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Abstract  

One-carbon (1C) metabolism comprises a series of integrated metabolic 

pathways, including the linked methionine-folate cycles, that provide methyl 

groups for the synthesis of biomolecules and the epigenetic regulation of gene 

expression via chromatin methylation. Most of the research investigating the 

function of 1C metabolism pertains to studies undertaken in the rodent liver. 

Comparatively little is known about the function of 1C metabolism in 

reproductive and embryonic cells, particularly in domestic ruminant species. 

Periconceptional dietary deficiencies in 1C substrates and cofactors are known 

to lead to epigenetic alterations in DNA methylation in genes that regulate key 

developmental processes in the embryo. Such modifications can have negative 

implications on the subsequent development, metabolism and health of 

offspring. This thesis sought to improve current understanding of the regulation 

of 1C metabolism in the ruminant liver, ovary and preimplantation embryo 

through in vivo and in vitro nutritional supplementation experiments coupled with 

metabolomic, transcriptomic and epigenetic analyses.  

The first part of this thesis (Chapter 2) assessed the metabolic consequences 

of dietary methyl deficiency using novel mass spectrometry–based methods 

that were developed for the quantification of B vitamins, folates and 1C-related 

amines in sheep liver. This study provided the first comparison of the relative 

abundance of bioactive 1C metabolites in liver harvested from methyl deficient 

sheep relative to a control study population of abattoir derived sheep. Relevant 

reductions in dietary methyl availability led to significant alterations in hepatic 

1C metabolite concentrations. Large natural variations in the hepatic 

concentrations of individual metabolites in both sheep study populations 

reflected the dietary and genetic variation in our chosen outbred model species. 

These metabolomics platforms will be useful for investigating 1C metabolism 

and linked biochemical pathways in order to facilitate future dietary and genetic 

studies of metabolic health and epigenetic regulation of gene expression.   

Based on the absence of methionine cycle enzyme transcripts (e.g. MAT1A and 

BHMT) in the bovine ovary and preimplantation embryo, the second part of this 

thesis (Chapter 3 and Chapter 4) addressed the hypothesis that ruminant 

reproductive and embryonic cells are highly sensitive to methyl group availability 

and, therefore, epigenetic programming during the periconceptional period. 

Transcript analyses confirmed MAT2A expression in the bovine liver, ovary and 

at each stage of preimplantation embryo development assessed to Day 8. 
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Transcripts for BHMT isoforms (BHMT and BHMT2) were detected in the bovine 

ovary but were weak or absent in embryos, highlighting a key difference in 

methionine metabolism between hepatic and reproductive cells. 

Bovine embryos were produced in vitro using custom-made media containing 0 

(nonphysiological), 10 (low physiological), 50 (high physiological), and 500 

µmol/L (supraphysiological) added methionine (Chapter 3). Gross 

morphological assessments of embryo stage, grade, cell lineage allocation and 

primary sex ratio revealed that culture in non- and supraphysiological 

methionine concentrations was detrimental for embryo development, whilst 

culture in the high physiological concentration appeared to be best. Reduced 

representation bisulphite sequencing (RRBS) of inner cell mass (ICM) and 

trophectoderm (TE) cells immunodissected from Day 8 blastocysts 

demonstrated that culturing embryos in low physiological methionine led to 

global hypomethylation within both cell lineages. Bioinformatic analyses of 

differentially methylated genes included gene set enrichment analyses (GSEA). 

Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes 

(KEGG) pathways that were enriched within the ICM were associated with 

protein catabolism and autophagy, and significant terms and pathways enriched 

within the TE were associated with cellular transport. Of particular biological 

interest was the loss of methylation within regulatory region (DMR2) of the 

paternally imprinted gene, IGF2R, in the TE following culture in low 

physiological methionine. Transcript analysis found no significant effect of 

methionine concentration on the expression of IGF2R or the antisense 

transcript, AIRN, in the primary cell lineages of the Day 8 bovine preimplantation 

embryo. Hypomethylation of IGF2R DMR2 has been associated with aberrant 

IGF2R expression and large offspring syndrome (LOS) in cattle and sheep that 

were subjected to embryo manipulation during assisted reproductive technology 

(ART) procedures, such as somatic cell nuclear transfer (SCNT) or non-

physiological in vitro embryo culture environments.  

Chapter 5 sought to evaluate the effect of somatic donor cell type on epigenetic 

reprogramming via DNA methylation in hepatocytes isolated from cloned sheep. 

RRBS facilitated the comparison of methylation reprogramming between Finn 

Dorset (D) clone hepatocytes and their mammary epithelial (OP5) donor cell 

line; and, Lleyn (L) clone hepatocytes and their Lleyn fetal fibroblast (LFF4) 

donor cell line. Methylation was most closely correlated between D and L clone 

hepatocytes than between clones and their respective donor cell lines. In 
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general, hepatocytes were hypomethylated relative to their somatic donor cell 

nuclei. GSEA identified genes that encoded transcription factor proteins 

enriched within the ‘Sequence-specific DNA binding’ term (GO:0043565) as 

differentially methylated between clone hepatocytes and their donor cell lines. 

In addition, imprinted genes, including IGF2R, were differentially methylated in 

clone hepatocytes relative to somatic cell nuclei.  

In summary, this thesis promotes and supports the importance of an optimal 

methyl balance to support periconceptional development in mammals. The 

experiments detailed herein provide an insight into the metabolic consequences 

of dietary methyl deficiency (and excess) in outbred populations of domestic 

ruminants, with a specific focus on the liver, ovary and preimplantation embryo. 

The results demonstrate that tissue- and species-specific features of 1C 

metabolism render ruminant embryonic cells sensitive to methionine inputs 

within a physiological range. The observation that in vitro embryo culture and 

manipulation techniques, such as somatic cell nuclear transfer, can cause 

epigenetic alterations to DNA methylation during preimplantation development 

provides a basis for further study into the safety and efficacy of emerging 

assisted reproductive technologies.  
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General Introduction 

Evidence from epidemiological cohort studies in humans and mechanistic 

studies in animals demonstrates that altering key developmental processes in 

utero can predispose offspring to adult-onset non-communicable diseases, 

such as cancer, dyslipidaemia, type II diabetes and cardiovascular disease 

(Barker, 1995; McMillen and Robinson, 2005; Sinclair et al., 2016b). These and 

related observations, originally advanced by David Barker and colleagues at the 

University of Southampton over thirty years ago (Barker and Osmond, 1986; 

Barker and Osmond, 1988; Barker et al., 1989), became known as ‘The Barker 

Hypothesis’ but are now commonly referred to as the ‘Developmental Origins of 

Health and Disease’ (DOHaD) hypothesis (Wadhwa et al., 2009). This theory 

postulates that environmental factors, such as parental diet or embryo culture 

media used during assisted reproduction technologies (ART), can act during 

critical stages of mammalian embryo development to programme physiological 

and metabolic functions in the fetus, thereby determining its susceptibility to 

adverse health outcomes in later life (Stephenson et al., 2018; Fleming et al., 

2018).  

Studies of human cohorts exposed to maternal undernutrition at various stages 

of pregnancy during the Dutch Hunger Winter of 1944-45 (a famine that took 

place in the German-occupied Netherlands) revealed that people exposed to 

famine during early gestation were more likely to develop cardiometabolic 

disease, such as obesity, compared to those who had been exposed to famine 

in late gestation (Ravelli et al., 1976; Stein et al., 2007). Hence, two important 

conclusions were drawn from these cohort studies: i) intrauterine exposures can 

have long-lasting effects on adult health; and, ii) the timing of the exposure is 

critical for the programming of adult health (Schulz, 2010).  

Much of the evidence underpinning DOHaD has since been obtained during 

direct intervention studies using animal models. The effects of nutrient 

deprivation (i.e. gross caloric restriction or protein deficiency) in the maternal 

diet during pregnancy have been well-documented in rodents and sheep 

(Langley-Evans, 2006; Sinclair and Singh, 2007). By way of example, feeding 

rats a maternal low protein diet (LPD) causes a range of sex-specific molecular, 

metabolic, neuroendocrine and physiological adaptations in offspring that lead 

to adverse adult health-related phenotypes, such as obesity and hypertension 

(Kwong et al., 2000; Kwong et al., 2006; Kwong et al., 2007; Watkins et al., 
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2008). Similar observations have been also reported in sheep (Edwards and 

McMillen, 2002; Dunford et al., 2014; Lan et al., 2013).  

Whilst animal models confirm that long-term health can be compromised by 

nutrient deprivation in utero, little is known about the effects of specific dietary 

nutrients and the mechanistic basis underpinning the metabolic programming of 

development (Sinclair and Singh, 2007). In recent years, B vitamins and methyl 

(CH3) donating metabolites that serve as key substrates and cofactors of one-

carbon (1C) metabolism have been identified as molecular mediators 

responsible for developmental programming (Sinclair et al., 2007; Maloney et 

al., 2011; Kalhan, 2016). Since 1C metabolic pathways provide a biochemical 

conduit between parental diet and epigenetic regulation of early development 

(Clare et al., 2019), it follows that fluctuations in dietary methyl group availability 

can alter epigenetic regulation of gene expression via biological methylation 

reactions during critical periods of mammalian development, thereby modifying 

adult health-related phenotypes in offspring (Maloney et al., 2011; Araújo et al., 

2013).  

The periconceptional period is the stage of mammalian development 

considered most environmentally sensitive to perturbations in 1C metabolism 

and epigenetic programming. This period can be broadly defined as the time 

before and immediately following conception wherein a diverse range of key 

biological and molecular processes take place (discussed in Section 1.1.1) 

(Sinclair et al., 2007; Louis et al., 2008; Maloney et al., 2011; Steegers-

Theunissen et al., 2013; Padhee et al., 2015). 

The observation that offspring health is programmed by maternal diet during the 

earliest stages of development emphasises the importance of adequate 

nutritional status amongst women of reproductive age and, particularly, 

expectant mothers (Louis et al., 2008; Hambidge et al., 2014; Young et al., 

2018). Health surveys demonstrate that the nutritional intake of the general 

population is suboptimal. According to a recent review of European National 

Dietary Surveys, World Health Organisation (WHO) Recommended Nutrient 

Intakes (RNIs) are most notably lacking in women (Rippin et al., 2017). It follows 

that suboptimal nutritional intakes are likely to prevail in women planning for 

pregnancy and who are pregnant (Hammiche et al., 2011; Gernand et al., 2016). 

Since 44% of pregnancies worldwide are unplanned (Bearak et al., 2018), with 

many women unaware that they are pregnant until the fifth week of pregnancy 

(Temel et al., 2014), women experiencing unplanned pregnancy are unlikely to 
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intentionally initiate nutritional health care behaviours to address perinatal risk 

factors and, therefore, may lack essential vitamin, mineral and micronutrient 

intakes during their first trimester of pregnancy (Kuroki et al., 2008). 

Consequently, birth outcomes for unintended pregnancies may place the 

newborn at increased risk of preterm birth, low weight, congenital abnormalities, 

and neonatal death (Kost et al., 1998; Gernand et al., 2016).  

Worldwide efforts are being undertaken to reduce such adverse pregnancy 

outcomes with an increasing focus on periconceptional care (Dunlop et al., 

2007; Temel et al., 2014). A case in point refers to the public recommendation 

of periconceptional maternal folic acid (FA) supplementation (400 µg/d) as a 

dietary intervention to reduce adverse birth outcomes, primarily neural tube 

defects (NTDs; De-Regil et al., 2010). It is well recognised that maternal folate 

status is critical for normal neural tube closure and the prevention of NTDs up 

to day 28 post-conception (McNulty et al., 2000). 

With an aim to reduce the incidence of NTDs, the United States and Canada 

introduced a policy of mandatory fortification of enriched cereal grain products 

with FA. Since its implementation in 1998, this policy has witnessed a 19-32% 

decline in the prevalence of NTDs (Crider et al., 2011). Fortification programmes 

have now been implemented in >81 countries (Wald et al., 2018) and studies 

have shown a clear reduction in NTDs (Honein et al., 2001; De Wals et al., 2007; 

Hertrampf and Cortés, 2008). However, there is general resistance to 

implementation of this within Europe and mandatory FA fortification remains a 

topic of contention. Concerns revolve around putative adverse effects of 

unmetabolised FA in the systemic circulation, cognitive decline in the elderly, 

increased risk of cancer, and masking or exacerbating the effects of vitamin B12 

deficiency (Smith and Refsum, 2016; Field and Stover, 2018). 

Unfortunately, dietary inadequacies of 1C metabolites prevail in Europe (Gilsing 

et al., 2010) and pose considerable risk to women of reproductive age (Gernand 

et al., 2016; Obeid et al., 2016; Ferraro et al., 2017; Table 1). Most of the 

scientific literature has focused on the association between folate and B vitamin 

deficiency, and adverse reproductive outcomes in humans (Dasarthy et al., 

2010), however, the effect of methionine deficiency on reproductive health is an 

important line of enquiry. Methionine is often the first rate-limiting amino acid for 

protein synthesis in animal and human diets (Laurichesse et al., 1998; Schwab 

and Broderick, 2017). In humans, vegetarians and vegans are at increased risk 
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of methionine deficiency, since plant proteins tend to be lower in methionine 

than animal proteins (McCarty et al., 2009; Kim et al., 2018).  

Table 1. Effect of maternal dietary deficiency of 1C metabolites during the 
periconceptional period in humans.  

Dietary 1C metabolite 
deficiency 

Reproductive outcome Reference(s) 

Folate  B9 NTDs 
Megaloblastic anaemia 

Lucock (2000) 
Beaudin and Stover (2009) 
Cooper and Lowenstein (1966) 

Vitamin B12 B12 Infertility 
Recurrent abortion 
NTDs 
Pre-term birth  
Megaloblastic anaemia 

Pront et al. (2009) 
Reznikoff-Etiévant et al. (2002)  
Lucock (2000) 
Beaudin and Stover (2009) 
Cooper and Lowenstein (1966) 

Vitamin B6 B6 Reduced conception 
rate 

Reznikoff-Etiévant et al. (2002) 
Ronnenberg et al. (2007)  

Vitamin B2 B2 Preeclampsia  Wacker et al. (2000)  

Choline  Chol NTDs Shaw et al. (2004) 

Betaine  TMG NTDs Shaw et al. (2004) 

Methionine  Met NTDs 
 

Kalhan (2009)  
Shoob et al. (2001) 
Shaw et al. (2004) 

Abbreviation(s): NTDs, neural tube defects; TMG, trimethylglycine. 

A 5-year, population-based case-control study of 439 women reported a 30-

55% lower NTD risk among women whose average daily dietary intake of 

methionine was greater than the lowest quartile of intake (>1580 mg/d; Shoob 

et al., 2001). Risks were also lowest for women whose diets were rich in other 

methionine cycle metabolites, specifically choline and betaine (TMG; Shaw et 

al., 2004).  

It follows that the availability of methionine and other 1C metabolites during 

critical periods of mammalian development is essential to supply methyl groups 

for methylation reactions, particularly those that support high rates of maternal 

and fetal tissue synthesis and deposition during pregnancy and early life (Rees 

et al., 2006; Kurpad et al., 2014). As important is the balance of methionine 

relative to other metabolites in the maternal diet as fetal growth and 

development can be retarded by methionine deficiency and excess (Rees et al., 

2006). 

With accumulating evidence to indicate that dietary imbalances in 1C 

metabolites are detrimental to health (Steegers-Theunissen et al., 2013; Obeid 
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et al., 2017), there is a need for further investigation. Set against this general 

background is the need to improve our understanding of how 1C metabolism 

functions within the somatic cells of the mammalian ovary, oocyte and pre-

implantation embryo. Extensive research investigating the function of 1C 

metabolism has been conducted in rodent liver (Balaghi et al., 1993) with the 

help of mathematical models (Finkelstein and Martin, 1986; Finkelstein, 1990; 

Caudill et al., 2001; Reed et al., 2004; Korendyaseva et al., 2008) but there is 

limited knowledge of how this series of interlinked metabolic pathways functions 

within reproductive tissues. Aside tissue-specific differences, there are species-

specific differences in 1C metabolism between ruminants and non-ruminants 

that cannot be disregarded (Xue and Snoswell, 1985; Snoswell and Xue, 1987; 

Lambert et al., 2002).  

Knowledge of the function of 1C metabolism in ruminants is of particular 

agricultural and economic importance. Cattle and sheep have a low dietary 

intake of methyl donors in the post-ruminant state (the developmental stage 

when the rumen becomes fully functional for microbial fermentation and 

digestion of food) and are, therefore, sensitive to impairments to 1C metabolic 

pathways (Snoswell and Xue, 1987). As the liver is the major site of 1C 

metabolism (Lu and Mato, 2012; da Silva et al., 2020), it seems insightful to 

begin by investigating the function of these pathways in this metabolically active 

tissue.   

Previous studies from our laboratory suggest that methionine metabolism is 

likely to function differently in reproductive tissues than in the liver as transcripts 

encoding key methionine cycle enzymes were either absent or expressed at low 

levels in bovine ovarian cells, oocytes and early embryos (Kwong et al., 2010). 

The metabolic implications of this, regarding the provision of dietary 1C 

substrates and cofactors, together with consequences of polymorphic variances 

in genes encoding 1C enzymes are not fully understood but are the subject of 

ongoing investigations. Hence, the broad aims and objectives of this thesis are 

to enhance our current understanding of the regulation of 1C metabolism in the 

ruminant liver, ovary and preimplantation embryo, with a specific focus on 

methionine metabolism and epigenetic programming of mammalian 

development. 
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One-carbon metabolism and epigenetic regulation of 

periconceptional development  
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This chapter provides an overview of the interaction between maternal nutrition, 

one-carbon (1C) metabolism and epigenetic programming during mammalian 

embryo development. A detailed description of the biochemistry of hepatic 1C 

metabolism and related pathways is presented, followed by a summary of what 

is currently known about the regulation of 1C metabolism in the ovary and early 

embryo. Thereafter, the review focuses on methionine metabolism and DNA 

methylation within the preimplantation embryo, culminating in a working 

hypothesis.  

1.1 Maternal nutrition, 1C metabolism and pregnancy outcome 

One-carbon metabolism serves as a biochemical conduit between external 

environment and epigenetic regulation of early development (Clare et al., 2019). 

It is now generally recognised that reproductive failures and problems 

associated with epigenetic programming of offspring health are due in no small 

measure to dietary disturbances in 1C pathways during the periconceptional 

period.  

 The periconceptional period 

In women, this can be defined as a 5 to 6-month period that encompasses 

oocyte growth, fertilisation and embryonic development to week 10 of gestation 

(a stage which coincides with the closure of the secondary palate). The 

analogous phase in men encompasses the spermatogenic cycle which lasts 

approximately 75 days (Steegers-Theunissen et al., 2013). Animal models use 

different timings around conception to define the periconceptional period 

according to gestation length, however, this stage of development typically 

includes gametogenesis, pre- and post-implantation embryogenesis and 

placentation for all model species (Spencer et al., 2004; Padhee et al., 2015).  

1.1.1.1 Epigenetic reprogramming 

Two critical epigenetic reprogramming events take place during mammalian 

development. The first ensues after fertilisation when the gametic marks are 

erased and replaced with embryonic marks important for early embryo 

development (Morgan et al., 2005). The paternal genome undergoes dynamic 

epigenetic reprogramming that involves the exchange of protamines for 

histones, the acquisition of histone modifications (i.e. histone code) and active 
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demethylation of DNA. In contrast, the maternal genome undergoes passive 

demethylation via DNA replication during subsequent cleavage stages to the 

morula stage (Santos et al., 2002; Guo et al., 2014). The embryo remains in a 

state of transcriptional quiescence that is maintained until a species-specific 

stage (2-cell in the mouse, 4-cell in the pig, and 8-16 cell in the cow and human) 

when transcription resumes during a process known as embryonic genome 

activation (EGA; Morgan et al., 2005). Following EGA, a wave of de novo 

methylation aids the establishment of epigenetic programmes that give rise to 

the primary cell lineages of the blastocyst; the inner cell mass (ICM) and 

trophectoderm (TE). These embryonic and extraembryonic cell lineages acquire 

distinct epigenetic marks required for totipotency and correct initiation of 

embryonic gene expression patterns required for differentiation (Morgan et al., 

2005).  

