412 research outputs found

    Photoconductivity and charge transporting properties of metal-containing poly(p-phenylenevinylene)s

    Get PDF
    A novel type of poly(p-phenylenevinylene)s which contain bis(2.2β€²:6β€²,2β€³-terpyridine) ruthenium (II) complexes has been developed. The absorption of the polymers at 500 nm was strongly enhanced by the metal complexes due to the presence of the metal-ligand charge transfer transition. The charge transportation is dispersive with hole carrier mobilities and activation energy of ∼7 Γ— 10-5 cm2 V-1 s-1 and 0.20 eV. respectively, depending on the concentration of the metal complex. A log ΞΌ vs E1/2 plot shows that hole mobilities decrease with increasing field, which suggests the presence of off-diagonal disorder in the hopping sites. Β© 1997 American Institute of Physics.published_or_final_versio

    Synthesis and photophysical properties of some conjugated polymers functionalized with ruthenium polypyridine complexes

    Get PDF
    Symposium J: Electrical, Optical and Magnetic Properties of Organic Solid-State Materials IVA series of conjugated polymers functionalized with different ruthenium polypyridine metal complexes were synthesized by the palladium catalyzed reaction. Two conjugated polymer systems have been studied: 1. poly(phenylenevinylene) with bis(2,2':6',2''-terpyridine) ruthenium (II) on the mainchain and 2. quinoxaline based polymers with tris(2,2'-bipyridine) ruthenium (II). The ruthenium polypyridine complexes exhibit a long-lived metal to ligand charge transfer excited state which can enhance the photosensitivity of the resulting polymers. Different physical properties such as the photoconductivity and charge mobility in these polymers are also studied.published_or_final_versio

    One-carbon metabolism and epigenetic programming of mammalian development

    Get PDF
    One-carbon (1C) metabolism comprises a series of integrated metabolic pathways, including the linked methionine-folate cycles, that provide methyl groups for the synthesis of biomolecules and the epigenetic regulation of gene expression via chromatin methylation. Most of the research investigating the function of 1C metabolism pertains to studies undertaken in the rodent liver. Comparatively little is known about the function of 1C metabolism in reproductive and embryonic cells, particularly in domestic ruminant species. Periconceptional dietary deficiencies in 1C substrates and cofactors are known to lead to epigenetic alterations in DNA methylation in genes that regulate key developmental processes in the embryo. Such modifications can have negative implications on the subsequent development, metabolism and health of offspring. This thesis sought to improve current understanding of the regulation of 1C metabolism in the ruminant liver, ovary and preimplantation embryo through in vivo and in vitro nutritional supplementation experiments coupled with metabolomic, transcriptomic and epigenetic analyses. The first part of this thesis (Chapter 2) assessed the metabolic consequences of dietary methyl deficiency using novel mass spectrometry–based methods that were developed for the quantification of B vitamins, folates and 1C-related amines in sheep liver. This study provided the first comparison of the relative abundance of bioactive 1C metabolites in liver harvested from methyl deficient sheep relative to a control study population of abattoir derived sheep. Relevant reductions in dietary methyl availability led to significant alterations in hepatic 1C metabolite concentrations. Large natural variations in the hepatic concentrations of individual metabolites in both sheep study populations reflected the dietary and genetic variation in our chosen outbred model species. These metabolomics platforms will be useful for investigating 1C metabolism and linked biochemical pathways in order to facilitate future dietary and genetic studies of metabolic health and epigenetic regulation of gene expression. Based on the absence of methionine cycle enzyme transcripts (e.g. MAT1A and BHMT) in the bovine ovary and preimplantation embryo, the second part of this thesis (Chapter 3 and Chapter 4) addressed the hypothesis that ruminant reproductive and embryonic cells are highly sensitive to methyl group availability and, therefore, epigenetic programming during the periconceptional period. Transcript analyses confirmed MAT2A expression in the bovine liver, ovary and at each stage of preimplantation embryo development assessed to Day 8. Transcripts for BHMT isoforms (BHMT and BHMT2) were detected in the bovine ovary but were weak or absent in embryos, highlighting a key difference in methionine metabolism between hepatic and reproductive cells. Bovine embryos were produced in vitro using custom-made media containing 0 (nonphysiological), 10 (low physiological), 50 (high physiological), and 500 Β΅mol/L (supraphysiological) added methionine (Chapter 3). Gross morphological assessments of embryo stage, grade, cell lineage allocation and primary sex ratio revealed that culture in non- and supraphysiological methionine concentrations was detrimental for embryo development, whilst culture in the high physiological concentration appeared to be best. Reduced representation bisulphite sequencing (RRBS) of inner cell mass (ICM) and trophectoderm (TE) cells immunodissected from Day 8 blastocysts demonstrated that culturing embryos in low physiological methionine led to global hypomethylation within both cell lineages. Bioinformatic analyses of differentially methylated genes included gene set enrichment analyses (GSEA). Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways that were enriched within the ICM were associated with protein catabolism and autophagy, and significant terms and pathways enriched within the TE were associated with cellular transport. Of particular biological interest was the loss of methylation within regulatory region (DMR2) of the paternally imprinted gene, IGF2R, in the TE following culture in low physiological methionine. Transcript analysis found no significant effect of methionine concentration on the expression of IGF2R or the antisense transcript, AIRN, in the primary cell lineages of the Day 8 bovine preimplantation embryo. Hypomethylation of IGF2R DMR2 has been associated with aberrant IGF2R expression and large offspring syndrome (LOS) in cattle and sheep that were subjected to embryo manipulation during assisted reproductive technology (ART) procedures, such as somatic cell nuclear transfer (SCNT) or non-physiological in vitro embryo culture environments. Chapter 5 sought to evaluate the effect of somatic donor cell type on epigenetic reprogramming via DNA methylation in hepatocytes isolated from cloned sheep. RRBS facilitated the comparison of methylation reprogramming between Finn Dorset (D) clone hepatocytes and their mammary epithelial (OP5) donor cell line; and, Lleyn (L) clone hepatocytes and their Lleyn fetal fibroblast (LFF4) donor cell line. Methylation was most closely correlated between D and L clone hepatocytes than between clones and their respective donor cell lines. In general, hepatocytes were hypomethylated relative to their somatic donor cell nuclei. GSEA identified genes that encoded transcription factor proteins enriched within the β€˜Sequence-specific DNA binding’ term (GO:0043565) as differentially methylated between clone hepatocytes and their donor cell lines. In addition, imprinted genes, including IGF2R, were differentially methylated in clone hepatocytes relative to somatic cell nuclei. In summary, this thesis promotes and supports the importance of an optimal methyl balance to support periconceptional development in mammals. The experiments detailed herein provide an insight into the metabolic consequences of dietary methyl deficiency (and excess) in outbred populations of domestic ruminants, with a specific focus on the liver, ovary and preimplantation embryo. The results demonstrate that tissue- and species-specific features of 1C metabolism render ruminant embryonic cells sensitive to methionine inputs within a physiological range. The observation that in vitro embryo culture and manipulation techniques, such as somatic cell nuclear transfer, can cause epigenetic alterations to DNA methylation during preimplantation development provides a basis for further study into the safety and efficacy of emerging assisted reproductive technologies

