts to control spoilage throughout global transport and storage networks. This paper focuses on the role that biosecurity is set to play in future food security by preventing both pre- and post-harvest losses, thereby protecting crop yield. We model biosecurity as a food security technology that may complement conventional yield improvement policies if the gains in global farm profits are sufficient to offset the costs of implementation and maintenance. Using phytosanitary measures that slow global spread of the Ug99 strain of wheat stem rust as an example of pre-border biosecurity risk mitigation and combining it with post-border surveillance and invasive alien species control efforts, we estimate global farm profitability may be improved by over US$4.5 billion per annum
    corecore