DNA methylation regulates chromatin structure and gene expression during 

early developmental processes, including X chromosome inactivation and 

genomic imprinting (Li, 2002). The former phenomenon requires that only one 

X chromosome is active in each somatic nucleus in females to regulate 

chromosome dosage relative to males (Barakat and Gribnau, 2012). The latter 

phenomenon requires that certain genes are monoallelically expressed in a 

parent-of-origin dependent manner (Barlow and Bartolomei, 2014). Genomic 

imprints originate in sperm and oocytes and are required for normal fetal and 

placental development (Peters, 2014). Whilst imprints are generally protected 

from the first genome-wide epigenetic reprogramming event that occurs during 

early embryogenesis, they are erased during the second epigenetic 

reprogramming event that occurs midgestation (Morgan et al., 2005). Extensive 

demethylation of fetal primordial germ cells restores totipotency in preparation 

for sex-specific de novo methylation that takes place during gametogenesis 

(Morgan et al., 2005; Zeng and Chen, 2019). As oogenesis takes place during 

gestation, female mammals are born with the maximum number of oocytes they 

will have in their lifetime. With respect to maternal diet, oogenesis represents a 

time when nutritional insults may impact germline reprogramming and ultimately 

a grandaughter’s reproductive health via transgenerational inheritance of 

epigenetic marks (Padhee et al., 2015).  
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1.1.1.2 Epigenetic effect of diet on periconceptional development 

Significant epigenetic modifications to chromatin correspond with abnormal 

periconceptional development irrespective of the species. Subtle variations in 

1C metabolism, including dietary imbalances in 1C metabolites, have been 

shown to perturb key methylation events that contribute to reproductive failure 

and poor pregnancy outcomes. A number of studies have identified epigenetic 

changes associated with dietary methyl supplementation (Table 1.1) or 

depletion (Table 1.2) during periconceptional development in a number of 

mammalian species. 

Table 1.1 Methyl supplementation in maternal diet and epigenetic programming 
of periconceptional development. 

Species 
↑ 1C 

metabolite 
Offspring phenotype Epigenetic changes Reference(s) 

Mouse 
(Agouti) 

Methionine, 
Folate, B12, 

Choline, 
Betaine 

Altered coat colour 
(yellow  brown) 
↓ obesity 

↑ Methylation Avy LTR 
sequence 

Wolff et al. (1998) 
Cooney et al. (2002) 
Waterland & Jirtle (2003) 

Mouse Methionine, 
B12, 

Choline, 
Betaine 

↓ Tail kinking in axin 
fused mutants 

↑ Methylation Axin(Fu) Waterland et al. (2006) 

Rat Choline Altered histone 
methyltransferase 
G9a and Suv39h1 

↑ H3K9me2, H3K27me3 
(repressed chromatin) 
↑ Methylation G9a 
Suv39h1 liver and brain 

Davison et al. (2009) 

Pig Betaine ↑ Glucocorticoid 
receptor mRNA in 
hippocampus 

↑ miR-130b, miR-181a, 
miR-181d  
↑ Methylation GR 
promoter 

Sun et al. (2016) 

Cow B vitamins ↑ Blastocyst 
development, 
↑ Day 8 hatching 

↑ H3K27me3 TXNIP 
promoter, ↓ Txnip stress 
biomarker 

Ikeda et al. (2018) 

Human Folate ↓ Carcinogenesis ↓ Methylation, ↑ miR-
203, miR-375 in cervical 
cancer cell line 

Hao et al. (2016) 

Human Folate Altered DNA 
methylation 

↑ Methylation at ZFP57 
DNA methylation 
regulator in CD4(+) 
immune cells 

Amarasekera et al. (2014) 

Human Folate Altered imprinting 
(genomic imprint) 

↓ Methylation H19/IGF2 
in blood 

Hoyo et al. (2011) 

Human Folate Altered imprinting 
(genomic imprint) 

↑ Methylation IGF2,  
↓ PEG3, LINE-1 in blood 

Steegers-Theunissen et 
al. (2009) 
Haggarty et al. (2013) 

Human Choline Altered fetal HPA axis, 
cortisol-regulation 

↑ Methylation CRH, 
NR3C1, ↑ H3K9me2 in 
placenta 

Jiang et al. (2012) 

Human B6 ↑ Birth weight 
(male offspring) 

↑ Methylation MEG in 
blood 

McCullough et al. (2016) 

Arrows: ↑ increase, ↓ decrease. Abbreviation(s): 1C, one-carbon; Avy, agouti viable 
yellow; Axin(Fu), axin-fused; B12, vitamin B12; B6, vitamin B6; CD4(+), cluster of 
differentiation 4; CRH, corticotropin-releasing hormone; GR, glucocorticoid receptor; 
H19, imprinted maternally expressed transcript; HPA, hypothalamic-pituitary-adrenal 
axis; IGF2, insulin like growth factor 2; LINE-1, long interspersed nuclear element 1; 
LTR, long terminal repeat; MEG3, maternally expressed 3; MiR, micro RNA; NR3C1, 
nuclear receptor subfamily 3 group C member 1; PEG3, paternally expressed 3; TXNIP, 
thioredoxin interacting protein; ZFP57, zinc finger protein 57 homolog.  
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Table 1.2 Methyl deficiency in maternal diet and epigenetic programming of 
periconceptional development. 

Species 
↓ 1C 

metabolite 
Offspring phenotype Epigenetic changes Reference(s) 

Mouse Methionine,  
Folate,  
Choline 

↑ Insulin resistance 
(male offspring) - 

Maloney et al. (2011) 

Mouse Methionine,  
Folate, B12, 

Choline 

Altered imprinting 
(genomic imprint) 

↑ Igf2 DMR2 in kidney  Waterland et al. (2006b) 

Mouse Methionine Altered amino acid 
metabolism  

↓ H3K4me3, 
H3K27me3, H3K4me2 
in liver 

Mentch et al. (2015)  

Mouse Folate ↓ Plasma glucose,  
↑ TAG  

↓ Methylation Slc39a4 
fetal gut zinc 
transporter gene 

McKay et al. (2011)  
McKay et al. (2014)   

Mouse Folate - ↑ Methylation Mthfr in 
liver and brain 

Lévesque et al. (2016) 

Mouse Choline Altered cell cycle ↓ Methylation Cdkn3 in 
brain  

Niculescu et al. (2006)  

Mouse Choline ↓ Neural progenitor cell 
proliferation in 
hippocampus 

↓ H3K9 methylation 
calbindin 1 promoter in 
brain 

Mehedint et al. (2010) 

Mouse Choline,  
B2 

↑ Delayed, small 
embryos;  
↑ cardiac defects  

- 
Chan et al. (2010) 

Rat Methionine, 
Choline 

Altered DNA 
methylation 

↓ Global methylation in 
liver 

Wilson et al. (1984)  

Rat Choline Altered DNA 
methylation and 
genomic imprinting 

↑ Igf2 DMR2, 
↓ Methylation Dnmt1 
in liver 

Kovacheva et al. (2007) 

Sheep Methionine, 
Folate, B12 

 

↑ Adiposity, ↑ insulin 
resistance, altered 
immune function, 
hypertension  

↕ Methylation of 4% 
CGIs (>50% affected 
loci specific to males) 

Sinclair et al. (2007) 

Arrows: ↑ increase, ↓ decrease. Abbreviation(s): 1C, one-carbon; B12, vitamin B12; B2, 
vitamin B2; Cdkn3, cyclin-dependent kinase inhibitor 3; CGIs, CpG islands; DMR2, 
differentially methylated region 2; Dnmt1, DNA methyltransferase 1; Igf2, insulin like 
growth factor 2; Mthfr, methyltetrahydrofolate reductase; Slc39a4, solute carrier family 
39 member 4; TAG, triacylglyceride. 

The relationships between dietary methyl donors and epigenetic modifications 

became apparent in studies using methylation indicator-mouse models in which 

changes in DNA methylation give rise to visible, long-lasting offspring 

phenotypes (Ideraabdullah and Zeisel, 2018). For example, the viable yellow 

agouti (Avy) mouse is an epigenetic biosensor for nutritional alterations to the 

fetal epigenome (Dolinoy, 2008). Agouti mice harbour a metastable epiallele 

resulting from the insertion of an intracisternal A particle (IAP) retrotransposon 

upstream of the Agouti gene transcription start site. A ‘retrotransposon’ is a 

widespread mobile genetic element that replicates through reverse transcription 

of RNA and integrates the product DNA into the host genome (Cordaux and 

Batzer, 2009). The IAP retrotransposon is epigenetically regulated. When 

hypomethylated, the Avy gene is expressed and mice possess a yellow coat 

colour, obesity, hyperinsulinemia and increased susceptibility to tumours 

(Morgan et al., 1999). When hypermethylated, the Avy gene is repressed and 

mice are brown in colour with a lean body composition (Wolff et al., 1998). 
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Methyl donor supplementation to an already nutritionally adequate diet fed to 

pregnant yellow agouti mice permanently increased DNA methylation and 

altered the body composition and metabolism of their offspring (Wolff et al., 

1998; Waterland and Jirtle, 2003; Table 1.1).  

The agouti mouse model provided the first evidence that dietary excesses of 1C 

metabolites during early development can alter the epigenome and metabolic 

phenotype of offspring. As discussed above, these epigenetic modifications 

appear to be transgenerationally heritable due to their incomplete erasure 

during germline reprogramming meaning epigenetic gene regulation may 

persist transgenerationally despite lack of continued exposure in subsequent 

generations (Waterland and Jirtle, 2003). This is of particular importance 

considering the aforementioned issues raised by mandatory fortification of 

human diets with folic acid (FA) and the detrimental effects of imbalances 1C 

metabolites. Moreover, putative metastable epialleles have since been 

identified in humans and they are correlated with seasonal fluctuation in 

maternal nutrition around the time of conception (Waterland et al., 2010; 

Dominguez-Salas et al., 2014).  

According to Maloney et al. (2011), diets containing an excess of methyl groups 

are unlikely to be encountered outside an experimental setting other than when 

taking supplements, such as 400 µg FA. Human diets, especially vegetarian 

and vegan diets, are more likely to be deficient in methionine and vitamin B12 

leading to a low availability of methyl groups (McCarty et al., 2009; Kim et al., 

2018). The Pune Maternal Nutritional Study showed that ~67% of expectant 

mothers had B12 deficiency whilst folate deficiency affected only one study 

participant. The offspring of mothers with a combination of high folate and low 

vitamin B12 concentrations were the most insulin resistant and, therefore, at 

increased risk of developing type II diabetes (Yajnik et al., 2008). These findings 

highlight concerns about the masking of B12 deficiency by folate and raise 

questions regarding suitable dietary intakes of both nutrients to ensure a safe 

balance between the two is established during pregnancy.   

Methyl deficient (MD) diets, in conjunction with single nucleotide polymorphisms 

(SNPs) in 1C metabolism genes, can lead to epigenetic alterations in DNA and 

histone methylation that regulate key developmental processes (Xu and 

Sinclair, 2015). In turn, this can lead to wide-spread metabolic alterations in 

protein, lipid and carbohydrate metabolism due to the complex relationship 
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between 1C metabolism and related pathways (Maloney et al., 2007; McNeil et 

al., 2008; Maloney et al., 2011).  

1.2 One-carbon (1C) metabolism and related pathways  

One-carbon (1C) metabolism comprises the linked methionine-folate cycle and 

transsulphuration pathway (Figure 1.1; Xu and Sinclair, 2015; Clare et al., 

2019). This complex metabolic network facilitates 1C transfer in the form of 

methenyl, formyl and methyl moieties, required for essential cellular processes 

within the cytoplasm, nucleus and mitochondria (Stover, 2009; Stover and Field, 

2011). Such processes include molecular biosynthesis (e.g. nucleotides, 

proteins, polyamines, phospholipids and creatine); epigenetic regulation of 

gene expression via methylation of DNA, RNA and histones; and redox defence 

(Lucock, 2000; Ducker and Rabinowitz, 2017). Dietary constituents such as 

methionine, folate (vitamin B9), B vitamins (B12, B6, B2) and choline (betaine) 

are essential 1C enzyme substrates or cofactors (Mason, 2003).  

 Methionine-folate cycles 

The linked methionine-folate cycles facilitate transmethylation reactions, 

including chromatin methylation which plays a pivotal role in epigenetic 

regulation of gene expression (Razin and Cedar, 1991). Methionine is 

adenylated by methionine adenosyltransferase (MAT; EC 2.5.1.6) to S-

adenosylmethionine (SAM), a universal methyl donor involved in >200 

downstream cellular transmethylation reactions (Roje, 2006; Figure 1.1). During 

methyl (CH3) transfer, SAM is converted to S-adenosylhomocysteine (SAH) 

(Ulrey et al., 2005), which is hydrolysed to homocysteine (Hcy) and adenosine 

through a reversible reaction catalysed by S-adenosylhomocysteine hydrolase 

(AHCY; EC 3.3.1.1; Caudill et al., 2001). 

Folate-dependent remethylation of Hcy to methionine is catalysed by B12-

dependent methionine synthase (MTR; EC 2.1.1.13) to complete the methionine 

cycle (Škovierová et al., 2016). Methionine synthase reductase (MTRR; EC 

1.16.1.8) restores MTR activity by catalysing the reductive methylation of 

cob(II)alamin to methylcob(III)alamin to maintain adequate levels of bioactive 

B12 cofactor for Hcy remethylation (Gaughan et al., 2001; Ho et al., 2013). 

Reductive methylation of cob(II)alamin for MTR restoration is an example of 

SAM-dependent transmethylation (Ho et al., 2013).  
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Figure 1.1 One-carbon (1C) metabolism includes the linked methionine-folate 
cycle and transsulphuration pathway. Adapted from Clare et al. (2019).  

Folate cycle enzymes (green boxes): DHFR, dihydrofolate reductase; GCPII, glutamate 
carboxypeptidase; GGH, γ-glutamyl hydrolase; MTHFD1/2, methylenetetrahydrofolate 
dehydrogenase; MTHFR, 5,10-methylenetetrahydrofolate reductase; SHMT, serine 
hydroxymethyltransferase; TYMS, thymidylate synthase. Methionine cycle enzymes 
(red boxes): AHCY; S-adenosyl-L-homocysteine hydrolase; BHMT, betaine-
homocysteine S-methyltransferase; CHDH, choline dehydrogenase; GNMT, glycine N-
methyltransferase; MATI/III, methionine adenosyltransferase; MTR, methionine 
synthase; MTRR, methionine synthase reductase. Transsulphuration pathway enzymes 
(yellow boxes): CBS, cystathionine β-synthase; CTH, cystathionine γ-lyase. Key 
methyltransferase enzymes: DNMT1/3A/3B/3L, de novo and maintenance DNA 
methyltransferases; HMT, histone methyltransferase; PRMT, protein arginine 
methyltransferase. Enzyme cofactors (coloured circles): vitamin B2, B6, and B12. 
Substrates: 5,10-CH=THF, 5,10-methenyltetrahydrofolate; 5,10-CH2THF, 5,10-
methylenetetrahydrofolate; 5-mTHF, 5-methyltetrahydrofolate; 10-fTHF, 10-formyl-
tetrahydrofolate; α-KB, α-ketobutyrate; Chol, choline; Cth, cystathionine; Cys, cysteine; 
DHF, dihydrofolate; DMG, dimethylglycine; dTMP, thymidine monophosphate; dUMP, 
deoxyuridine monophosphate; FA, folic acid; Gly, glycine; GSH, glutathione; Hcy, 
homocysteine; Hse, homoserine; Met, methionine; NH3, ammonia; SAH, S-
adenosylhomocysteine; SAM, S-adenosylmethionine; Sar, sarcosine; Ser, serine; SO4, 
sulphate; TAU, taurine; THF, tetrahydrofolate; TMG, trimethylglycine/betaine. 
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A parallel folate-independent pathway, catalysed by B6-dependent enzyme, 

betaine-homocysteine S-methyltransferase (BHMT; EC 2.1.1.5; Finkelstein and 

Martin, 1984), involves the transfer of a methyl group from  trimethylglycine 

(TMG), otherwise known as betaine, to generate dimethylglycine (DMG) and 

methionine (Li et al., 2008). Whilst it is uncertain why animals have two 

independent pathways for Hcy remethylation, BHMT accounts for up to 50% 

Hcy remethylation to methionine (McKeever et al., 1991; Garrow, 1996; 

Chadwick et al., 2000; Yamashita et al., 2000), emphasising the importance of 

this pathway in the liver.  

Folates (B9) are a family of enzyme cofactors that function as versatile methyl 

donors in 1C metabolism (Stover, 2009). Unlike bacteria, animals cannot 

endogenously synthesise folates, therefore, requirements must be met entirely 

from dietary sources (Garratt et al., 2005). Due to their hydrophilic nature, folate 

absorption requires functionally diverse transport mechanisms within the 

proximal small intestine (Visentin et al., 2014). Such mechanisms involve the 

reduced folate carrier (RC), proton-coupled folate transporter (PCFT) and folate 

receptor (FR). Folates are hydrolysed into their monoglutamated forms in the 

intestinal mucosa by γ-glutamyl hydrolase (GGH; EC 3.4.19.9) and glutamate 

carboxypeptidase II (GCPII; EC 3.4.17.21) to facilitate absorption (Zhao et al., 

2009; Figure 1.1).  

Upon reaching systemic tissues, folate monoglutamates are converted to 5-

methyltetrahydrofolate (5-mTHF); the predominant species in non-hepatic cells 

and are subsequently polyglutamated for cellular retention and 1C coenzyme 

function (Xu and Sinclair, 2015). Folic acid (FA), the synthetic folate 

supplement, is fully oxidised not a bioactive coenzyme (Shane, 2008). Folic acid 

is reduced to dihydrofolate (DHF) and then to the bioactive form, 

tetrahydrofolate (THF) by dihydrofolate reductase (DHFR; EC 1.5.1.3), before 

entering the folate cycle (Ducker and Rabinowitz, 2017). Subsequently, THF is 

converted to 5,10-methylenetetrahydrofolate (5,10-CH2THF) by B6-dependent 

enzyme, serine hydroxymethyltransferase (SHMT; EC 2.1.2.1) and then 

irreversibly reduced to 5-mTHF by B2-dependent methylenetetrahydrofolate 

reductase (MTHFR; EC 1.5.1.20). Alternatively, THF can be converted to 10-

formyltetrahydrofolate (10-fTHF) through consecutive reactions catalysed by 

methylenetetrahydrofolate dehydrogenase enzymes (MTHFD; EC 1.5.1.5). 

Demethylation of 5-mTHF completes the folate cycle as 1C is donated for 

remethylation of Hcy to methionine (Mentch and Locasale, 2016).  
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 Transsulphuration pathway  

When methionine and folate levels are adequate, SAM allosterically regulates 

Hcy catabolism via a two-step transsulphuration pathway that requires the 

bioactive B6 cofactor (Figure 1.1). SAM coordinates transsulphuration by 

inhibiting MTHFR and activating cystathionine β-synthase (CBS; EC 4.2.1.22; 

Selhub, 1999; Lucock, 2000), the primary enzyme in the transsulphuration 

pathway that catalyses condensation of serine (Ser) with Hcy to produce 

cystathionine (Cth). The secondary enzyme, cystathionine γ-lyase (CTH; EC 

4.4.1.1), yields cysteine (Cys); a precursor for glutathione (GSH) which is a 

major endogenous antioxidant in cells (Ebisch et al., 2006; Aquilano et al., 

2014).  

 Propionate pathway 

Cystathionine (Cth) hydrolysis also yields α-ketobutyrate (α-KB), an 

intermediate that is transformed to propionyl CoA by the branched chain α-

ketoacid dehydrogenase complex (BCKDC; EC 1.2.4.4; EC 2.3.1.168; EC 

1.8.1.4; Figure 1.2). Amino acids, such as methionine, threonine (Thr), 

isoleucine (Ile), valine (Val); odd-chain fatty acids (OCFA), cholesterol and 

propionate (PPA) are also catabolised to produce propionyl-CoA (Tretter et al., 

2016). In the mitochondria, propionyl-CoA is carboxylated to D-methylmalonyl-

CoA by propionyl-CoA carboxylase (PCCA/B; EC 6.4.1.3), an enzyme that 

requires biotin as a cofactor (Ballhausen et al., 2009).  

D-methylmalonyl-CoA is epimerised to L-stereoisomer by methylmalonyl-CoA 

epimerase (MCEE; EC 5.1.99.1) before undergoing an intramolecular 

rearrangement catalysed by B12-dependent methylmalonyl-CoA mutase (MUT; 

EC 5.4.99.2) to produce succinyl-CoA, an intermediate of the tricarboxylic acid 

(TCA) cycle (De Vadder et al., 2016). When vitamin B12 is absent, L-

methylmalonyl-CoA forms methylmalonic acid (MMA), a reliable biomarker of 

B12 status and 1C metabolic function (Mendonça et al., 2017).  
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Figure 1.2 One-carbon (1C) substrates and cofactors serve as key intermediates 
of propionate and energy metabolism. Adapted from Clare et al. (2019).   