    Protective effect of stromal Dickkopf-3 in prostate cancer: opposing roles for TGFBI and ECM-1

    Get PDF
    Aberrant transforming growth factor–β (TGF-Ξ²) signaling is a hallmark of the stromal microenvironment in cancer. Dickkopf-3 (Dkk-3), shown to inhibit TGF-Ξ² signaling, is downregulated in prostate cancer and upregulated in the stroma in benign prostatic hyperplasia, but the function of stromal Dkk-3 is unclear. Here we show that DKK3 silencing in WPMY-1 prostate stromal cells increases TGF-Ξ² signaling activity and that stromal cellconditioned media inhibit prostate cancer cell invasion in a Dkk-3-dependent manner. DKK3 silencing increased the level of the cell-adhesion regulator TGF-β–induced protein (TGFBI) in stromal and epithelial cell-conditioned media, and recombinant TGFBI increased prostate cancer cell invasion. Reduced expression of Dkk-3 in patient tumors was associated with increased expression of TGFBI. DKK3 silencing reduced the level of extracellular matrix protein-1 (ECM-1) in prostate stromal cell-conditioned media but increased it in epithelial cell-conditioned media, and recombinant ECM-1 inhibited TGFBI-induced prostate cancer cell invasion. Increased ECM1 and DKK3 mRNA expression in prostate tumors was associated with increased relapse-free survival. These observations are consistent with a model in which the loss of Dkk-3 in prostate cancer leads to increased secretion of TGFBI and ECM-1, which have tumor-promoting and tumor-protective roles, respectively. Determining how the balance between the opposing roles of extracellular factors influences prostate carcinogenesis will be key to developing therapies that target the tumor microenvironment

    Cbl Ubiquitin Ligases Control B Cell Exit from the Germinal-Center Reaction

    Get PDF
    Selective expansion of high-affinity antigen-specific B cells in germinal centers (GCs) is a key event in antibody affinity maturation. GC B cells with improved affinity can either continue affinity-driven selection or exit the GC to differentiate into plasma cells (PCs) or memory B cells. Here we found that deleting E3 ubiquitin ligases Cbl and Cbl-b (Cbls) in GC B cells resulted in the early exit of high-affinity antigen-specific B cells from the GC reaction and thus impaired clonal expansion. Cbls were highly expressed in GC light zone (LZ) B cells, where they promoted the ubiquitination and degradation of Irf4, a transcription factor facilitating PC fate choice. Strong CD40 and BCR stimulation triggered the Cbl degradation, resulting in increased Irf4 expression and exit from GC affinity selection. Thus, a regulatory cascade that is centered on the Cbl ubiquitin ligases ensures affinity-driven clonal expansion by connecting BCR affinity signals with differentiation programs