Propionate metabolism enzymes (grey boxes): BCKDC, α-keto acid dehydrogenase; 
MCEE, methylmalonyl-CoA epimerase; MUT, methylmalonyl-CoA mutase; PCCA/B, 
propionyl-CoA carboxylase; SUCLG1/2, succinate CoA ligase. Transsulphuration 
pathway enzymes (yellow boxes): CBS, cystathionine β-synthase; CTH, cystathionine 
γ-lyase. Enzyme cofactors (coloured circles): vitamin B6 and B12. Substrates: α-KB, α-
ketobutyrate; Cth, cystathionine; Hcy, homocysteine; Hse, homoserine; Ile, isoleucine; 
Met, methionine; MMA, methylmalonic acid; OCFA, odd-chain fatty acids; Ser, serine; 
Thr, threonine; Val, valine. 
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Ornithine (Orn) is decarboxylated to the primary polyamine, putrescine (Put), by 

B6-dependent enzyme, ornithine decarboxylase (ODC; EC 4.1.1.17; Pegg, 

2006; Figure 1.3). Putrescine is further processed to produce the more 

abundant polyamines, spermidine (Spd) and spermine (Spm), by 

aminopropyltransferases, spermidine synthase (SRM; EC 2.5.1.16) and 

spermine synthase (SMS; EC 2.5.1.22), respectively (Gamble et al., 2012). 

After Put production, the second rate-limiting factor for higher polyamine 
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synthesis is the decarboxylation of SAM to provide the aminopropyl donor, 

dSAM, required for Spd and Spm synthesis (Pegg, 2016).  

Polyamine biosynthesis is linked to the methionine salvage pathway. Sulphur-

containing metabolites, such as 5’-methylthioadensine (MTA), are recycled 

back to methionine, demonstrating an additional pathway for methionine 

regulation (Albers et al., 2009; Chou et al., 2014).  

 

Figure 1.3 Polyamine synthesis and the methionine salvage pathway requires 
decarboxylated SAM as an aminopropyl donor. Adapted from Clare et al. (2019).  

Polyamine metabolism enzymes (purple boxes): ODC, ornithine decarboxylase; 
SAMDC, S-adenosylmethionine decarboxylase; SMS, spermine synthase; SRM, 
spermidine synthase. Methionine cycle enzymes (red boxes): AHCY, S-adenosyl-L-
homocysteine hydrolase; BHMT, betaine-homocysteine S-methyltransferase; CHDH, 
choline dehydrogenase; GNMT, glycine N-methyltransferase; MATI/III, methionine 
adenosyltransferase; MTR, methionine synthase; MTRR, methionine synthase 
reductase. Enzyme cofactors (coloured circles): vitamin B6 and B12. Substrates: 
αKγMB, α-keto-γ-methiolbutyrate; Chol, choline; DMG, dimethylglycine; Gly, glycine; 
Hcy, homocysteine; Met, methionine; MTA, 5 -methylthiodenosine; Orn, ornithine; Put, 
putrescine; SAH, S-adenosylhomocysteine; SAM, S-adenosylmethionine; Sar, 
sarcosine; Spd, spermidine; Spm, spermine; TMG, trimethylglycine/betaine. 

 Phosphatidylcholine pathway  
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transport in mammalian tissues (Wright et al., 2004; Figure 1.4). This reaction 

is catalysed by phosphatidylethanolamine methyltransferase (PEMT; EC 

2.1.1.17), an enzyme predominantly expressed in the liver (Kanno et al., 2007; 

Vance et al., 2013). Alternatively, PC can be synthesised from choline via the 

cytidine diphosphate (CDP)-choline pathway (Cole et al., 2012). 

 

Figure 1.4 Phosphatidylcholine can be synthesised by choline or via the 
cytidine diphosphate (CDP)-choline pathway. Adapted from Clare et al. (2019).   

Phosphatidylcholine metabolism enzyme (blue box): PEMT, phosphatidylethanolamine 
methyltransferase. Methionine cycle enzymes (red boxes): AHCY, S-adenosyl-L-
homocysteine hydrolase; BHMT, betaine-homocysteine S-methyltransferase; CHDH, 
choline dehydrogenase; GNMT, glycine N-methyltransferase; MATI/III, methionine 
adenosyltransferase. Enzyme cofactor (orange circle): vitamin B12. Substrates: Chol, 
choline; DMG, dimethylglycine; Gly, glycine; Hcy, homocysteine; Met, methionine; PC, 
phosphatidylcholine; PE, phosphatidylethanolamine; SAH, S-adenosylhomocysteine; 
SAM, S-adenosylmethionine; TMG, trimethylglycine/betaine. 
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cofactors. Conversion of UMP to deoxyuridine monophosphate (dUMP) is 

catalysed by nucleoside diphosphate kinase (NME; EC 2.7.4.6). In a reaction 

catalysed by thymidylate synthase (TYMS; EC 2.1.45), 5,10-CH2-THF donates 

1C to convert dUMP to thymidine monophosphate (dTMP) and becomes 

oxidised to DHF in the process. Subsequently, DHF is reduced to THF to 

enclose the metabolic loop (Shuvalov et al., 2017; Figure 1.5). 

 

Figure 1.5 One-carbon (1C) metabolism provides purines (adenine and guanine), 
and pyrimidine, thymine, for nucleotide biosynthesis. Adapted from Clare et al. 
(2019). 

Nucleotide biosynthesis enzymes (pink boxes): ATIC, phosphoribosylaminoimidazole-
carboxamide formyltransferase; GART, phosphoribosylglycinamide formyltransferase; 
NME, nucleoside diphosphate kinase. Folate cycle enzymes (green boxes): DHFR, 
dihydrofolate reductase; MTHFD1/2, methylenetetrahydrofolate dehydrogenase; 
TYMS, thymidylate synthase. Enzyme cofactor (yelllow circle): vitamin B2. Substrates: 
5,10-CH=THF, 5,10-methenyl-tetrahydrofolate; 5,10-CH2THF, 5,10-
methylenetetrahydrofolate; 10-fTHF, 10-formyl-tetrahydrofolate; ADP, adenosine 
diphosphate; dADP, deoxyadenosine diphosphate; dATP, deoxyadenosine 
triphosphate; dGDP, deoxyguanosine diphosphate; dGTP, deoxyguanosine 
triphosphate; DHF, dihydrofolate; dTMP, thymidine monophosphate; dTTP, thymidine 
triphosphate; dUDP, deoxyuridine diphosphate; dUMP, deoxyuridine monophosphate; 
GDP, guanosine diphosphate; IMP, inosine monophosphate; PRPP, phosphoribosyl 
pyrophosphate; THF, tetrahydrofolate; UDP, uridine diphosphate; UMP, uridine 
monophosphate; XMP, xanthine monophosphate. 
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1.3 Genetics of 1C metabolism 

Inter-individual and ethnic variability in epigenetic regulation of gene expression 

may arise due to single nucleotide polymorphisms (SNPs) within 1C metabolism 

and epigenetic regulator genes, and differentially methylated target DNA 

sequences (Clare et al., 2019). Polymorphic variants can act synergistically with 

nutritional deficiencies to magnify imbalances which may, in turn, affect methyl 

donor synthesis and epigenetic regulation of gene expression causing a wide 

range of reproductive and developmental outcomes in humans (Appendix Table 

1.1).  

Insight into the function of key 1C enzymes, particularly during periconceptional 

development, can be obtained from targeted or complete deletions of specific 

enzymes in the pathways using animal models (Appendix Table 1.2). Whilst 

gene deletion (or inhibition) does not recapitulate the effect of a SNP, they still 

offer valuable mechanistic insight into enzyme function and downstream 

metabolic and developmental consequences.  

 Hyperhomocysteinemia (HHcy) 

Single nucleotide polymorphisms and gene deletions that impair 1C metabolic 

pathways often lead to hyperhomocysteinemia (HHcy), a condition 

characterised by elevated Hcy concentrations (Figure 1.1) in plasma. Mild 

hyperhomocysteinemia is prevalent in subjects polymorphic for a number of 

enzymes involved in 1C metabolism (Midttun et al., 2007; Tsitsiou et al., 2009; 

Appendix Table 1.1). In humans, the reference range of Hcy for healthy adults 

is 5-15 µmol/L (Jacobsen, 1998). Mild, moderate and severe HHcy conditions 

are characterised by plasma concentrations of 15-25 µmol/L, 25-50 µmol/L and 

>50 µmol/L, respectively (Brustolin et al., 2010).  

Homocysteine is a sensitive biomarker of aberrant 1C metabolic function and 

an independent risk factor for various diseases, including cancer, 

cardiovascular disease, and neurological and reproductive disorders 

(Škovierová et al., 2016). Elevated plasma Hcy has been associated with 

reduced placental weight, placental abruption, preeclampsia, recurrent 

pregnancy loss, NTDs, oral clefts, Down’s syndrome and small for gestational 

age babies (Hague, 2003; Brustolin et al., 2010; Bergen et al., 2012; Ganu et 

al., 2013; Cavallé-Busquets et al., 2020). High concentrations of Hcy in follicular 

fluid can have a detrimental effect on oocyte and embryo quality (Ebisch et al., 
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2006), leading to poor in vitro fertilisation (IVF) outcomes as reflected by 

decreased pregnancy and implantation rates in affected patients (Pachiarotti et 

al., 2007). Consequently, concentrations in follicular fluid or embryo culture 

media can provide a useful metabolic profiling marker of fertilisation rate, 

embryo quality and pregnancy outcome in patients undergoing assisted 

reproduction technology (ART) procedures (Berker et al., 2009; Boyama et al., 

2016).  

1.3.1.1 HHcy and epigenetics  

Several lines of evidence implicate that epigenetic mechanisms underpin Hcy-

related pathologies (Škovierová et al., 2016). The bidirectional reaction 

catalysed by AHCY (Figure 1.1) has a dynamic equilibrium that strongly favours 

SAH synthesis over hydrolysis (Castro et al., 2003). A rise in Hcy can, therefore, 

cause accumulation of SAH which is a potent inhibitor of DNA methyltransferase 

enzymes (DNMTs; Chen et al., 2010). A decreased SAM:SAH ratio is predictive 

of global DNA hypomethylation with consequences for epigenetic programming 

(Caudill et al., 2001). Thus, Hcy must be metabolised effectively to prevent SAH 

accumulation and to normalise 1C metabolic flux (Blom and Smulders, 2011).  

Since HHcy is often diagnosed in conjunction with decreased plasma folate and 

B12 in infertile patients (Dhillon et al., 2007), it may not seem surprising that 

Hcy concentrations are responsive to dietary intakes of specific 1C nutrients. 

Plasma Hcy concentrations can be lowered by supplementation with FA, B12 

(cobalamin) and B6 (pyridoxine; Malinow et al., 1999; Boxmeer et al., 2008; 

Boxmeer et al., 2009), whereas methionine supplementation can increase 

concentrations (Ditscheid et al., 2005). Accordingly, dietary methionine 

restriction is a potential treatment for patients with Mudd’s disease who suffer 

methionine adenosyltransferase (MAT) deficiency and who exhibit elevated 

methionine and Hcy concentrations (Chien et al., 2015; Appendix Table 1.1). 

The foregoing discussion is further complicated by the fact that 1C metabolism 

genes are epigenetically regulated by DNA methylation in their own right 

(Uekawa et al., 2009; Dobbs et al., 2013; Ho et al., 2015). Excluding studies 

concerned with cancer (Huidobro et al., 2013), there is limited information about 

the precise nature and clinical significance of such interactions. The extent to 

which methyl deficiency may affect 1C gene expression warrants further 

investigation. 
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1.4 Regulation of 1C metabolism in the mammalian embryo 

Most of the detailed research concerning the regulation of 1C metabolism is 

restricted to the mammalian liver (Okuyama et al., 1976; Balaghi et al., 1993; 

Shibata et al., 2013; Zhang, 2018) with comparatively little research conducted 

on reproductive cells and embryos (Sinclair and Singh, 2007; Kwong et al., 

2010). This is surprising given the importance attached to FA supplementation 

in the diet of intending mothers to prevent congenital abnormalities (Lucock, 

2000; McNulty et al., 2000; Beaudin and Stover, 2009; De-Regil et al., 2010) 

and the compelling evidence that dietary methyl group availability during 

periconceptional development can have long-lasting metabolic and 

developmental health consequences for offspring.  

Transcripts for 1C metabolic enzymes have been detected in human embryonic 

stem cells (hESCs; Steele et al., 2005), human and bovine germinal vesicle 

oocytes, and bovine preimplantation embryos (Bhenkhalifa et al., 2010; Ikeda 

et al., 2010; Kwong et al., 2010). However, the absence of methionine 

adenosyltransferase 1A (MAT1A) and betaine homocysteine S-

methyltransferase (BHMT) transcripts within the bovine follicle-enclosed oocyte 

and preimplantation embryo indicates that the methionine cycle operates 

differently in reproductive cells to hepatocytes, perhaps rendering oocytes and 

embryos more sensitive to methyl availability (Kwong et al., 2010; Ikeda et al., 

2010). The metabolic implications of these tissue-specific transcriptional 

differences remain unknown. 

Aside tissue-specific differences, there are species-specific differences in 

methionine cycle transcript expression. To contrast observations in cattle, Bhmt 

is transiently expressed within the ICM of the mouse blastocyst (Lee et al., 

2012). Bhmt mRNA expression was first detected in morula but protein levels 

and enzyme activity were not detected until the blastocyst stage. Deletion of 

Bhmt reduced ICM cell number, decreased DNA methylation within the ICM, 

and increased fetal resorption following embryo transfer (Lee et al., 2012). 

Detrimental consequences of Bhmt deletion were independently rescued by 

exogenous methionine and SAM supplementation (200 μmol/L; Lee et al., 2012; 

Zhang et al., 2015). Collectively, these findings identify an indespensible role of 

BHMT in the provision of methyl groups for the establishment of methylation 

patterns within the murine preimplantation embryo.  
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1.5 Epigenetics and methylation 

The three main epigenetic mechanisms that regulate gene expression are DNA 

methylation, post-translational histone modifications (histone code) and non-

coding RNAs (Xu and Sinclair, 2015). Together, these non-genetic covalent 

modifications to chromatin affect transcription and readout of DNA. This allows 

genetically identical cells to differ phenotypically within and between cell 

lineages (Canovas and Ross, 2016; Maldonado et al., 2019). Such epigenetic 

processes are critical for interpretation of the genome in response to 

physiological factors and environmental stimuli. Together with other regulatory 

elements, epigenetic mechanisms contribute to lineage- and tissue-specific 

gene expression that contributes toward mammalian preimplantation embryo 

development and differentiation (Hemberger et al., 2009).  

 Genomic DNA (gDNA) methylation  

The most extensively studied mechanism of epigenetic gene regulation is 

genomic DNA (gDNA) methylation (Anderson et al., 2012), a repressive 

epigenetic modification associated with stable gene silencing (Lande-Diner et 

al., 2007). DNA methylation depends upon the availability of methyl groups 

transferred from SAM (Murín et al., 2017; Figure 1.1). SAM-dependent 

transmethylation of DNA, RNA and proteins (e.g. histones) is catalysed by a 

family of DNA methyltransferase enzymes (DNMTs; EC 2.1.1.37). DNA 

methyltransferase 1 (DNMT1) recognises hemimethylated DNA and maintains 

DNA methylation during mitosis by methylating the unmethylated strand 

(Leonhardt et al., 1992). Conversely, DNMT3A and DNMT3B do not distinguish 

between methylated substrates and are responsible for de novo methylation 

(Jurkowska et al., 2011; Jin and Robertson, 2013). DNA methyltransferase-like 

protein (DNMT3L) lacks the conserved catalytic domain common to DNMTs 

and, therefore, lacks inherent methyltransferase activity. However, through 

allosteric cooperation with DNMT3 family enzymes, DNMT3L facilitates 

germline DNA methylation and specifically genomic imprinting during 

gametogenesis (Chédin et al., 2002; Hata et al., 2002). DNMT2 also lacks DNA 

methyltransferase activity but catalyses transfer RNA (tRNA) methylation (Goll 

et al., 2006; Kaiser et al., 2017).  
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1.5.1.1 CpG methylation  

In mammals, the primary site of DNA methylation is the covalent attachment of 

a methyl (CH3) group at the fifth carbon position of the pyrimidine ring of cytosine 

to form 5-methylcytosine (5mC). Cytosine methylation predominantly occurs at 

the 5’-CpG-3’ dinucleotide in mammalian cells, whereby cytosine is linked to 

guanine by a phosphate bond (Lim and Maher, 2010; Deaton and Bird, 2011). 

However, in certain cell types, such as embryonic stem cells (ESCs), 5mC also 

occurs at CHG and CHH sites, where ‘H’ represents a cytosine (C), thymine (T) 

or adenine (A) (Feng et al., 2010).  

Approximately 60-80% of CpG dinucleotides in the human genome are 

methylated, whereas <10% are unmethylated and clustered together within 

short interspersed GC-rich DNA sequences (i.e. 500-2000 base pairs) known 

as CpG islands (CGIs; Lim and Maher, 2010; Zeng and Chen, 2019). The 

human genome contains ~30,000 CGIs (Jeziorska et al., 2017), around half of 

which contain transcription start sites since they are found at the promoters of 

virtually all protein coding genes, including housekeeping, tissue-specific and 

developmental regulator genes (Deaton and Bird, 2011). While the majority of 

CGIs associated with promoters are unmethylated, repetitive sequences (i.e. 

retrotransposons), centromeric and pericentromeric repeats, and intragenic 

regions (i.e. gene bodies) are methylated during development. The epigenetic 

mechanisms by which some CGIs become differentially methylated under such 

circumstances are not yet understood (Jeziorska et al., 2017; Zeng and Chen, 

2019). It follows that 5mC is involved in almost all processes during 

preimplantation embryo development, including transcriptional regulation, 

silencing of retrotransposons, X-chromosome inactivation and genomic 

imprinting (Hochberg et al., 2011; Smith and Meissner, 2013; Messerchmidt et 

al., 2014).  

1.5.1.2  Non-CpG methylation 

Non-CpG methylation involves the methylation of cytosine followed by adenine 

(CpA), cytosine (CpC), and thymine (CpT). Like CpG methylation, non-CpG 

methylation is distributed throughout the genome and catalysed by DNMTs. 

These methylation marks are restricted to specific cell types, such as ESCs, 

oocytes, neurones and glial cells, however, knowledge of their cell-specific 
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function remains incomplete (Patil et al., 2014; Jang et al., 2017; Lee et al., 

2017).  

Jiang and colleagues (2018) measured detectable levels of non-CpG 

methylation in early bovine embryos. Non-CpG methylation followed a similar 

enrichment pattern to CpG methylation and was located within CGIs in and 

around gene bodies. It is postulated that the co-existence of non-CpG and CpG 

methylation reflects a state of de novo DNMT hyperactivity (Ziller et al., 2011; 

Smith and Meissner, 2013). Others argue that non-CpG methylation is an 

important mechanism of controlling gene expression wherein high levels of non-

CpG methylation at gene promoters facilitate transcription factor binding and 

transcriptional repression (Barrès et al., 2009; Patil et al., 2014; Zhang et al., 

2017).  

 Mitochondrial DNA (mtDNA) methylation  

The presence of mitochondrial CpG methylation went undetected in mammalian 

cells and tissues for many years (Groot and Kroon, 1979; Maekawa et al., 2004). 

Although not completely characterised, mounting evidence has emerged to 

support the role of methylation in mitochondrial gene expression and replication 

(Bellizzi et al., 2013; Castegna et al., 2015; van der Wijst et al., 2017). Firstly, 

the expression of a mitochondrial DNMT1 transcript variant alludes to a 

plausible mechanism by which mtDNA methylation patterns are established 

(Shock et al., 2011). Secondly, differential CpG and non-CpG mtDNA 

methylation across cell types reaffirms the notion of cell-specific methylation 

patterns (Bellizzi et al., 2013). Thirdly, there is a link between mtDNA 

methylation, and human ageing and disease (van der Wijst et al. 2017). 

A recent study comparing mtDNA methylation in reproductive tissues found that 

mtDNA methylation patterns were more conserved in oocytes and blastocysts 

than in ovarian granulosa cells (Sirard, 2019). This is not suprising given that 

mitochondria are inherited from oocytes with no paternal transmission (Luo et 

al., 2018b). Interestingly, it appears that preimplantation embryos inherit mtDNA 

methylation patterns from oocytes and that mtDNA methylation status can be 

altered by ovarian environment. Such findings emphasise the sensitivity of 

gametes and embryos to mtDNA methylation and epigenetic programming of 

development (Sirard, 2019). Still, the epigenetic role of mtDNA methylation 

during gametogenesis and embryogenesis is yet to be investigated.  
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 Histone modifications 

Covalent post-translational histone modifications, such as methylation, 

acetylation, phosphorylation, ubiquitylation, sumoylation (Bannister and 

Kouzarides, 2011), influence gene expression by remodelling chromatin 

architecture or by recruiting histone modifiers. Histone methylation is catalysed 

by histone lysine N-methyltransferases (HMT/KMT) and protein arginine N-

methyltransferases (PRMT), respectively (Morera et al., 2016). Methylation 

occurs primarily on the side chains of lysine and arginine residues of histone 

tails. Lysine may be mono-, di-, or trimethylated on its amine group, whereas 

arginine may be mono- or di-methylated on its guanidyl group (Lan and Shi, 

2009; Ng et al., 2009). These marks are both repressive and facilitative in gene 

transcription depending on the site and degree of methylation (Bannister et al., 

2002). For instance, monomethylation of lysine 9 on histone 3 (H3K9), H3K27, 

H4K20, H3K79 and H2BK5 is linked to transcriptional activation, whilst 

trimethylation of H3K27, H3K9 and H3K79 is linked to transcriptional repression 

(Barksi et al., 2007).  

 RNA methylation  

Gene expression can also be regulated via RNA methylation which occurs at 

cytosine residues in RNA. Amort et al. (2017) mapped 5mC modifications in the 

epitranscriptome of murine brain and ESCs, presenting the first comprehensive 

dataset of cytosine methylation in mRNA. To date, N6-methyladenosine (m6A) 

is the best-studied RNA modification occurring in various eukaryotic RNA 

species, such as mRNA and long noncoding RNAs (lncRNAs; Willyard, 2017). 

Methylation of m6A is catalysed by a multicomponent complex, including 

methyltransferase-like 3 (METTL3) and METTL14 enzymes, alongside 

ancilliary proteins, such as WT1 associated protein (WTAP) in mammals (Lee 

et al., 2014). Diverse functions of m6A include regulation of cellular pluripotency, 

programming and differentiation; transcript stability, splicing and protein 

translation; and the cell stress response. Recent work uncovered a protective 

function of m6A in DNA damage repair indicating that RNA methylation offers 

more than epigenetic regulation (Yue et al., 2015; Xiang et al., 2017). 
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 Demethylation machinery 

Given that methylation can respond to environmental signals in differentiated 

tissues, it follows that the biochemical process should be reversible (Szyf et al., 

2016). Various epigenetic erasers have been identified, including histone 

deacetylases (HDACs) and demethylases (e.g. LSD1; Gillette and Hill, 2015). 

DNA methylation can be passively depleted through DNA replication or actively 

removed by ten-eleven translocation (TET) enzymes and m6A thymine DNA 

glycosylase-mediated (TDG) base excision repair (Kohli and Zhang, 2013). Two 

m6A demethylases have been identified; fat mass and obesity associated 

protein (FTO) and alkB homology 5 (ALKBH5; Batista, 2017). These 

mechanisms facilitate turnover of methyl groups, highlighting the dynamic and 

plastic nature of epigenetic gene regulation, particularly during mammalian 

development.  

1.5.5.1 Cytosine hydroxymethylation (5hmC) 

5-hydoxymethylcytosine (5hmC) is an intermediate product of the DNA 

demethylation process catalysed by ten-eleven translocation 1 enzyme (TET1; 

Tahiliani et al., 2009; Xu et al., 2011). The conversion of 5mC to 5hmC 

significantly reduces the binding of methyl-CpG binding proteins (MBPs) to DNA 

which, in turn, inhibits the recruitment of histone-modifying enzmes that promote 

chromatin condensation and inactivation (Valinluck et al., 2004). Hence, 5hmC 

is an epigenetic signature characteristic of euchromatin and active gene 

transcription (Shi et al., 2017).  

The distribution of 5hmC is influenced by histone modification, binding proteins 

and chromatin configuration during cell differentiation and specification (Shi et 

al., 2017). Typically, 5hmC accumulates within gene promoters decorated with 

dual histone marks required for transcriptional activation and repression. These 

bivalent domains poise the expression of developmental genes, rendering 

5hmC part of the molecular machinery responsible for pluripotency switch in 

ESCs, neural and cancer cells (Kriaucionis and Heintz, 2009; Thomson and 

Meehan, 2017).  

Whether 5hmC is merely a demethylation product or a functional epigenetic 

modification during gametogenesis and embryogenesis remains unclear. 

During the wave of global demethylation that occurs during early 

embryogenesis, there is a loss of 5mC and a concurrent accumulation of 5hmC 
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within both parental pronuclei (Wossidlo et al., 2011; Inoue and Zhang, 2011). 

The distribution and abundance of these methylaton marks is, therefore, 

expected to change during stage-specific methylation reprogramming of the 

preimplantation embryo. If these two marks oppose one another, 5hmC may  

function as a transitional mark of poised chromatin that overcomes gene 

silencing by 5mC (Song et al., 2011; Ficz et al., 2011). Then, as de novo 

methylation ensues in morula stage embryos, the gradual accumulation of 5mC 

(and loss of 5hmC) drives cell differentiation and lineage specification (Cao et 

al., 2014). In Day 12 bovine blastocysts, the enrichment of 5hmC at repeat 

sequences, such as long interspersed nuclear elements (LINEs) and long 

terminal repeats (LTRs), implicates a unique regulatory phase of demethylation 

during trophectoderm elongation and placental development (de Montera et al., 

2013). It is thought that specific 5mCs are likely to be targeted for oxidative 

demethylation and carboxylation to 5-carboxylcytosine (5caC) for complete 

excision by thymine DNA glycosylase (TDG; He et al., 2011).  

1.6 DNA methylation analysis  

In the burgeoning field of epigenetics, there are numerous assays available to 

analyse DNA methylation within cell samples, however, methods vary according 

to their robustness, high-throughput capabilities and cost (Kurdyukov and 

Bullock, 2016). In general, methods have been developed to profile genome-

wide DNA methylation, or differential methylation at specific gene loci or 

regulatory regions of interest. An overview of common methods is presented in 

Table 1.3 and Table 1.4. 
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Table 1.3 Methods for profiling whole genome DNA methylation. 

Method DNA (ng) Advantage(s) Limitation(s) Reference(s) 

High performance 
liquid chromatography 
(HPLC, HPLC-UV) 

300 – 10,000 Measures 5mC/Cytosine ratio Requires specialised instrumentation 
Kuo et al. 
(1980) 

Liquid chromatography- 
mass spectrometry 
(LC-MS/MS) 

100 – 1,000 
Detects ~5% difference,  
Profiles poor quality DNA  
(FFPE samples) 

Expensive, 
Requires specialised instrumentation 

Song et al. 
(2005)  

Enzyme-linked 
immunosorbent assay 
(ELISA) 

100 – 1,000 
Rapid,  
Easy-to-use 

Variable results, Estimates DNA 
methylation 

Manzardo 
and Butler 
(2016) 

Amplification/Restriction 
fragment length polymorphism 
(AFLP, RFLP) 

500 
Inexpensive, 
Suitable for species with limited DNA 
sequence annotation 

Profiles low % of genome,  
Relies on good PCR band resolution  

Paun and 
Schönswetter 
(2012) 

Luminometric methylation assay  
(LUMA) 

250 – 500  
High specificity,  
Detects low DNA methylation 

Requires high quality DNA for 
enzyme digest 

Karimi et al. 
(2006) 

LINE-1 Pyrosequencing 50  High throughput, Detects ~5% difference Profiles 17% of genome 
Estécio et al. 
(2007) 

Abbreviation(s): 5mC, 5-methylcytosine; FFPE, formalin-fixed paraffin-embedded.



University of Nottingham  Chapter One 

30 

 

 

 

 

 

Table 1.4 Methods for profiling differentially methylated regions (DMRs). 

Method DNA (ng) Advantage(s) Limitation(s) Reference(s) 

Methyl-sensitive cut counting  
(MSCC) 

1,000 – 5,000 
No BS required, Rapid,  
Easy-to-use 

Requires high quality DNA for 
enzyme digest 

Guo et al. 
(2011)  

Array/Bead hybridisation 
(Illumina) 

>500 
Time and cost effective, 
Targets 5mC-enriched regions, i.e. 
promoters, UTR 

Custom panels required for non-
human species,  
Limited by DNA sequence 
information 

Marabita et al. 
(2013) 

Methylated DNA immunoprecipitation 
(MethylCap, MeDIP, MIRA) 

>50 

 
Profiles poor quality DNA,  
Provides high coverage – no restriction 
enzymes required  
 

Requires further interrogation by 
NGS sequencing methods 

Hsu et al. 
(2014) 

Whole genome bisulphite sequencing 
(WGBS) 

<30  
 

Most comprehensive, Profiles 100% 
CpGs, Low amount of starting mateiral 
required (125 pg) 

Expensive, 
Requires complex NGS data 
analysis, 
Reduced genome complexity 
makes sequence alignment difficult 

Miura and Ito 
(2015)  

Reduced representation bisulphite 
sequencing 
(RRBS) 

<30 
Gold standard, Reduced cost, Reduced 
NGS data analysis,  
Profiles ~85% CGIs 

Requires high quality DNA for 
enzyme digest, 
Reduced genome complexity 
makes sequence alignment difficult 

Meissner et al. 
(2005); 
Guo et al. 
(2015) 

Abbreviation(s): BS, bisulphite sequencing; CGIs, CpG islands; MBD, Methyl CpG-binding domain; NGS, next generation sequencing; UTRs, untranslated 
regions.  
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 DNA methylation analysis of preimplantation embryos  

Numerous studies assessing DNA methylation in mammalian embryos have 

used immunofluorescence to detect 5mC using specific antibodies (Dean et al., 

2001; Beaujean et al., 2004; Park et al., 2007; Bonilla et al., 2010; Dobbs et al., 

2013; Acosta et al., 2016). Although immunostaining techniques are descriptive 

and provide information about the overall methylation dynamics, they are semi-

quantitative and do not provide sequence-specific information about 

differentially methylated regions (DMRs). Sequence-based approaches, such 

as the EmbryoGENE DNA Methylation Array, have been developed to study the 

epigenome of bovine embryos (Salilew-Wondim et al., 2015; O’Doherty et al., 

2018; Laskowski et al., 2018). Whilst probe hybridisation techniques are more 

specific than immunostaining methods, arrays are limited by species-specific 

DNA squence information and a finite number of probes in their construction 

(Duan et al., 2019).  

More recently, studies have employed high throughput bisulphite sequencing 

(BS) techniques to profile the embryonic methylome. Considered the ‘gold 

standard’ method (Kurdyukov and Bullock, 2016), BS enables single-cell and 

single base resolution DNA methylation analysis (Guo et al., 2015; Smallwood 

et al., 2014). Bisulphite treatment deaminates unmethylated cytosine to uracil 

(U), and converted residues are read as thymine (T), as determined by PCR 

amplification and DNA sequencing. As 5mC residues are protected against this 

conversion, they are read as cytosine (C). Comparing BS reads to untreated 

DNA samples, or aligning reads to the species reference genome, enables 

identification of methylated cytosines (Kurdyukov and Bullock, 2016).  

With next-generation sequencing (NGS) technologies, BS facilitates DNA 

methylation analysis across an entire genome. Whole-genome bisulphite 

sequencing (WGBS) is the most comprehensive of all existing methods (Table 

1.4) that has been used to reveal the methylation status of all CpG sites in 

ESCs, spermatozoa, oocytes, or embryos (Smallwood et al., 2014; Li et al., 

2018; Duan et al., 2019; Chan et al., 2019). However, WGBS is costly and 

requires complex NGS data analysis. Reduced representation bisulphite 

sequencing (RRBS) is a less expensive approach to profiling the methylome. 

By sequencing the 5mC-enriched fraction of the genome, RRBS permits 

increased sequencing coverage and, therefore, enhances precision in 

identifying DMRs (Kurdyukov and Bullock, 2016; Table 1.4). Base-resolution 
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methods for profiling DNA methylation facilitate comprehensive assessments of 

the extent to which the external environment, i.e. nutrition or in vitro culture 

conditions, might impair epigenetic reprogramming of the preimplantation 

embryo.   

1.7 Assisted reproductive technology (ART) and epigenetics 

Assisted reproductive technologies (ART) and in vitro embryo culture can lead 

to defective fetal programming in humans and animals (Menezo et al., 2010; 

Menezo et al., 2019; Young et al., 2001; Anckaert and Fair, 2015; Lin et al., 

2008). Early studies in sheep and cattle revealed that embryos subjected to 

embryo manipulation, i.e. somatic cell nuclear transfer (SCNT), or non-

physiological in vitro embryo culture environments resulted in the development 

of unusually large offspring that also exhibited congenital malformations (Young 

et al., 1998; Sinclair et al., 2000; Young et al., 2001). Aside macrosomia 

(enlarged body), characteristic malformations included macroglossia (enlarged 

tongue), visceromegaly and abdominal wall defects (umbilical hernia). 

Increased incidence of dystocia, and fetal and neonatal losses in affected 

animals has limited large-scale use of in vitro embryo production (IVP) 

technologies. 

This fetal overgrowth phenotype observed in ruminants, referred to as large 

offspring syndrome (LOS), shares phenotypic and epigenetic similarities with 

Beckwith-Wiedemann syndrome (BWS) in humans (Maher et al., 2003; Chen et 

al., 2013; Chen et al., 2015). Both overgrowth syndromes share common 

features, such as alterations in organ and tissue development, placental 

anomalies, and loss of methylation at imprinted loci involved in embryonic 

growth and development. As discussed in Section 1.1.1.1, genomic imprints are 

vulnerable to epigenetic modifications during the periconceptional period 

wherein oocytes are matured and fertilised, and embryos are cultured in vitro 

(Young et al., 1998; Sinclair et al., 2000; Young et al., 2001; Chen et al., 2013; 

Chen et al., 2015). Of relevance is the loss of methylation and expression of the 

insulin like growth factor 2 receptor (IGF2R) gene following ovine embryo 

culture (Young et al., 2001; Discussed in Chapter 4, Section 4.3.2.6).  

In support of the early studies in ruminants, recent evidence found a positive 

correlation between ART conception, and aberrant methylation of imprinted 

genes and increased fetal birthweight in humans (Mäkinen et al., 2013; El Hajj 
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et al., 2017; Cortessis et al., 2018; Berntsen and Pinborg, 2018; Zhang et al., 

2019; Hattori et al., 2019). Whilst the environmental factors that programme 

such disorders have not yet been identified, possible effects may be attributed 

to suboptimal culture media used during IVP (Velker et al., 2012). Ruminant 

studies have identified a link between the addition of serum to culture media 

and LOS (Thompson et al., 1995; Young et al., 2001; Rooke et al., 2007). 

Nevertheless, as serum contains undefined growth factors and macromolecules 

the composition of media is unknown with batch-to-batch variation.  

Many commercial human embryo culture media are formulated based on 

research using animal models which raises questions regarding the safety and 

efficacy of their use for human embryology (Harper et al., 2012). The precise 

metabolic requirements of embryos, as well as the medium’s influence over 

gene expression during development from the oocyte to blastocyst stage, must 

be defined in an effort to standardise optimal culture media formulations for 

different species (Simpoulou et al., 2018). Although ART have proved beneficial 

for clinical, commercial and research purposes, resulting in more than 7 million 

births worldwide (Novakovic et al., 2019), there is a plea for a more careful 

approach to IVP, and a strong case for demanding full transparency concerning 

the composition and scientific rationale behind the development of ‘safe’ embryo 

culture media (Sunde et al., 2016).  

 1C metabolites in in vitro embryo production (IVP) media  

The composition of 1C metabolites in culture media is essential to our 

understanding of epigenetic programming via DNA methylation within 

mammalian cells and embryos during IVP. The wide variation in media 

composition of 1C substrates and cofactors reflects the high degree of 

experimentation and little standardisation between embryo production protocols 

(Table 1.5). Over the past decade, IVP protocols have rapidly transitioned from 

culturing gametes and embryos in simple salt solutions, such as Earle’s or 

Tyrode’s buffers, to complex tissue culture media, such as Hams’ F-10 and 

TCM199 (Sunde et al., 2016).
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Table 1.5 1C metabolites in commercial cell and embryo culture media.  

Adapted from source(s): Sigma Aldrich (https://www.sigmaaldrich.com); Morbeck et al. 
(2014).  

  One-carbon (1C) metabolites* (μmol/L) 

  Met Chol Gly Ser Cys GSH B9 B12 B6 B2 

Cell culture           
 Lebovitz L-15  502.6 7.2 2664.2 1903.1 990.4 - 2.3 - 4.9 0.2 
 Waymouth’s 

752/1 MB  
335.1 1790.8 666.0 - 698.7 - 0.9 0.1 4.9 2.7 

 DMEM 201.1 28.6 399.6 399.7 199.9 - 9.1 - 19.5 1.1 
 IMDM 201.1 28.6 399.6 399.7 291.3 - 9.1 0.0 22.7 1.1 
 TCM199 100.5 3.6 66.0 237.9 83.0 0.2 0.0 - 0.2 0.0 
 MEM 100.5 7.2 99.9 99.9 99.9 - 2.3 - 5.7 0.3 
 RPMI-1460  100.5 21.5 133.2 285.5 208.2 - 2.3 0.0 4.9 0.5 
 Williams’ E  100.5 10.7 666.0 95.2 413.3 0.2 2.3 1.5 5.7 0.3 
 McCoy’s 5A  100.0 35.8 100.0 250.1 200.1 1.5 22.7 1.5 5.2 0.5 
 BME 50.3 7.2 - - 50.0 1.5 2.3 - 5.7 0.3 
 MDCB   30.0 100.0 100.0 100.0 55,7 - 1.8 0.1 0.3 0.3 
 Ham’s F-10  30.0 5.0 100.0 99.9 222.1 - 3.0 1.0 1.0 1.0 
 Ham’s F-12  30.0 100.0 100.0 99.9 222.1 - 3.0 1.0 0.3 0.1 
 NCTC-109  29.8 9.0 180.0 102.3 1881.7 60.9 0.1 7.4 0.7 0.1 
Embryo culture           
 InVitroCare 

IVC1 
0.0 - 0.0 0.0 0.0 

- 
- - - - 

 InVitroCare 
IVC3 

100.0 - 88.0 88.0 11.0 
- 

- - - - 

 Origio ISM1  89.0 - 1312.0 82.0 34.0 - - - - - 
 Origio BA  54.0 - 462.0 80.0 24.0 - - - - - 
 Vitrolife G-1™  0.0 - 94.0 95.0 0.0 - - - - - 
 Vitrolife G-2™  63.0 - 97.0 98.0 47.0 - - - - - 
 Sage QACM  0.0 - 89.0 89.0 0.0 - - - - - 
 Sage QABM  56.0 - 92.0 89.0 41.0 - - - - - 
 Cook SICM  4.0 - 5147.0 81.0 1.0 - - - - - 
 Cook SIBM 43.0 - 5226.0 81.0 25.0 - - - - - 
 Irvine CSC 53.0 - 43.0 42.0 39.0 - - - - - 
 IVFOnline 

Global 
51.0 - 42.0 44.0 43.0 

- 
- - - - 

(-), concentration data not discosed. Abbreviation(s): BA, BlastAssist; BME, Basal 
Medium Eagle; CSC, Continuous Single Culture; DMEM, Dulbecco’s Modified Eagle’s 
Medium; IMDM, Iscove’s Modified Dulbecco’s Medium; ISM1, Innovative Sequential 
Media 1; MEM, Minimum Essential Medium; QABM, Quinn’s Advantage Blastcocyst 
Medium; QACM, Quinn’s Advantage Cleavage Medium; RPMI, Roswell Park Memorial 
Institute Medium; SIBM, Sydney IVF Blastocyst Media;  SICM, Sydney IVF Cleavage 
Media; TCM199, tissue culture medium 199. *1C Metabolites: B2, vitamin 

B2/riboflavin/flavin mononucleotideNa/flavin adenine dinucleotide2Na; GSH, 

glutathione (reduced)/glutathioneNa; B6, vitamin B6/pyridoxalHCl/pyridoxineHCl; B9, 

folic acid/folinic acidCa; B12, vitamin B12/cobalamin; Chol, choline chloride/choline 

birtartrate; Cys, L-cysteine/cysteineHCl/L-cystine/cystine2HCl; Gly, L-glycine; Met, L-
methionine; Ser, L-serine.  

Evaluation of the potential impacts of culture media composition on embryo 

development is challenging as commercial media formulations contain an array 

of constituents, including salts, sugars, amino acids, lipids, vitamins, trace 

elements, hormones and other bioactive molecules (Chronopoulou and Harper, 

2015). These constitutents are present in different forms that vary in stability, 

bioavailability and bioactivity (Schnellbaecher et al., 2019), and their 

concentration within media formulations are often not fully documented, 

disclosed or justified (Sunde et al., 2016). Considering the earlier discussion 
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regarding supplementation of media with serum, the addition of human serum 

albumin to commercial media exposes the embryo to a more physiological, 

albeit undefined nutritional and hormonal milieu (Orsi et al., 2005). 