    Prognostic parameters for recurrence of papillary thyroid microcarcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Papillary thyroid microcarcinoma (PTMC) is defined as a papillary thyroid carcinoma less than or equal to 1.0 cm in size. Independent prognostic factors for clinical recurrence of PTMC have not been clearly delineated.</p> <p>Methods</p> <p>Clinicopathological parameters predicting PTMC recurrence were determined by retrospective analysis of 307 patients.</p> <p>Results</p> <p>Of the 293 patients eligible for analysis, 14 (5%) had recurrence during a median follow-up time of 65 months. Recurrence was observed in 8 of 166 patients (0.5%) treated with total or near-total thyroidectomy; gender (P = 0.02) and presence of lateral cervical node metastases at initial surgery (P = 0.01) were associated with recurrence. Six of the 127 patients (0.5%) treated with hemi- or subtotal thyroidectomy experience recurrences, but no significant prognostic factor for recurrence was identified. Multivariate Cox-regression analysis showed that gender and cervical lymph node metastasis were significant variables</p> <p>Conclusion</p> <p>PTMC showed very diverse disease extent and could not be regarded as indolent, relatively benign disease based on the primary tumor size. The extent of surgery should be based on prognostic parameters, such as gender and lateral neck node metastasis, in patients with PTMC.</p

    Tanshinones Inhibit the Growth of Breast Cancer Cells through Epigenetic Modification of Aurora A Expression and Function

    Get PDF
    The objectives of this study were to evaluate the effects of tanshinones from a Chinese herb Salvia Miltiorrhiza on the growth of breast cancer cells, and to elucidate cellular and molecular mechanisms of action. Tanshinones showed the dose-dependent effect on the growth inhibition of breast cancer cells in vitro, with tanshinone I (T1) the most potent agent. T1 was also the only tanshinone to have potent activity in inhibiting the growth of the triple-negative breast cancer cell line MDA-MB231. T1 caused cell cycle arrests of both estrogen-dependent and estrogen-independent cell lines associated with alterations of cyclinD, CDK4 and cyclinB, and induced breast cancer cell apoptosis associated with upregulation of c-PARP and downregulation of survivin and Aurora A. Among these associated biomarkers, Aurora A showed the most consistent pattern with the anti-growth activity of tanshinones. Overexpression of Aurora A was also verified in breast tumors. The gene function assay showed that knockdown of Aurora A by siRNA dramatically reduced the growth-inhibition and apoptosis-induction activities of T1, suggesting Aurora A as an important functional target of T1 action. On the other hand, tanshinones had much less adverse effects on normal mammary epithelial cells. Epigenetic mechanism studies showed that overexpression of Aurora A gene in breast cancer cells was not regulated by gene promoter DNA methylation, but by histone acetylation. T1 treatment significantly reduced acetylation levels of histone H3 associated with Aurora A gene. Our results supported the potent activity of T1 in inhibiting the growth of breast cancer cells in vitro in part by downregulation of Aurora A gene function. Our previous studies also demonstrated that T1 had potent anti-angiogenesis activity and minimal side effects in vivo. Altogether, this study warrants further investigation to develop T1 as an effective and safe agent for the therapy and prevention of breast cancer

    Ξ±-Adducin Gly460Trp Gene Mutation and Essential Hypertension in a Chinese Population: A Meta-Analysis including 10960 Subjects

    Get PDF
    BACKGROUND: The Ξ±-adducin Gly460Trp (G460W) gene polymorphism may be associated with susceptibility to essential hypertension (EH), but this relationship remains controversial. In an attempt to resolve this issue, we conducted a meta-analysis. METHODS: Twenty-three separated studies involving 5939 EH patients and 5021 controls were retrieved and analyzed. Four ethnicities were included: Han, Kazakh, Mongolian, and She. Eighteen studies with 5087 EH patients and 4183 controls were included in the Han subgroup. Three studies with 636 EH patients and 462 controls were included in the Kazakh subgroup. The Mongolian subgroup was represented by only one study with 100 EH patients and 50 controls; similarly, only one study with 116 EH patients and 326 controls was available for the She subgroup. The pooled and ethnic group odds ratios (ORs) along with the corresponding 95% confidence intervals (95% CI) were assessed using a random effects model. RESULTS: There was a significant association between the Ξ±-adducin G460W gene polymorphism and EH in the pooled Chinese population under both an allelic genetic model (OR: 1.12, 95% CI: 1.04-1.20, Pβ€Š=β€Š0.002) and a recessive genetic model (OR: 1.40, 95% CI: 1.16-1.70, Pβ€Š=β€Š0.0005). In contrast, no significant association between the Ξ±-adducin G460W gene polymorphism and EH was observed in the dominant genetic model (OR: 0.88, 95% CI: 0.72-1.09, Pβ€Š=β€Š0.24). In stratified analysis by ethnicity, significantly increased risk was detected in the Han subgroup under an allelic genetic model (OR: 1.13, 95% CI: 1.04-1.23, Pβ€Š=β€Š0.003) and a recessive genetic model (OR: 1.43, 95% CI: 1.17-1.75, Pβ€Š=β€Š0.0006). CONCLUSIONS: In a Chinese population of mixed ethnicity, the Ξ±-adducin G460W gene polymorphism was linked to EH susceptibility, most strongly in Han Chinese
    • …
    corecore