In addition, contemporary protocols often combine media from different 

manufacturers during sequential media systems that aim to meet embryonic 

requirements according to developmental stage (Biggers and Summers, 2008). 

For example, the InVitroCare two-step sequential media is devoid of methionine 

during early cleavage stages (IVC1) and increases to 100 μmol/L during 

blastocyst development (IVC3; Table 1.5). The advantage of using a two-step 

culture system over a continuous single culture system (i.e. Irvine CSC) remains 

under investigation (Dieamant et al., 2017). Of note is the discrepancy in 

methionine concentrations between cell and embryo culture media, which range 

from 0 to 500 μmol/L between formulations (Table 1.5). As methionine is the 

direct precursor to universal methyl donor, SAM (Figure 1.1), it will be important 

to elucidate the developmental and epigenetic effects of altering its 

concentration during in vitro embryo production.  

 Methionine and epigenetic programming 

There is an accumulating body of evidence that methionine directly influences 

the metabolism of SAM and SAH, with implications for DNA methylation in 

various mammalian tissues (reviewed by Zhang, 2018). Theoretically, the 

addition of methionine is expected to increase DNA methylation of genes and 

down-regulate gene expression. In practice, however, the epigenetic effects of 

methionine on DNA methylation are not always as predicted. Table 1.6 

illustrates that tissue- and species-specific effects of methionine can manifest 

as global and/or locus-specific alterations to DNA methylation. The 

aforementioned point is further complicated by the finding that DNA methylation 

does not always repress but can enhance gene expression (Orsorio et al., 

2016).
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Table 1.6 Epigenetic effects of methionine on mammalian cells and embryos. 

Arrows: ↑ increase, ↓ decrease, - no change. (%) Methionine proportion of diet. 
Intervention stage classified by age, weight or stage of gestation. Abbreviation(s): 
BHMT, betaine homocysteine S-methyltransferase; CBS, cystathionine ß-synthase; 
DEGs, differentially expressed genes; DMI, dry matter intake; DNMT3A, DNA 
methyltransferase 3A; GAD67, glutamic acid decarboxylase; GSH, glutathione ; IVC, in 
vitro culture; MAT, methionine adenosyltransferase; mESCs, murine embryonic stem 
cells; MTHFR, methylenetetrahydrofolate reductase; NANOG, NANOG homeobox 
protein; PPARA, Peroxisone proliferator-activator receptor alpha; RELN, reelin; SAH, S-
adenosyl homocysteine; SAM, S-adenosylmethionine; SIRT1-KO, Sirtuin 1-knockout; 
TEAD4, Tea domain transcription factor 4. 

  

Methionine 
treatment 

Species 
Intervention 

stage 
Duration Cell type 

Metabolic/epigenetic/ 
transcriptomic effects 

Diet  
(0.3 - 3.0%) 
Finklestein and Martin 
(1986) 

Rat 250 g 7 d Liver ↓ SAM:SAH ratio 
↓ MTHFR, ↑ MAT, ↑ BHMT,  
↑ CBS expression 
 

Diet  
(0.3 - 2.3%) 
Rowling et al. (2002) 

Rat 54 - 74 g 10 d Liver ↑ SAM:SAH ratio 

Diet 
(0.3, 2.0%) 
Amaral et al. (2011) 

Rat 35-40 d 6 wk Kidney ↑ SAH 
- SAM:SAH ratio 

Diet 
(0, 0.5%) 
Devlin et al. (2004) 

Mouse 50 d 8 wk Liver/ 
Brain 

↓ SAM:SAH ratio 

Injection 
(6.6 mmol/kg) 
Tremolizzo et al. (2002) 

Mouse 60 d 15 d Brain ↓ SAM:SAH ratio 
↑ Reln promoter methylation 
↓ RELN expression 

Injection 
(5.2 mmol/kg) 
Dong et al. (2005) 

Mouse  20 g 3 – 15 d Brain ↓ RELN, ↓ GAD67 expression 

↑ MeCP2 binding  
Reln/Gad67 promoter 

Diet 
(0, 1.7%) 
Yang et al. (2015) 

Mouse 42 d 20 wk Serum ↑ SAM:SAH ratio 

Diet 
(0.172, 0.39%) 
Tang et al. (2017) 

Mouse 
 

After mating 
(E0.5) 

8-14 d 
(E8.5-
14.5) 

Embryonic  
stem cells 

(SIRT1-KO) 

↓ H3K4me3 methylation  
Met restriction, ↑ Mat2a 
expression in wildtype mESCs 

Diet  
(0.07, 0.19% DMI) 
Osorio et al. (2016) 

Cow 21 d  
before 

parturition 

51 d 
(to 30 d 

lactation) 

Liver ↓ DNA methylation 
↑ PPARA promoter methylation 
↑ PPARA expression 

Diet 
(0.9 kg/DMI) 
Batistel et al. (2019) 
 

Cow 28 d  
before 

parturition 

28 d 
(to term) 

Placenta ↑ 1C metabolites  
↑ DNMT3A expression 
↓ DNA methylation (females) 
 

Diet  
(0.08 % DMI) 
Acosta et al. (2016) 

Cow 21 d  
before 

parturition 

51 d 
(to 30 d 

lactation) 

Day 7  
embryo 

↑ Lipid accumulation 
↓ DNA methylation 

Diet 
(1.89, 2.43% MP) 
Peñagaricano et al. 
(2013) 
 

Cow Calving until 
embryo 
flushing  

70 d 
(post- 

partum) 
 
 

Day 7 
embryo 

276 DEGs  
(embryo development and 
immune response) 
 

Embyro culture 
(0 - 400 μmol/L) 
Bonilla et al. (2010) 

Cow Zygote 
(Day 0 IVC) 

8 d 
 

Day 8 
embryo 

DNA methylation unaffected  
↑ GSH content without Met 

Embryo culture 
(0 – 10 mmol/L ethionine) 
Met antagonist 
Ikeda et al. (2012) 

Cow 5-cell 
(Day 3 IVC) 

5 d 
 

Day 8 embryo ↓ SAM with Met restriction 
↓ DNA methylation 
↑ NANOG, ↑ TEAD4 expression 
 

Cell culture 
(0 – 120 μmol/L) 
Shiraki et al. (2014) 
 

Human - 0-48 hr Embryonic  
stem cells 

↓ SAM, ↓ Hcy with Met restriction 
↓ DNA/H3K4me3 methylation 
↓ NANOG expression 
↑p53-p38 signaling  

Cell culture 
(3, 100 μmol/L)  
Dai et al. (2018) 

Human -  25 hr HCT116 colon 
cancer 
cell line 

↓ H3K4me3 with Met restriction 
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Despite the evidence that methionine availability alters the transcriptome of 

bovine preimplantation embryos in vivo (Peñagaricano et al., 2013), the effect 

of methionine on the methylome of the mammalian embryo remains 

inconclusive. Surprisingly, dietary supplementation of rumen-protected 

methionine at a rate of 0.08% of dry matter intake reduced global DNA 

methylation in bovine embryos (Acosta et al., 2016). In vitro studies have shown 

that methionine inhibition by culturing bovine embryos with antimetabolite 

ethionine (1-10 mmol/L) reduced DNA methylation (Ikeda et al., 2012). On the 

contrary, Bonilla and colleagues (2010) found no effect of methionine 

concentration (0 to 21 μmol/L) on DNA methylation in cultured blastocysts. Such 

findings, however, should be interpreted with caution since all experiments used 

immunofluorescent detection of 5mC which lacks sensitivity and base-

resolution, as discussed previously (Section 1.6.1).  

1.8 Working hypothesis  

The foregoing discussion provides evidence that maternal nutrition during the 

periconceptional period programs offspring development to a large extent via 

1C metabolism, and that dietary inadequacies of 1C substrates and cofactors 

during this vulnerable period can have long-lasting consequences for adult 

health and disease.  

Most of the research investigating the function of 1C metabolism pertains to 

studies undertaken in the rodent liver, with limited research conducted in 

domestic livestock species. It is of agricultural and economic importance to 

understand the regulation of 1C metabolism in ruminants which have a low 

dietary intake of methyl nutrients due to their degradation by rumen 

microorganisms and, therefore, rely on methylneogenesis (transmethylation flux 

through 1C metabolic pathways) as a source of labile methyl groups (Snoswell 

and Xue, 1987). Furthermore, little is known about how 1C metabolism functions 

in the mammalian ovary and preimplantation embryo. Previous research has 

uncovered important species-specific differences in 1C metabolism transcript 

expression (Section 1.4), however, our understanding of the regulatory aspects 

and the impact of nutritional perturbations on these pathways in reproductive 

cell types remains limited.  

With this in mind, this thesis first addresses the hypothesis that dietary 

deficiencies in key 1C substrates and cofactors can perturb 1C metabolism, 
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potentially leading to an aberrant 1C metabolome within the ruminant liver. As 

the largest metabolic organ of the body that is responsible for almost 50% of 

methionine metabolism and 85% of methylation reactions (Lu and Mato, 2012), 

it is likely that relevant reductions in dietary methyl availability may lead to 

significant alterations in hepatic 1C metabolite levels. In order to test this 

hypothesis, novel analytical methods were developed for the simultaneous 

quantification of B vitamins, folates and 1C-related amines in ovine liver 

harvested from abattoir-derived (Ab) controls, and methyl-deficient (MD) 

animals following dietary restriction of 1C metabolites. Hepatic concentrations 

of individual 1C metabolites were compared between Ab and MD sheep to 

assess the metabolic burden of dietary methyl deficiency (Chapter 2). 

Next, based on the premise that the bovine preimplantation embryo may 

metabolise methionine differently to hepatocytes (Section 1.4), the hypothesis 

is advanced that bovine embryonic cells are particularly sensitive to methyl-

group availability and, therefore, highly sensitive to epigenetic programming 

during the preimplantation period. Given that methionine is the first limiting 

amino acid in dairy cattle nutrition (Wiltbank et al., 2014), and that its variable 

concentration in the diet and culture media can influence reproductive 

performance in cows (Toledo et al., 2017), Chapter 3 and Chapter 4 sought to 

elucidate the developmental and epigenetic implications of altering methionine 

concentration during in vitro production of bovine embryos. 

Non-physiological embryo culture conditions and physical manipulation of 

embryos can lead to heritable alterations to the epigenome that are linked to 

adverse developmental outcomes (Young et al., 1998; Young et al., 2001; 

Young et al., 2003). Chapter 5 sought to evaluate the effect of somatic donor 

cell type on epigenetic reprogramming via DNA methylation in hepatocytes 

isolated from cloned sheep.  
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Quantification of folates, B vitamins and 1C-related 

metabolites in ovine liver by HILIC-MS/MS 

  



University of Nottingham  Chapter Two  

40 

 

2.1 Introduction  

The impairment of 1C metabolism can cause disruption to DNA synthesis and 

repair, and epigenetic regulation of gene expression, all of which can have 

detrimental effects on the health of an organism (Xu and Sinclair, 2015). The 

function of 1C metabolic pathways can be monitored by the quantitative 

measurement of key 1C intermediates in blood or metabolically active tissue, 

such as liver (Xu et al., 2020). 

B vitamins, including folates (vitamin B9), B12, B6 and B2, are cofactors of 

cellular methylation reactions, including Hcy remethylation to methionine, that 

serve as a reserve storage pool or as direct precursors for the synthesis of 1C 

coenzymes (Selhub, 2002). Specific 1C-related amines also modulate Hcy 

status by facilitating its remethylation to methionine or its catabolism via the 

transsulphuration pathway (Finkelstein, 2000; Ueland et al., 2005; Appendix 

Figure 2.1; Appendix Table 2.1).  

Dietary restriction of these 1C metabolites is associated with several metabolic 

disease conditions in ruminants, such as ill-thrift, pine, white-liver disease and 

hepatic lipidosis. Such conditions are characterised by anorexia, cachexia, 

anaemia, compromised immune function and impaired fertility, and are 

associated with low plasma or liver vitamin B12 concentrations (Suttle, 2010).  

The interrelationship between B12 and folate-mediated 1C metabolism is 

important in sheep, especially weaned lambs, due to their increased 

susceptibility to cobalt (Co) deficiency (Grace, 1994). Cobalt is a trace-element 

required for the microbial synthesis of B12 in the rumen. Levels of Co are 

normally adequate to meet the metabolic demands of sheep. However, if dietary 

sources are limiting, Co deprivation can manifest as vitamin B12 deficiency with 

adverse consequences for B12-dependent metabolic pathways, including 

methionine synthesis (Somers and Gawthorne, 1969; McDowell, 2000; Suttle, 

2010; Xu et al., 2020).   

Most research on 1C metabolism in sheep liver has focused on enzyme activity 

(Xue and Snoswell, 1985; Xue and Snoswell, 1986; Snoswell and Xue, 1987). 

Comparative studies of sheep and rat liver identified species-specific 

differences in methionine metabolism that may explain, at least in part, an 

adaptation of the ruminant to low dietary methyl group intake. The degradation 

of choline by rumen microbes leads to low betaine availability. It appears that 

sheep compensate for low betaine availability by expressing a lower hepatic 
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capacity of BHMT and a higher capacity of MTR (Neill et al., 1979; Xue and 

Snoswell, 1985; Snoswell and Xue, 1987). Other enzymatic differences include 

a lower capacity of glycine N-methyltransferase (GNMT) and CBS in sheep liver 

(Xue and Snoswell, 1986). Collectively, these differences demonstrate an 

increased reliance on the B12-dependent remethylation of Hcy by MTR, and the 

preferential partitioning of methyl groups for transmethylation reactions in the 

ruminant liver.   

The effects of feeding a methyl deficient (MD) diet have been investigated in 

sheep and have system-wide physiological and metabolic consequences. 

Restricting the supply of B vitamins (B12 and folate) and methionine from the 

diet of mature ewes caused a significant reduction in plasma B12, methionine 

and folate concentrations, and elevated plasma Hcy and methylmalonic (MMA) 

(Kanakkparambil et al., 2009). Feeding the same diet during the 

periconceptional period led to widespread epigenetic modifications to the 

genome associated with increased adiposity, insulin resistance, altered immune 

function and hypertension in adult offspring (Sinclair et al., 2007). To our 

knowledge, however, no study has investigated the effect of dietary methyl 

deficiency on key 1C metabolite concentrations in sheep liver. Quantitative 

assessments of 1C intermediates and co-substrates would provide valuable 

insights into dietary-mediated 1C metabolic function in ruminant species. 

Various analytical approaches have been developed for the quantification of 1C 

metabolites, including microbiological assay, radioimmunoassays, capillary 

electrophoresis, and HPLC methods coupled with coulometric electrochemical, 

UV or fluorescence detection (Ndaw et al., 2001; Pfeiffer et al., 2004; Patring et 

al., 2005; Lebiedzińska et al., 2008; Zhou et al., 2012; Forteschi et al., 2016). 

Although LC-MS/MS methods have been used to quantify B vitamins or folates 

in plants, animal tissues and biofluids (Garratt et al., 2005; Midttun et al., 2005; 

Gentili et al., 2008; Midttun et al., 2013; Puts et al., 2015; Oosterink et al., 2015; 

Phillips, 2015), most methods involve complex and time-consuming sample 

preparation and are limited to quantifying individual or a subset of metabolites 

without the capacity to analyse a comprehensive set in one analytical run. In 

general, studies report the total content of vitamins without measuring the 

chemically distinct bioactive forms individually. Knowledge of the variation and 

tissue-specific distribution of individual coenzymes could aid our understanding 

of the metabolic burden of methyl deficiency and facilitate more accurate 

deficiency diagnosis in ruminants.  
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Active variants of B vitamins are present in free and phosphorylated forms at 

varying concentrations (Merril and Henderson, 1990), and folates are present 

as mono- and polyglutamates of varying glutamate chain length (Garratt et al., 

2005). All vitamers are susceptible to degradation by light, heat, oxygen and pH 

(Monajjemzadeh et al., 2014). The diverse physicochemical properties and 

chemical instability of 1C metabolites presents a significant analytical challenge 

to develop methods for their simultaneous quantification in complex mammalian 

tissue. Hence, the objective of the present study was to develop analytical 

methods for the comprehensive and quantitative profiling of B vitamins, folates 

and 1C-related amines in sheep liver, and specifically, to investigate the effect 

of dietary methyl deficiency on key 1C metabolite concentrations in sheep liver.  

2.2 Materials and methods 

 Animals, treatments and tissue collection 

All procedures were conducted in accordance with the requirements of the UK 

Home Office Animals (Scientific Procedures) Act (1986) and were approved by 

the University of Nottingham Animal Welfare and Ethical Review Board.  

A total of 356 purebred weaned and pubertal Texel lambs were recruited from 

11 farms in the UK. Approximately half of these lambs were male. The control 

cohort (n=266) originated from five farms and were slaughtered at regional 

abattoirs between May and September. The treatment cohort (n=90) originated 

from six farms located in Derbyshire, Devon, Gloucestershire, Leicestershire, 

Northamptonshire and Worcestershire, and were transported to the University 

farm at 12 weeks of age to be fed a methyl deficient (MD) diet prior to slaughter. 

Power equations were used to calculate the sample size for study cohorts.  

2.2.1.1 Methyl deficient (MD) cohort 

At the start of the study, animals were penned in pairs according to farm origin, 

sex and body weight. A blood sample was taken by jugular venepuncture on 

arrival to assess trace-element status (primarily Co) by inductively coupled 

plasma mass spectrometry (ICP-MS) analysis using the method described in 

Appendix 2.1. As it can take several weeks to deplete sheep of endogenous 

B12 reserves (Kennedy et al., 1994), animals were adjusted to a concentrate 

diet of Co deficient (<0.09 mg/kg dry matter; DM) and sulphur (S) deficient (<1 
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mg/kg DM) barley and hay for 4 weeks prior to the introduction of the 

experimental diet. A reduction in Co and S diminishes the capacity of the rumen 

microorganisms to synthesise B12 and sulphur-containing amino acids, 

respectively (Kanakkaparambil et al., 2009).  

Seven MD animals were prematurely withdrawn from the study due to their 

incapacity to thrive under experimental conditions as newly weaned lambs. For 

the duration of the study (12 weeks), animals were fed a Co and S deficient 

concentrate diet ad libitum and Co deficient hay at a fixed rate of 200g/lamb/day. 

The concentrate diet, containing 42% barley, 30% oat feed, 25% maize and 3% 

urea, was based on that offered previously (Sinclair et al., 2007; 

Kanakkaparambil et al., 2009) and was designed to meet the requirements for 

maintenance and growth of recently weaned lambs (ARC, 1980). The mineral 

composition of the MD diet is presented in Table 2.1. 

Table 2.1 Macro and micro mineral composition of methyl deficient (MD) 
concentrate diet and cobalt (Co) deficient hay. 

 Concentrate diet Hay 

   
Chemical analyses†   

   

Dry matter (g/kg) 888 860 
Metabolisable energy (MJ/kg DM) 12.9 7.0 
Crude protein (g/kg DM) 134 67 
   

Macro mineral, g/kg DM 
 

  

Phosphorous (P) 2.2 1.6 
Potassium (K) 4.9 12.3 
Sodium (Na) 0.07 0.8 
Magnesium (Mg) 0.8 1.2 
Calcium (Ca) 0.5 3.7 
Sulphur (S) 
 

0.8 1.0 

Macro mineral, mg/kg DM 

 
  

Boron (B) 4.9 9.6 
Copper (Cu) 2.5 4.8 
Manganese (Mn) 14.6 133.4 
Zinc (Zn) 18.0 23.2 
Selenium (Se) 0.06 0.03 
Cobalt (Co) 0.02 0.2 

† Proximate analyses undertaken by Scotland’s Rural College (SRUC), Bush Estate, 
Edinburgh 

Feed intakes of the MD diet were recorded for each pen at 3- and 4-day 

intervals, lamb liveweights were recorded fortnightly and blood samples taken 

weekly. Lambs remained on the experimental diet until serum B12 

concentrations remained below 200 pmol/L for ≥6 weeks and plasma Hcy had 
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been rising for ≥4 weeks to ≥9 μmol/L. At this experimental endpoint, lambs 

were slaughtered, and liver samples collected.  

2.2.1.2 Tissue collection  

Fresh liver samples were harvested immediately after the slaughter of control 

(abattoir, Ab) and MD animals. However, liver samples were collected from 

animals in each of the study cohorts at two independent time points and, 

therefore, were not analysed in parallel. Diced sections (5 mm3) from the same 

region of the right lobe of the liver were collected on each occasion and snap 

frozen in liquid nitrogen within 15 min of exsanguination. Tissue samples were 

stored at −80°C until metabolomic analyses.  

2.2.1.3 Blood analysis  

Blood samples were collected from lambs weekly by jugular venepuncture into 

lithium heparin vaccutainers, and vaccutainers containing no additive. Samples 

were centrifuged for 15 min at 4,250 xg. Plasma and serum fractions were 

stored at -20oC until analysed.  

 Vitamin B12 

Serum B12 was measured using the IMMULITE® 2000 system at SRUC, 

Edinburgh, UK. This solid-phase, competitive chemiluminescent enzyme 

immunoassay involves an automated alkaline denaturation procedure 

(catalogue no. L2KVB2). Serum is treated with dithiothreitol (DDT) and sodium 

hydroxide/potassium cyanide (NaOH/KCN) solution in a reaction tube. 

Following a 30 min incubation, the sample is transferred to a second tube 

containing B12-coated polystyrene beads and hog intrinsic factor (HIF). A 

second 30 min incubation facilitates the release of B12 from endogenous 

binding proteins by alkaline denaturation. The released B12 competes with 

immobilised B12 for binding with HIF. During a final 30 min incubation, alkaline 

phosphatase-labelled anti-hog intrinsic factor is added which binds HIF that is 

immobilised on the B12-coated bead. Unbound enzyme conjugate is removed 

by centrifugal wash. The bound conjugate is quantified using chemiluminescent 

substrate, dioxetane. Light emitted when dioxetane reacts with alkaline 

phosphatase is detected by a photomultiplier tube. The amount of light emitted 

is proportional to the concentration of B12 in the sample. A sample volume of 
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75 μL was required for this assay. The limit of detection (LOD) was 111 pmol/L 

and the upper limit was 738 pmol/L. The intra-assay coefficient of variation 

(CV%) was 13.0, 7.0 and 6.2 for low, medium and high-quality control (QC) 

samples, respectively. The inter-assay CV% was 15.0, 6.0 and 7.9, for low, 

medium and high QC samples, respectively. 

 Homocysteine (Hcy) 

Plasma homocysteine (Hcy) was measured using an Imola Autoanalyser (RX 

Imola; Randox Laboratories Ltd., Antrim, UK) using the Hcy kit (Randox 

laboratories; catalogue no. HY4036). Bound or dimerised Hcy (oxidised form) is 

reduced to free Hcy which reacts with serine to form cystathionine, as catalysed 

by cystathionine β-synthase (CBS). Cystathionine is catabolised by 

cystathionine β-lyase (CBL) to produce Hcy, pyruvate and ammonia. Pyruvate 

is converted to lactate by lactate dehydrogenase (LDH), using nicotinamide 

adenine dinucleotide (NADH) coenzyme. The rate of NADH conversion to 

NAD+ is proportional to the concentration of Hcy (ΔA340 nm). The LOD was 

was 1.74 μmol/L and the upper limit was 47.9 μmol/L. The CV% was 9.32, 6.77 

and 5.40 for low, medium and high QC samples, respectively. 

 Methylmalonic acid (MMA) 

Plasma methylmalonic acid (MMA) was measured by gas chromatography-

mass spectrometry (GC-MS) following derivatisation and extraction, based on 

the method of Kanakkaparambil et al. (2009). Briefly, 50 μL plasma and 5 μL 

internal standard, 4-chlorobutyric acid (CBA; 250 μmol/L), were added to 250 

μL 12% boron trifluoride methanol (BF3-MeOH) in a 2.5 mL screw-capped glass 

vial. The mixture was vortexed for 30 s and heated at 95oC for 15 min in a 

heating block. After cooling, 250 μL distilled water and 250 μL dichloromethane 

(CH2Cl2) was added to the vial. The mixture was vortexed for 30 s and 

centrifuged for 8 min at 2,500 xg and 4oC to separate the layers. The lower 

CH2Cl2 layer was transferred to a screw-capped autosampler glass vial with 

insert for GC-MS analysis.  

The GC-MS method used a DB-WAX column (crosslinked polyethylene glycol; 

J&W Scientific Agilent technology; 30 mm x 0.25 mm; 0.15 μm film thickness). 

The injection volume was 1 μL for SCAN mode for qualification and selected ion 

monitoring (SIM) mode for quantification, both using splitless mode. The 
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injection port and MS selective detector interference temperatures were 260oC 

and 280oC, respectively. The carrier gas (He) was set at a constant flow rate of 

0.1 mL/min. The chromatographic conditions were 50oC for 2 min, 8oC min-1 

until 150oC and a final increase of 100oC min-1 until 220oC. The MS was tuned 

regularly and operated in electron impact ionisation mode with the ionisation 

energy of 70 eV. SCAN mode measured at 20-500 m/z. SIM ions were set at 

115 m/z for MMA and 105 m/z for CBA. Plasma MMA concentrations were 

quantified by the method of standard addition using a calibration range from 

0.156 to 20 μmol/L and plotting the ratio of peak area of analyte (MMA) to that 

of the internal standard (CBA). Results were reported as μmol/L plasma. The 

LOD was 0.15 μmol/L and the CV% was 0.44, 1.03 and 0.83 for low, medium 

and high QC samples, respectively.  

 Liver 1C metabolite quantification  

A total of 37 one-carbon metabolites and related compounds were measured in 

356 Texel sheep liver samples. Hydrophilic interaction liquid chromatography-

mass spectrometry (HILIC-MS/MS) methods for the quantification of B vitamins 

and folates were undertaken in collaboration with postdoctoral researcher, Dr 

Juan Xu (Section 2.2.2.1). High-performance liquid chromatography (HPLC) 

and GC-MS methods for the quantification of related amino acids, polyamines 

and propionate metabolites were undertaken in collaboration with fellow PhD 

student, Dr Amey Brassington (Appendix 2.2 to Appendix 2.4).  

2.2.2.1 HILIC-MS/MS 

The ‘B vitamin’ method measured ten B vitamins and four 1C-related amines 

(Table 2.2). The ‘folate’ method measured seven folates and three key 

methionine cycle analytes (Table 2.3).  

 Analytical grade reagents 

B vitamin method: Methanol (MeOH), acetic acid and acetonitrile (ACN) were 

purchased from Fisher Scientific (Loughborough, UK). Unless otherwise stated, 

the following reagents were purchased from Sigma-Aldrich (Poole, UK); 

ammonium formate, formic acid and 2-mecaptoethanol (MCE). B vitamin 

standards; thiamine hydrochloride (B1), (-)-riboflavin (B2), riboflavin 5’-

monophosphate sodium salt hydrate (flavin mononucleotide; FMN), flavin 



University of Nottingham  Chapter Two  

47 

 

adenine dinucleotide disodium salt hydrate (FAD), pyridoxine hydrochloride 

(PN), pyridoxamine dihydrochloride (PM), pyridoxal hydrochloride (PL), 

pyridoxal 5’-phosphate (PLP), vitamin B12 (CNCbl), coenzyme B12 (AdoCbl) and 

methylcobalamin hydrate (MeCbl; Alfa Aesar, Lancashire, UK). One-carbon 

amine standards; L-cystathionine (Cth), betaine/trimethylglycine (TMG), N,N-

dimethylglycine (DMG) and sarcosine (Sar). Internal standards (IS); vitamin B1 

hydrochloride (4,5,4-methyl-13C3; B1-13C3) and deuterated pyridoxine 

hydrochloride (methyl-D3; PN-d3) were purchased from Cambridge Isotope 

laboratories (Massachusetts, USA), and 8-bromoadenosine 3’,5’-cyclic 

monophosphate (8-Br-cAMP) was purchased from Sigma-Adrich (Poole, UK). 

High purity water was produced by a Millipore water purification system 

(Millipore S.A.S., Molsheim, France).  

Folate method: Potassium phosphate monobasic (KH2PO4), potassium 

phosphate dibasic (K2HPO4), L-ascorbic acid, citric acid, ammonium carbonate 

and acetonitrile were purchased from Fisher Scientific (Loughborough, UK). 2-

mercaptoethanol (MCE) was purchased from Sigma-Aldrich (Poole, UK). Folate 

standards were purchased from Schircks Laboratories (Jona, Switzerland) 

including folic acid (FA), 7-8-dihydrofolic acid (DHF), (6R,S)-5,6,7,8-

tetrahydrofolic acid trichloride (THF), (6R,S)-5-formyl-5,6,7,8-tetrahydrofolic 

acid, calcium salt (5-fTHF), (6R,S)-5,10-methenyl-5,6,7,8-tetrahydrofolic acid, 

chloride (CH=THF), (6R,S)-5,10-methylene-5,6,7,8-tetrahydrofolic acid, 

calcium (CH2THF), (6R,S)-5-methyl-5,6,7,8-tetrahydrofolic acid, calcium salt (5-

mTHF). S-adenosyl L-methionine (SAM), S-adenosylhomocysteine (SAH), and 

DL-Homocysteine (Hcy) were purchased from Sigma-Aldrich (Poole, UK). 

Internal standard (IS); methotrexate (MTX), was purchased from Schircks 

Laboratories and internal standard (IS), S-adenosylhomocysteine-d4 (SAH-d4), 

was purchased from Cambridge Bioscience (Cambridge, UK).
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Table 2.2 B vitamin and 1C-related amine analytes measured by HILIC-MS/MS. 

*Internal standard (IS)  

B vitamin method 

 

 

 

 

Thiamine 
(B1) 

Riboflavin 
(RF) 

Flavin mononucleotide 
(FMN) 

Flavin adenine dinucleotide 
(FAD) 

    
 
 

    

Pyridoxine  
(PN) 

Pyridoxamine 
(PM) 

Pyridoxal 
(PL) 

Pyridoxal 5’-phosphate 
(PLP) 

    
 
 

 

 

 
 

 
 

Cystathionine 
(Cth) 

 

 

Cyanocobalamin 
(CNCbl) 

 

Adenosylcobalamin 
(AdoCbl) 

Methylcobalamin 
(MeCbl) 

Trimethylglycine 
(TMG) 

    
 

Dimethylglycine 
(DMG) 

 
 
 

 
Vitamin B1 hydrochloride 

(B1-13C3)* 
Pyridoxine-d3  

(PN-d3)* 
8-bromoadenosine 3’,5’-
cyclic monophosphate 

(8-Br-cAMP)* 

Sarcosine 
(Sar) 
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Table 2.3 Folate and methionine cycle analytes measured by HILIC-MS/MS. 

*Internal standard (IS) 

 

 

Folate method 

   

Folic acid 
(FA)  

Dihydrofolate 
(DHF) 

Tetrahydrofolate 
(THF) 

 
 
 
 

  

 
 

 

5-Formyltetrahydrofolate 
(5-fTHF) 

5,10-Methylenetetrahydrofolate 
(CH2THF) 

5,10-Methenyltetrahydrofolate 
(CH=THF) 

 
 
 
 

  

 
  

5-Methyltetrahydrofolate 
(5-mTHF) 

S-Adenosyl methionine 
(SAM) 

S-Adenosyl homocysteine 
(SAH) 

 
 
 
 

  

 

 
 

 

 

Homocysteine 
(Hcy) 

Methotrexate 
(MTX)* 

S-Adenosyl homocysteine-d4 
(SAH-d4)* 
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 Standard preparation and calibration  

B vitamin method: Stock solutions of B12, B6, B2, B1 and 1C amines were 

prepared in 0.01 M aqueous HCl at a final concentration of 10 μmol/L, except 

for FAD, Cth, Sar and TMG which were prepared at a final concentration of 1 

mmol/L. Methylcobalamin and deuterated IS, PN-d3, were prepared in pure 

MeOH. All stock solutions were stored at −80°C. Aqueous bovine serum 

albumin (10% BSA; Sigma Aldrich cat no. A6003) was used as a surrogate 

matrix for the preparation of eight extracted calibration standards. These were 

prepared by adding 150 μL ACN buffer (95% ACN, 1% acetic acid, 0.1% 

ascorbic acid and 0.1% MCE) containing a suitable range of standard 

concentrations into 50 μL 10% BSA containing the IS mix. The final 

concentration of each IS was 1 μmol/L.  

Folate method: Stock solutions of folates, SAM, SAH and Hcy standard 

metabolites, plus IS (MTX and SAH-d4), were prepared in potassium phosphate 

extraction buffer (KH2PO4 and K2HPO4; 40 mmol/L) containing 0.1% L-ascorbic 

acid, 0.15% citric acid and 0.1% MCE (adjusted to pH 7 with NaOH), each at a 

final concentration of 100 μmol/L. All stock solutions were stored at −80°C. As 

before, 10% BSA was used for the preparation of eight extracted calibration 

standards. These were prepared by adding 150 μL extraction buffer to 50 μL 

10% BSA containing the IS mix. The final concentration of each IS was 100 

nmol/L. 

 Sample extraction  

B vitamin method: 50 mg frozen liver were extracted with 300 μL ACN buffer 

containing 1 μmol/L of IS mix (B1-13C3, PN-d3 and 8-Br-cAMP). Homogenisation 

was performed using a Tissuelyser (RetschQiagene) with two disruption steps 

at 25 Hz for 2.5 min, freezing samples between steps. Liver homogenates were 

incubated at 50°C in a water bath for 15 min, rapidly cooled on ice and 

centrifuged for 15 min at 2,000 xg and 4oC. Further deproteination was 

undertaken by the addition of 100 μL cold ACN to 100 μL liver homogenate. 

After vortexing for 10 s and a final centrifugation step, the clear supernatant was 

transferred into an amber HPLC vial for LC-MS/MS analysis. 

Folate method: 50 mg frozen liver were extracted with 250 μL cold potassium 

phosphate buffer containing 100 nmol/L of IS mix (MTX and SAH-d4). 

Homogenisation was performed using a Tissuelyser (RetschQiagene) with two 
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disruption steps at 25 Hz for 2.5 min, freezing samples between steps. Liver 

homogenates were incubated at 100°C in a water bath for 2 min to deactivate 

the conjugate enzyme responsible for polyglutamation and rapidly cooled in ice. 

Homogenates were vortexed for 10 s and centrifuged for 10 min at 9,000 xg and 

4oC. 

For the quantification of folate monoglutamates, 100 μL liver supernatant was 

transferred to a 0.5 mL Microcon-10kDa centrifugal filter unit with ultracel-10 

membrane (Merck Millipore) and centrifuged for 30 min at 16,000 xg and 4oC. 

The filtrate was transferred to an amber HPLC vial for LC-MS/MS analysis. This 

extraction procedure was applied to liver and QC samples.  

For the quantification of total folates (mono- and polyglutamates), 75 μL 

potassium phosphate buffer and 25 μL rat serum (Sigma-Aldrich) was added to 

100 μL liver supernatant and mixed gently. The contents were incubated at 37°C 

in a water bath for 2 hours to allow enzymatic cleavage of glutamate residues 

from folates by γ-glutamyl hydrolase (GGH) in serum. Next, the contents were 

incubated at 100°C for 1 min to deactivate GGH, rapidly cooled on ice and 

centrifuged for 5 min at 10,000 xg. The supernatant (100 μL) was transferred to 

a 0.5 mL Microcon-10kDa centrifugal filter unit and further centrifuged for 30 

min at 16,000 xg and 4oC. The filtrate was transferred to an amber HPLC vial 

for LC-MS/MS analysis. 

 LC-MS/MS analysis 

LC-MS/MS analyses were performed on a LC-10AD systems (Shimadzu, Kyoto, 

Japan) equipped with a SIL-HTC autosampler coupled to an ABI 4000 QTRAP 

tandem mass spectrometer using an electrospray ion source (Turbo Ion 

Spray™; SCIEX, Foster City, CA) in positive ionisation mode. Chromatographic 

separation was performed on a Sequant ZIC–pHILIC column (150 × 4.6 mm, 5 

μm particle size) with a guard column (Sequant ZIC–pHILIC, 20 × 2.1 mm, 5 μm 

particle size) maintained at 45°C. The autosampler was maintained at 4°C. 

Standards and samples were injected at a volume of 10 L with a flow rate of 0.4 

mL/min.  

Mobile phases for the B vitamin method were composed of aqueous ammonium 

formate buffer solution (20 mmol/L, adjusted to pH 3.5 with formic acid) for 

eluent A and 100% ACN for eluent B. Mobile phases for the folate method were 

composed of aqueous ammonium carbonate buffer solution (20 mmol/L, pH 9.1) 
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for eluent A and 100% ACN for eluent B. Gradient elution was carried out by the 

following program: isocratic hold on 80% B for 1 min, next a linear gradient from 

80% B to 5% B for 5 min, followed by a linear gradient back to 80% in 2 min, 

then isocratic hold on 80% for another 5 min. The total run time was 13 min.  

MS settings were as follows: ion source temperature (450°C), ion spray voltage 

(5000 V), curtain gas (25 psig), collision gas (8 psig), ion source gas 1 (20 psig), 

ion source gas 2 (20 psig) interface heater activated. Analyst software (Applied 

Biosystems/MDS SCIEX) was used for HPLC system control and data 

acquisition and processing. The MS/MS acquisition method (multiple reaction 

monitoring; MRM) was developed and the parameters are shown for the B 

vitamin method (Table 2.4) and folate method (Table 2.5). Two MRM transitions 

were monitored for each compound to use the ratio of quantifier and qualifier 

transition for compound identification. All compounds were quantified by the 

method of standard addition using an 8-point calibration constructed by plotting 

the ratio of the peak area of analyte to that of the relevant internal standard. For 

the B vitamin method, 8-Br-cAMP was used for B12, B2 and 1C amine analytes; 

PN-d3 was used for B6 analytes; and, B1-13C3 was used for B1. For the folate 

method, MTX was used for folate analytes and SAH-d4 was used for methionine 

cycle metabolites. 

For batch analysis, bulk QC samples were made from homogenised sheep liver 

spiked with a known concentration of analyte standards. These QC samples 

were used to monitor assay performance across batches.
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Table 2.4 Mass spectrometer parameters for identification of B vitamins and 1C-
related amines. Adapted from Xu et al. (2020). 

Abbreviation(s): 8-Br-cAMP, 8-bromoadenosine 3’,5’-cyclic monophosphate; AdoCbl, 
adenosylcobalamin; amu, atomic mass unit; B1-13C3, vitamin B1 hydrochloride 4,5,4-
methyl-13C3;  B1, thiamine; CE, collision energy; CNCbl, cyanocobalamin; Cth, 
cystathionine; CXP, collision cell exit potential; DMG, dimethylglycine DP, declustering 
potential; FAD, flavin adenine dinucleotide; FMN, flavin mononucleotide; MeCbl, 
methylcobalamin; PL, pyridoxal; PLP, pyridoxal 5’-phosphate; PN-d3, pyridoxine 
hydrochloride methyl-D3; PN, pyridoxine; PM, pyridoxamine; Q1, quadrupole 1; Q2, 
quadrupole 2; RF, riboflavin; Sar, sarcosine; TMG, trimethylglycine. 

Table 2.5 Mass spectrometer parameters for identification of folates and 
methionine cycle metabolites. 

Abbreviation(s): 5-fTHF, 5-formyltetrahydrofolate; 5-mTHF, 5-methyltetrahydrofolate; 
amu, atomic mass unit; CE, collision energy; CH=THF, 5,10-methenyltetrahydrofolate; 
CH2THF, 5,10-methylenetetrahydrofolate; CXP, collision cell exit potential. DHF, 
dihydrofolate; DP, declustering potential; FA, folic acid; Hcy, homocysteine; Met, 
methionine; MTX, methotrexate; Q1, quadrupole 1; Q2, quadrupole 2; SAH-d4, S-
adenosyl homocysteine-d4; SAH, S-adenosyl homocysteine; SAM, S-
adenosylmethionine; THF, tetrahydrofolate. 

Analyte 
Retention time  

(min) 
Q1 mass 

(amu) 
Q3 mass 

(amu) 
DP CE CXP 

B vitamins        
CNCbl  5.82 678.54 147.30 81 63 12 
AdoCbl  6.46 790.56 665.50 96 31 16 
MeCbl  6.07 673.16 147.20 76 77 12 
PN  7.85 169.21 134.10 56 31 10 
PM  6.79 170.08 152.00 41 21 10 
PL  6.59 168.23 94.20 31 37 6 
PLP  7.17 248.06 122.00 31 41 12 
RF        
FMN  6.13 457.10 359.10 96 33 12 
FAD  6.38 786.27 348.00 111 33 10 
B1  7.23 265.15 122.10 26 21 8 
1C amines        
Cth 7.39 223.10 134.10 56 21 10 
TMG 6.33 118.09 59.10 66 27 10 
DMG 6.49 104.03 58.20 23 21 2 
Sar 6.84 89.87 44.10 36 19 6 

Internal standards       

B1-13C3 7.20 267.80 123.00 35 19 10 

PN-d3 6.80 173.00 136.00 35 25 10 
8-Br-cAMP 6.00 407.80 214.00 35 35 10 

Analyte 
Retention time 

(min) 
Q1 mass 

(amu) 
Q3 mass 

(amu) 
DP CE CXP 

Folates       
FA  7.42 442.23 295.10 71 25 18 
DHF 7.36 444.19 178.10 66 19 12 
THF 7.23 446.20 299.20 96 29 18 
5-fTHF 7.11 474.10 327.20 86 31 10 
CH=THF 7.07 456.11 412.20 151 43 12 
CH2THF 7.09 458.12 311.10 76 29 8 
5-mTHF 6.93 460.10 313.20 76 29 18 
Met cycle metabolites       
SAM 7.69 399.12 250.10 56 25 16 
SAH 7.21 385.13 134.10 71 31 10 
Hcy 7.34 136.03 56.10 31 29 8 
Internal standards       
MTX 6.60 455.11 308.10 86 29 8 
SAH-d4 7.23 389.19 138.10 71 29 10 
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 Method validation 

Method validation followed standard guidelines for bioanalytical method 

development (FDA, 2018), based on the method of Xu et al. (2020). Briefly, 10% 

BSA in water was used as a surrogate blank matrix for validation experiments 

since this gave an equivalent protein load compared with sheep liver. Selectivity 

was demonstrated by the ability of the assay to differentiate and quantify the 

specific analytes of interest in the presence of other components (Figure 2.1).  

 

Figure 2.1 HILIC-MS/MS MRM chromatograms for 1C metabolites quantified in 
sheep liver. 

Folic acid (FA), dihydrofolate (DHF), tetrahydrofolate (THF), 5-methyltetrahydrofolate 
(5-mTHF), 5-formyltetrahydrofolate (5-fTHF), 5,10-methylenetetrahydrofolate 
(CH2THF), 5,10-methenyltetrahydrofolate (CH=THF), methotrexate (MTX) (A). S-
adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), homocysteine (Hcy), S-
adenosylhomocysteine-d4 (SAH-d4) (B). Thiamine (B1), riboflavin (RF), flavin 
mononucleotide (FMN), flavin adenine dinucleotide (FAD), pyridoxine (PN), 
pyridoxamine (PM), pyridoxal (PL), cyanocobalamin (CNCbl), adenosylcobalamin 
(AdoCbl), methylcobalamin (MeCbl), thiamine hydrochloride (B1-13C3), pyridoxine-d3 
(PN-d3), 8-bromoadenosine 3’,5’-cyclic monophosphate (8-Br-cAMP) (C). 
Cystathionine (Cth), sarcosine (Sar), dimethylglycine (DMG), trimethylglycine (TMG) 
(D).  
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Calibration curves were linear (r≥0.97) over reported concentration ranges for 

all analytes measured in both methods, except for PLP which did not calibrate 

accurately and was, therefore, excluded from the study (Table 2.6, Table 2.7). 

The limit of detection (LOD, S/N=3) and quantification (LOQ, S/N=10) were 

determined over three replicates.  

Table 2.6 Validation data for quantification of B vitamins and 1C-related amines 
in sheep liver.  

Abbreviation(s): AdoCbl, adenosylcobalamin; B1, thiamine; CNCbl, cyanocobalamin; 
Cth, cystathionine; DMG, dimethylglycine; FAD, flavin adenine dinucleotide; FMN, flavin 
mononucleotide; LOD, limit of detection; MeCbl, methylcobalamin; PL, pyridoxal; PM, 
pyridoxamine; PN, pyridoxine; R2, correlation coefficient;  RSD%, relative standard 
deviation; RF, riboflavin; Sar, sarcosine; TMG, trimethylglycine.  

 

Table 2.7 Validation data for quantification of folates and methionine cycle 
metabolites in sheep liver.  

Abbreviation(s): 5-fTHF, 5-formyltetrahydrofolate; 5-mTHF, 5-methyltetrahydrofolate; 
CH=THF, 5,10-methenyltetrahydrofolate; CH2THF, 5,10-methylenetetrahydrofolate; 
DHF, dihydrofolate; FA, folic acid; Hcy, homocysteine; LOD, limit of detection; R2, 
correlation coefficient; RSD%, relative standard deviation; SAH, S-adenosyl 
homocysteine; SAM, S-adenosylmethionine; THF, tetrahydrofolate. 

Analyte 
Linear 
range 

(nmol/L) 

LOD 
(pmol/g) 

Precision 
(RSD%) 

Slope R2 

CNCbl 0.8-100 4.7 30.8 0.03736 0.99 
AdoCbl 0.8-100 4.7 29.9 0.01070 0.99 
MeCbl 0.8-100 4.7 14.9 0.00551 0.99 
PN 0.8-100 4.7 8.8 0.00177 0.99 
PM 0.8-100 4.7 9.8 0.00577 0.98 
PL 0.8-100 4.7 9.9 0.00368 0.97 
RF 3.9-500 23.5 7.8 0.03217 0.99 
FMN 3.9-500 23.5 13.3 0.00570 0.99 
B1 3.9-500 23.5 7.19 0.00193 0.99 
DMG 3.9-500 23.5 8.13 0.02103 0.99 
 (μmol/L) (nmol/g)    
FAD 0.8-250 4.7 29.3 0.00010 0.99 
Cth 0.05-7 0.3 26.9 0.00215 0.99 
TMG 1.6-100 9.4 9.1 0.00663 0.99 
Sar 1.7-150 7.0 11.2 0.00060 0.98 

Analyte 
Linear 
range 

(nmol/L) 

LOD 
(pmol/g) 

Precision 
(RSD%) 

Slope R2 

FA 5-75 0.8 26.0 0.00021 0.99 
DHF 20-300 1.5 15.27 0.00011 0.99 
THF 10-600 0.8 18.96 0.00007 0.99 
5-fTHF 5-150 1.5 19.89 0.00031 0.99 
CH=THF 5-150 1.5 12.15 0.00002 0.98 
CH2THF 5-300 0.8 16.84 0.00042 0.99 
5-mTHF 25-1200 0.4 18.34 0.00013 0.99 

 (μmol/L) 
LOD 

 (nmol/g) 
   

SAM 0.08-2.4 0.4 16.70 0.00193 0.99 
SAH 0.08-9.6 0.4 6.90 0.00897 0.99 
Hcy 0.08-9.6 0.4 15.53 0.00001 0.98 
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Precision of the method (RSD%) was determined by analysis of inter-assay QC 

samples (n=3) under the same experimental conditions. For analytes measured 

using the B vitamin method, the RSD% values were <15%, except for AdoCbl 

(30.8%), MeCbl (29.9%), FAD (29.3%) and Cth (26.9; Table 2.6).  For analytes 

measured using the folate method, RSD% values were 15-20%, except for FA 

(26.0%; Table 2.7). 

 Statistical data analysis  

Data analysis was performed using Analyst software version 1.6.3 (Applied 

Biosystems/MDS, analytical Technologies, Concord, Ontario, Canada). 

Selectivity graphs were designed using Origin 2018b software (OriginLab 

Corporation, Massachusetts, (USA). Statistical analyses were performed within 

the Genstat statistical package (19th Edition, VSN International, 2011). Data 

were log-transformed to address issues of homogeneity of variance, additivity 

and normality as required (following analysis of plotted residuals). 

Concentrations of individual metabolites were compared between Ab and MD 

sheep liver by analysis of variance (ANOVA) and a P-value ≤0.05 was deemed 

statistically significant. Concentration data are reported as means (± standard 

error of means; SEM), and are presented as box plots designed using 

GraphPad Prism 8 software. Boxplots depict the mean (as the data was 

analysed using a parametric test, i.e. ANOVA), median and inter-quartile ranges 

with whiskers set at 1st and 99th percentiles (for visual depiction).  

2.3 Results and Discussion 

 Blood biomarkers  

Weekly blood sample analysis showed that lambs maintained on the MD diet 

became B12-deficient during the 12-week trial period. As expected, low dietary 

Co intakes caused mean serum B12 concentrations to decrease from 397 

pmol/L (week 2) to 115 pmol/L by week 10, and concentrations remained low 

thereafter (Figure 2.2A). These data indicate that lambs were B12-sufficient 

(>350 pmol/L) at the beginning of the study but became B12-deficient by week 

4 when concentrations declined below 250 pmol/L (deficiency threshold; Suttle, 

2005). As B12 decreased, mean plasma Hcy concentrations increased from 

5.87 μmol/L (week 1) to 9.90 μmol/L (week 12), demonstrating marginal B12 
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deficiency (Figure 2.2A). Plasma methylmalonic acid (MMA) concentrations 

were unresponsive to B12 (<7 μmol/L) until week 6 (Gruner et al., 2004) but 

increased from 4.5 to 21.6 μmol/L, thereby exceeding the normal plasma 

concentration of <10 μmol/L for barley-fed lambs (Figure 2.2B; O’Harte et al., 

1989). The inverse relationship between blood vitamin B12 and biomarkers of 

B12 deficiency denotes that the MD diet engendered a B12-deficient metabolic 

state in lambs that would be expected to perturb 1C metabolism, thereby 

leading to an aberrant metabolome in the liver.   

 

Figure 2.2 Plasma homocysteine (Hcy) and methylmalonic acid (MMA) 
concentrations increase as a result of Vitamin B12 deficiency in Texel lambs. 

Serum B12 concentrations (●) and plasma homocysteine (Hcy) concentrations (○) over 

time (n=83) (A). Mean plasma methylmalonic acid (MMA) concentrations (●) over time 

(n=83) (B). Data presented as mean ± SEM. Reference concentration for B12 deficiency 
(---; Suttle, 2005). Reference concentration for normal Hcy (---; Kennedy et al., 1992) 
and MMA concentration (---; O’Harte et al., 1989).  

 Liver metabolites  

In order to investigate the metabolic burden of dietary methyl deficiency, 1C 

metabolites and related compounds were quantified by HILIC-MS/MS, HPLC 

and GC-MS in sheep liver collected from UK abattoirs (Ab; n=266) and in methyl 

deficient sheep liver (MD; n=83).  

2.3.2.1 Vitamin B12 

The term ‘B12’ generically refers to a group of Co-containing, organometallic 

compounds, known as cobalamins (Takahashi-Iñiguez et al., 2012). The two 

bioactive forms of cobalamin (Cbl) are methylcobalamin (MeCbl) and 

adenosylcobalamin (AdoCbl). Cyanocobalamin (CNCbl), the synthetic form of 

B12 used in dietary supplements (Farquharson and Adams, 1976), is 

A B
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biologically inert but can be converted to the bioactive forms for coenzyme 

activity (Martinelli et al., 2011; Figure 2.3A). Vitamin B12 is released into the cell 

cytosol in the form of hydroxocobalamin (OHCbl) and reduced to Cbl before 

binding methionine synthase (MTR; EC 2.1.1.13). Upon binding the enzyme, 

Cbl is methylated to form MeCbl (Shane, 2008), the cofactor required for re-

methylation of homocysteine (Hcy) in the terminal step of methionine synthesis. 

Alternatively, Cbl can be transported to the mitochondria and converted to 

AdoCbl, the cofactor required for methylmalonyl-CoA mutase (MUT; EC 

5.4.99.2; Figure 2.3A). This enzyme catalyses isomerisation of methylmalonyl-

CoA to succinyl-CoA in propionate metabolism (Appendix Figure 2.1), an 

important step prior to gluconeogenesis in ruminants (Shane, 2008; Forny et al., 

2014).  

Since Cbl contains one Co atom, it is assumed that the requirement of ruminants 

for B12 equal the requirement of ruminal microbes for Co (McDowell, 2000). 

Continuing with the aforementioned discussion (Section 2.1), the Co content of 

the diet is the primary limiting factor for the synthesis of B12 by rumen microbes. 

Under Co-deficient conditions, the decline in serum B12 precedes the decline 

in liver stores (Booth and Spray, 1960). Thus, it is not surprising that the 

decrease in serum B12 observed amongst Co-deficient animals in the present 

study (Figure 2.2A) led to a significant decline in all three species of vitamin B12 

in liver (P<0.001; Figure 2.3B). 

  

Figure 2.3 Vitamin B12 species are decreased in methyl deficient sheep liver.  

B12 cofactors in one-carbon (1C) metabolism (A). Concentrations (pmol/g wet weight 

liver) of cyanocobalamin, CNCbl  (P<0.001); adenosylcobalamin, AdoCbl  

(P<0.001); methylcobalamin, MeCbl   (P<0.001) in abattoir-derived (Ab; n=266) and 
methyl deficient (MD; n=83) sheep liver (B). Individual vitamer concentrations (colour-
coded) between Ab and MD sheep compared by ANOVA. Mean (+), median, 
interquartile ranges, and 1st and 99th percentiles. Dots in boxplots represent outliers.  Ab MD Ab MD Ab MD
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The ~4-fold higher mean concentration of CNCbl measured in Ab sheep liver 

(Ab: 98.0 ± 5.14 vs MD: 22.8 ± 3.57 pmol/g) is likely to be an effect of dietary 

environment as sheep slaughtered in the abattoir were reared on different farms 

and fed different diets. In some cases, CNCbl may have been incorporated as 

a dietary supplement in Ab animals which may account for the large variation of 

CNCbl concentrations in Ab liver. The concentration range of CNCbl measured 

in MD liver (0.38 to 148.64 pmol/g) could be explained by the small amount of 

CNCbl that is synthesised by rumen microbes (Johnson et al., 1956). 

Although not statistically tested, adenosylcobalamin (AdoCbl) was the most 

abundant form of B12 present in Ab sheep liver (502.6 ± 19.74 pmol/g; Figure 

2.3B), measuring 2-fold higher than MeCbl (Xu et al., 2020). These findings are 

consistent with reports that B12 is stored as AdoCbl in animal tissues (Shane, 

2008; Quadros, 2010; Kelly et al., 2006), and that the metabolic demand of 

sheep for AdoCbl is normally higher than MeCbl due to its involvement in 

propionoic acid (PPA) metabolism for gluconeogenesis in ruminants (McDowell, 

2000; Kelly et al., 2006). Indeed, the propionate-succinate pathway (Figure 1.2) 

appears to be the first rate-limiting pathway in B12 deficiency (Furlong et al., 

2010), as characterised by the ~6-fold decrease in AdoCbl (Figure 2.3B), and 

the marked increase in plasma MMA (Figure 2.2B) and liver MMA 

concentrations in MD sheep in the present study (discussed later, Section 

2.3.2.9). Although not statistically tested, mean hepatic concentrations of MeCbl 

were higher than AdoCbl in MD sheep. If concentrations of MeCbl are 

associated with MTR enzyme activity and turnover (Quadros and Jacobsen, 

1995), the altered profile of these two B12 coenzyme forms may directly reflect 

altered function of the hepatic 1C metabolism under methyl deficient conditions. 

Perhaps there was an increased demand for the MeCbl cofactor and Hcy 

remethylation to methionine in MD sheep. Although speculative, these 

observations identify subtle downstream metabolic effects associated with 

modest reductions in dietary Co. 

2.3.2.2 Vitamin B6 

The extended family of vitamin B6 comprises the alcohol, pyridoxine (PN); the 

amine, pyridoxamine (PM); the aldehyde, pyridoxal (PL); and, their respective 

phosphorylated derivatives (Merril and Henderson, 1990; Colinas and 

Fitzpatrick, 2016). Dietary B6 compounds are absorbed in the small intestine in 

their de-phosphorylated forms (Albersen et al., 2013). Pyridoxine (PN), the most 
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commonly supplemented form of B6 (Albersen et al., 2013), and PM are rapidly 

transformed to PL in the intestinal tissues and this is released into the portal 

blood (Sakurai et al., 1992). Circulating PL is taken up by the liver, the principal 

site of B6 metabolism, and re-phosphorylated by pyridoxal kinase (PK; EC 

2.7.1.35) before conversion to the bioactive coenzyme, pyridoxal 5′-phosphate 

(PLP; Albersen et al., 2013), which functions as a cofactor in >140 catalytic 

reactions (Percudani and Peracchi, 2003). In the context of 1C metabolism, PLP 

is a cofactor for serine hydroxymethyltransferase (SHMT; EC 2.1.2.1), an 

enzyme that catalyses the simultaneous conversion of serine (Ser) to glycine 

(Gly) and tetrahydrofolate (THF) to 5,10-methylenetetrahydrofolate (CH2THF) 

in the folate cycle (Appaji Rao et al., 2003). In addition, PLP is a coenzyme for 

cystathionine β-synthase (CBS; EC 4.2.1.22) and cystathionine γ-lyase (CTH; 

EC 4.4.1.1) enzymes of the transsulphuration pathway (Figure 2.4A). The 

former catalyses the conversion of Hcy to cystathionine (Cth) and the latter 

catalyses the conversion of Cth to cysteine (Cys; Perry et al., 2007), thus 

demonstrating the role of B6 in lowering Hcy concentrations (Miodownik et al., 

2007). 

All measured B6 species were lower (P<0.05) in MD liver than Ab liver (Figure 

2.4B). Pyridoxamine was the predominant form of B6 in Ab liver, followed by 

supplemental form, PN (Figure 2.4B). The large variation in PN and PM 

concentrations in Ab sheep liver is a likely consequence of the varied diet these 

sheep received prior to slaughter.  

Due to its high instability and susceptibility to degradation (Mohammed-Ahmed 

et al., 2017), PLP measured below the limit of detection (<LOD) in MD liver 

(Section 2.2.2.1.5) and only trace levels were detected in Ab liver (Xu et al., 

2020). Liver PL concentrations were, therefore, used as a proxy measurement 

of bioactive B6 in the present study. Mean PL concentrations were marginally 

decreased in the MD liver (Ab: 240.3 ± 6.41 vs MD: 219.7 ± 14.61 pmol/g; 

P=0.019) which may reflect a marginal decrease its bioactive phosphorylated 

derivative. Since all forms of B6 are interconvertible, it is possible that PN and 

PM are readily converted to PL for phosphorylation to the bioactive form to 

maintain B6 coenzyme function (McCormick and Chen, 1999).  
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Figure 2.4 Vitamin B6 species are decreased in methyl deficient sheep liver. 

B6 cofactors in one-carbon (1C) metabolism (A). Concentrations (pmol/g wet weight 

liver) of pyridoxine, PN  (P<0.001); pyridoxamine, PM  (P<0.001); pyridoxal, PL 

 (P=0.019) in abattoir-derived (Ab; n=266) and methyl deficient (MD; n=83) sheep 
liver (B). Individual vitamer concentrations (colour-coded) between Ab and MD sheep 
compared by ANOVA. Mean (+), median, interquartile ranges, and 1st and 99th 
percentiles. Dots in boxplots represent outliers. 

2.3.2.3 Vitamin B2 

Vitamin B2 exists in nature as riboflavin (RF) and its coenzyme derivatives, flavin 

mononucleotide (FMN) and flavin adenine dinucleotide (FAD). Only a small 

amount of B2 is present in dietary sources as RF whilst the majority (~90%) is 

present as FAD and, to a lesser degree, FMN (Powers, 2003). Flavin-dependent 

enzymes use FMN and FAD as cofactors in numerous oxidation-reduction 

reactions in primary metabolic pathways, including the tricarboxylic acid (TCA) 

cycle, fatty acid catabolism (β-oxidation) and amino acid degradation (Lienhart 

et al., 2013). In 1C metabolism, MTHFR requires FAD as a cofactor to convert 

5,10-methylenetetrahydrofolate (CH2THF) to 5-methyltetrahydrofolate (5-

mTHF) in the folate cycle (Figure 2.5A; García-Minguillán et al., 2014). 

Methionine synthase reductase (MTRR; EC 1.16.1.8) utilises both FMN and 

FAD as cofactors to reactivate methionine synthase (MTR) via reductive re-

methylation of cob(II)alamin to methylcob(III)alamin, thereby facilitating Hcy re-

methylation to Met (Figure 2.5A; Leclerc et al., 1998; García-Minguillán et al., 

2014). Additionally, two consecutive enzymes in choline metabolism; 

dimethylglycine dehydrogenase (DMDGH; EC 1.5.99.2) and sarcosine 

dehydrogenase (SARDH; EC 1.5.99.1), covalently bind the FAD cofactor to 
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catalyse the oxidative demethylation of dimethylglycine (DMG) to sarcosine 

(Sar) and Sar to glycine (Gly), respectively (Porter et al., 1985; Figure 2.5B). 

Both enzymes use THF to capture 1C units released by oxidative demethylation 

of substrates, yielding CH2THF in the process (Lienhart et al., 2013).  

Importantly, flavin-dependent enzymes are also involved in the biosynthesis of 

other B vitamin cofactors. For instance, vitamin B6 metabolism requires 

pyridoxine 5’-phosphate oxidase (PNPO; EC 1.4.3.5), an FMN-dependent 

enzyme that converts phosphorylated PN to its bioactive form, PLP (Choi et al., 

1983; Figure 2.4A). It follows that 1C metabolism involves the concerted actions 

and interactions of various B vitamin cofactors (Sauberlich, 1980).  

 

Figure 2.5 Vitamin B2 species are decreased in methyl deficient sheep liver. 

B2 cofactors in one-carbon (1C) metabolism (A). B2 cofactors in choline metabolism 

(B). Concentrations (nmol/g wet weight liver) of riboflavin, RF  (P<0.001); flavin 

mononucleotide, FMN  (P<0.001) (C) and concentrations (µmol/g wet weight liver) of 

flavin adenine dinucleotide, FAD  (P<0.001) in abattoir-derived (Ab; n=266) and 
methyl deficient (MD; n=83) sheep liver (D). Individual vitamer concentrations (colour-
coded) between Ab and MD sheep compared by ANOVA. Mean (+), median, 
interquartile ranges, and 1st and 99th percentiles. Dots in boxplots represent outliers. 

Flavin adenine dinucleotide (FAD) was the major form of B2 in Ab liver (Xu et 

al., 2020), measuring ~60-fold higher than concentrations in MD liver (Ab: 26.7 

± 1.17 vs MD: 0.4 ± 0.02 µmol/g; Figure 2.5D). Precursors, RF and FMN, were 
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also significantly reduced in MD liver (Figure 2.5C). The low B2 concentrations 

observed in MD lambs may reflect their relatively immature age and stage of 

rumen development (Luecke et al., 1950; Poe et al., 1972). Adult ruminants do 

not have a specific dietary requirement for RF due to its microbial synthesis in 

the rumen, however, RF deficiency has been demonstrated in young ruminants 

whose rumen microflora is not yet fully established (McDowell, 2000). This may 

explain, at least in part, the significant decrease in hepatic RF concentrations 

observed in MD lambs (Ab: 26.2 ± 0.97 vs MD: 0.3 ± 0.01 nmol/g; Figure 2.5C). 

Moreover, feeding conditions, such as forage to concentrate ratios (Zhang et 

al., 2017b; Seck et al., 2017), and diet composition (Fonty et al., 1987) can 

influence microbial synthesis of RF. Thus, the ruminal RF content of the recently 

weaned lamb during its transition to the MD concentrate diet may be quite 

different to that of abattoir-derived sheep, which may have been predominantly 

pasture-fed.  

Free RF is absorbed by enterocytes of the small intestine and undergoes 

phosphorylation to FMN, catalysed by cytosolic flavokinase (EC 2.7.1.26). 

Flavin mononucleotide is readily converted to FAD by FAD-dependent enzyme, 

FAD synthetase (EC 2.7.7.2; Powers, 2003; Figure 2.5A). The efficient 

conversion of FMN to FAD may provide a plausible explanation for why the 

mean liver FMN concentration does not decrease to the same extent as RF and 

FAD concentrations in MD sheep liver (Figure 2.5C). 

2.3.2.4 Vitamin B1 

Vitamin B1 (thiamine) is not directly related to 1C metabolism but is fundamental 

for energy production (Lonsdale, 2006) and is, therefore, relevant to the present 

study. The phosphate ester of vitamin B1, thiamine pyrophosphate (TPP), is the 

rate-limiting enzyme cofactor for regulatory enzymes involved in carbohydrate 

metabolism, including pyruvate dehydrogenase (PDH; EC 1.2.4.1) and α-

ketoglutarate dehydrogenase (KGDH; EC 1.2.4.2; Lonsdale, 2015; Figure 

2.6A). The former catalyses the decarboxylation of pyruvate to acetyl CoA 

(Lonsdale, 2006) whilst the latter converts α-ketoglutarate (α-KG) to succinyl-

CoA in the TCA cycle (McLain et al., 2011; Figure 2.6A). Thus, it follows that 

the energy generated from oxidation of glucose is highly dependent on TPP 

(Lonsdale, 2006).   
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Thiamine is primarily stored in the liver, however, it is one of the most poorly 

stored B vitamins and most mammals fed a thiamine-deficient diet will deplete 

their body reserves within 14-18 days (Oseizagha et al., 2013; Ensminger et al., 

1990). In humans, thiamine deficiency can lead to serious neurological 

conditions, such as Beriberi (Lonsdale, 2015) and delirium (Osiezagha et al., 

2013). In ruminants, thiamine deficiency can cause polioencephalomalacia, 

also referred to as cerebrocortical necrosis (McGuirk, 1987). Considering the 

interrelationships between B vitamin cofactors mentioned earlier (Section 

2.3.2.3), it may not seem surprising that thiamine deficiency is often 

accompanied by deficiencies of other B vitamins. This is demonstrated in the 

current study, as MD sheep present with significantly lower concentrations of 

hepatic B12, B6 and B2 (Figure 2.3 to Figure 2.5) in addition to lower hepatic 

thiamine (Ab: 3.0 ± 0.13 vs MD: 0.4 ± 0.04 nmol/g; P<0.001; Figure 2.6B).  

It is possible that subclinical thiamine deficiency can lead to a reduction in 

synthesis of other B vitamins since certain strains of bacteria require thiamine 

to grow and colonise the rumen (McDowell et al., 2000). Thiamine deficiency is 

common in weaned lambs, particularly those fed high fermentable-starch (i.e. 

barley-based) diets (Karapinar et al., 2008) such as that fed in the current study.  

 

Figure 2.6 Vitamin B1 (thiamine) is decreased in methyl deficient sheep liver. 

B1 cofactor in energy metabolism (Tricarboxylic acid cycle) (A). Concentrations (nmol/g 

wet weight liver) of thiamine, B1  (P<0.001) in abattoir-derived (Ab; n=266) and 
methyl deficient (MD; n=83) sheep liver (B). Individual vitamer concentrations between 
Ab and MD sheep compared by ANOVA. Mean (+), median, interquartile ranges, and 
1st and 99th percentiles. Dots in boxplots represent outliers. 
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2.3.2.5 Vitamin B9 (folates) 

Natural folates are interconverted between different oxidation states (e.g. 

methylene, methyl, formyl; Ducker and Rabinowitz, 2017) and are most 

abundant in their polyglutamated form within cells (Figure 2.7). Their 

conjugation to glutamate residues, catalysed by folylpolyglutamate synthetase 

(FPGS; EC 6.3.2.17), enhances their co-enzyme affinity, cellular retention and 

stability (Mehrshahi et al., 2010). The synthetic folate, folic acid (FA), exists in 

monoglutamate form only (Melse-Boonstra et al., 2002). Although hepatic FA 

concentration ranges were similar in both cohorts, MD sheep exhibited higher 

mean FA concentrations than Ab sheep (Ab: 5.8 ± 0.40 vs MD: 21.0 ± 0.86 

pmol/g; P<0.001; Figure 2.7B). This observation is surprising given that MD 

sheep were not supplemented with FA during the study, however, this result 

could be explained by differences in hindgut absorption of FA between cohorts 

(Milman, 2012) or it may be an artefact of the assay since the relative standard 

deviation (RSD%) for FA was high (26%) indicating poor repeatability (Section 

2.2.2.1.5). 
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Figure 2.7 5-methyltetrahydrofolate accumulates in methyl deficient sheep liver. 

Folate cofactors in one-carbon (1C) metabolism; folic acid, FA ; dihydrofolate, DHF 

; tetrahydrofolate, THF ; 5-formyltetrahydrofolate, 5-fTHF ; 5,10-

methenyltetrahydrofolate, CH=THF  ; 5,10-methylenetetrahydrofolate, CH2THF  ; 

5-methyltetrahydrofolate, 5-mTHF  (A). Concentrations (pmol/g wet weight liver) of 
monoglutamated folates (B). Concentrations (pmol/g wet weight liver) of total folates 
(mono- and polyglutamated) folates in abattoir-derived (Ab; n=266) and methyl deficient 
(MD; n=83) sheep liver (C). Individual vitamer concentrations (colour-coded) between 
Ab and MD sheep compared by ANOVA. Mean (+), median, interquartile ranges, and 
1st and 99th percentiles. Dots in boxplots represent outliers.  
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Early investigations in sheep reported that B12 deficiency caused depletion of 

intracellular folate concentrations in the liver (Dawbarn et al., 1958). According 

to Smith and Osborne-White (1973), B12-deficient sheep liver were more 

severely depleted in THF and formyltetrahydrofolate (fTHF) than in 5-mTHF, 

and this depletion was most pronounced in folate polyglutamates than 

monoglutamates as deficiency advanced. In contrast, the present study found 

that dietary methyl deficiency caused an increase of specific folate species in 

the liver. Both monoglutamate and polyglutamated forms of tetrahydrofolate 

(THF) and 5,10-methenyltetrahydofolate (CH=THF) were significantly 

increased in MD liver (P<0.001; Figure 2.7B and Figure 2.7C).  

Of particular interest is the >10-fold increase in hepatic 5-mTHF in MD sheep. 

A central hypothesis to account for this observation is the ‘methyl-folate trap’ 

whereby B12 deficiency leads to reduced MTR activity. Consequently, 

intracellular folate becomes ‘trapped’ as 5-mTHF because it cannot be 

converted to THF or revert back to CH2THF (Shane and Stokstad, 1985; Miller 

et al., 2009; Figure 2.7A).  

Not only does folate accumulate in B12 deficiency, but it can also remain in its 

monoglutamated form due to an impairment of polyglutamation within the liver 

(Smith and Osborne-White, 1973). This impairment may arise due to a lack of 

suitable substrate for polyglutamate synthesis or a direct requirement for B12 

for polyglutamation (Perry et al., 1976). This may explain why concentrations of 

polyglutamated folates do not increase to the same extent as their 

monoglutamated counterparts, or why monoglutamate concentrations of 

CH2THF increase whilst polyglutamate concentrations decrease in methyl 

deficient sheep (Figure 2.7). Another theory is that folylpolyglutamate 

synthetase (FPGS) activity is upregulated in B12-deficient sheep liver, thereby 

providing a compensatory mechanism to conserve bioactive folate coenzymes 

(Gawthorne and Smith, 1974).  

Unlike previous studies in sheep, which examined the effect of B12 deficiency 

in isolation, the present study examines the effect of methyl deficiency more 

generally. It is likely that dietary restriction of Co, S and methionine contributes 

toward system-wide alterations to biochemistry, physiology and metabolism, 

causing aberrant flux through the folate cycle and the accumulation of several 

folate intermediates.  
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2.3.2.6 Methionine cycle metabolites 

The methionine cycle regulates the balance between methionine and cysteine 

(Cys) for protein synthesis, provides the substrate for polyamine synthesis 

(discussed later, Section 2.3.2.8), and facilitates methyl group transfer from 5-

mTHF to an array of substrates, thereby constituting the principal mechanism 

for cellular transmethylation reactions in mammals (Finkelstein, 1990). In the 

liver, two isoforms of methionine adenosyltransferase (MATI/III; EC 2.5.1.6) 

catalyse the conversion of methionine to the universal methyl donor, SAM 

(Martinov et al., 2000). After transfer of a methyl group, SAM is converted to S-

adenosylhomocysteine (SAH). Under normal physiological conditions, SAH is 

hydrolysed to Hcy which is removed via re-methylation to methionine to close 

the metabolic loop, or by degradation to Cys in the transsulphuration pathway 

(Caudill et al., 2001; Figure 2.8A). 

 

Figure 2.8 Concentrations of methionine cycle metabolites are altered in methyl 
deficient sheep liver.  

Methionine metabolism (A). Concentrations (nmol/g wet weight liver) of S-

adenosylmethionine, SAM  (P=0.155); S-adenosylhomocysteine, SAH  

(P<0.001); homocysteine, Hcy  (P<0.001); Methionine, Met  (P<0.001) in abattoir-
derived (Ab; n=266) and methyl deficient (MD; n=83) sheep liver (B). Individual 
metabolite concentrations (colour-coded) between Ab and MD sheep compared by 
ANOVA. Mean (+), median, interquartile ranges, and 1st and 99th percentiles. Dots in 
boxplots represent outliers. 
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exhibited significantly lower hepatic methionine concentrations than Ab sheep 

(Ab: 46.7 ± 0.91 vs MD: 12.4 ± 1.26 nmol/g; P<0.001; Figure 2.8B). The MD diet 
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nmol/g; P=0.155) but caused a significant increase in SAH concentration (Ab: 

16.1 ± 0.34 vs MD: 72.9 ± 1.32 nmol/g; P<0.001), thereby potentially reducing 

the SAM:SAH ratio (Figure 2.8A). As discussed earlier (Section 1.3.1.1), the 

SAM:SAH ratio is commonly used as an indicator of cellular transmethylation 

potential; a decreased ratio is predictive of reduced methylation capacity 

(Caudill et al., 2001). As SAH is a potent inhibitor of methyltransferase enzymes, 

its accumulation leads to cellular hypomethylation and the dysregulation of 

integral metabolic reactions. Thus, SAH needs to be eliminated from the cell 

(Finkelstein, 1990). A study in methyl deficient rodents showed that a rise in 

intracellular SAH was most consistently associated with global DNA 

hypomethylation, whilst reduced concentrations of SAM alone was not sufficient 

to affect DNA methylation (Caudill et al., 2001). Therefore, it is possible that 

elevated SAH was sufficient to cause hypomethytion of DNA in MD sheep 

hepatocytes, however, this line of enquiry is beyond the scope of the present 

study.  

Considering the increase in plasma Hcy (Figure 2.2A) and hepatic SAH, it 

seems paradoxical that Hcy concentrations should be 2-fold lower in MD than 

Ab sheep liver (Ab: 61.9 ± 2.32 vs MD: 30.9 ± 2.33 nmol/g; P<0.001; Figure 

2.8B). There are, however, putative explanations for this decrease; i) animals 

fed the MD diet became low in S meaning that their capacity to synthesise 

sulphur-containing amino acids (i.e. Hcy) was reduced (Škovierová et al., 2016); 

ii) unlike many other tissues, the liver possesses a secondary pathway for Hcy 

remethylation catalysed by BHMT and, therefore, has an additional level of 

regulation over Hcy concentrations (Feng et al., 2011); and, iii) intracellular Hcy 

is readily egressed to maintain concentrations at a low level in order to prevent 

toxic accumulation of SAH (Finkelstein, 2000; Ulrich et al., 2008). As SAH is not 

readily transported across the cell membrane, Hcy may serve as an exportable 

form of SAH to preserve cellular methylation status (Caudill et al., 2001). In 

support of the hypothesis proposed by Yi et al. (2000), plasma Hcy 

concentrations provide a more reliable biomarker for intracellular SAH and 

cellular methylation capacity than intracellular Hcy concentrations.  

2.3.2.7 1C-related amino acids and derivatives 

One-carbon metabolism integrates 1C units from amino acids, including serine 

(Ser) and glycine (Gly), both of which are nutritionally non-essential amino acids 

that are biosynthetically linked (Fell and Snell, 1988; Locasale, 2013; Pérez-
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Torres et al., 2017; Figure 2.9A). A substantial amount of Ser can be 

synthesised de novo from glucose (Fell and Snell, 1988) and converted to Gly 

by donation of a 1C unit to THF forming CH2THF, thereby driving the folate 

cycle. This reaction, catalysed by the bidirectional PLP-dependent enzyme, 

serine hydroxymethyltransferase (SHMT), is at near equilibrium and can be 

easily reversed (Shane, 2008; Ramos et al., 2017; Figure 2.9A).  

Mammals possess two distinct isoforms of SHMT; cytosolic and mitochondrial 

(Garrow et al., 1993). The mitochondrial isoform is ubiquitously expressed and 

thought to be responsible for generating the majority of 1C units for cytosolic 1C 

metabolism (MacFarlane et al., 2008). In contrast, expression of the cytosolic 

isoform is limited to the liver and kidney where its principal function may be to 

synthesise Ser from Gly for gluconeogenesis (Shane, 2008).  

 

Figure 2.9 Amino acids drive folate metabolism and transsulphuration in sheep 
liver. 

Amino acids in one-carbon (1C) metabolism (A). Concentrations (nmol/g wet weight 

liver) of serine, Ser  (P<0.001); glycine, Gly  (P=0.233); cystathionine, Cth  

(P<0.001); cysteine, Cys  (P<0.001) (B) in abattoir-derived (Ab; n=266) and methyl 
deficient (MD; n=83) sheep liver. Individual metabolite concentrations (colour-coded) 
between Ab and MD sheep compared by ANOVA. Mean (+), median, interquartile 
ranges, and 1st and 99th percentiles. Dots in boxplots represent outliers. 

Hepatic Ser concentrations were significantly increased in MD sheep (Ab: 279.0 

± 12.84 vs MD: 586.4 ± 54.36 nmol/g; P<0.001) but Gly concentrations were 

unaffected by methyl deficiency (Ab: 3316.8 ± 74.06 vs MD: 3343.8 ± 63.47 

nmol/g; P=0.233; Figure 2.9B). It may be that tissue concentrations of Gly are 

regulated by the mitochondrial glycine cleavage system (GCS), the principal Ab MD Ab MD Ab MD Ab MD
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pathway of Gly catabolism whereby glycine dehydrogenase (GLDC; EC 

1.4.1.10) catalyses the degradation of glycine to yield 1C for the methylation of 

THF (Amelio et al., 2014). It is postulated that the GCS protects cells from Gly 

toxicity (Kim et al., 2015). Whilst there is no definitive explanation for the 

increased concentration of Ser in MD sheep liver, it is possible that decreased 

concentrations of vitamin B6 observed in MD sheep liver (Section 2.3.2.2) 

caused a reduction in catalytic activity of SHMT, thereby reducing Ser 

conversion to Gly (Scheer et al., 2005; Perry et al., 2007). Low B6 could also 

lead to reduced activity of B6-dependent enzymes in the two-step 

transsulphuration pathway which may contribute to the accumulation of Ser 

(Figure 2.9A).  

Reduced flux through the transsulphuration pathway is reflected by the 

reduction of intermediates, Cth and Cys, in MD sheep liver compared with Ab 

sheep liver (P<0.001; Figure 2.9B). Of relevance is the 2-fold reduction of 

essential amino acid, Cys, in MD lambs that were actively growing a fleece 

during the study. Wool contains a high content of sulphur-containing amino acid, 

Cys, and, therefore, requires large amounts of Cys or methionine for the 

generation of Cys, for its growth (Nezamidoust et al., 2014). The depletion of 

hepatic Cys and methionine, as limiting amino acids for wool production, was 

reflected in a subset of MD sheep that exhibited poor quality fleece growth 

towards the end of the study.  

Aside the transsulphuration pathway, a parallel pathway for Hcy metabolism is 

trimethylglycine (TMG)-dependent. Trimethylglycine, otherwise known as 

betaine, is a methyl donor in the remethylation of Hcy to Met, catalysed by 

BHMT (Ueland et al., 2005). A product of this remethylation reaction, 

dimethylglycine (DMG), can be converted to sarcosine (Sar) by dimethylglycine 

dehydrogenase (DMGDH; EC 1.5.99.2; Obeid, 2013; Figure 2.10A). 

Hepatic TMG concentrations are reduced ~3-fold in MD than Ab lambs (Ab: 

1116.3 ± 27.21 vs MD: 381.2 ± 32.76 nmol/g; P<0.001). As might be expected, 

low substrate (TMG) availability lowers product (methionine and DMG) 

formation (Ab: 3.5 ± 0.31 vs MD: 1.0 ± 0.10 nmol/g; P<0.001; Figure 2.8B, 

Figure 2.10B). Surprisingly, hepatic sarcosine (Sar) significantly increased in 

MD lambs (Ab: 157.8 ± 3.98 vs MD: 512.0 ± 24.80 nmol/g; P<0.001). This may 

be a result of increased glycine-N methyltransferase (GNMT) activity, a hepatic 

enzyme that converts SAM to SAH whilst generating Sar from Gly (Luka et al., 

2009; Figure 2.10A). Based on the elevated concentrations of SAH in MD sheep 
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liver (Figure 2.8), it is possible that increased flux from SAM to SAH is 

responsible for the high Sar concentrations measured. It is also possible that 

lower concentrations of vitamin B2 cofactor, FAD, measured in MD sheep liver 

(Figure 2.5D) could reduce the catalytic activity of SARDH enzyme, thereby 

leading to the reduced catabolism of Sar in MD sheep liver (Figure 2.5B). 

 

Figure 2.10 Amino acids facilitate the remethylation of homocysteine (Hcy) to 
methionine (Met) in sheep liver. 

Amino acids in one-carbon (1C) metabolism (A). Concentrations (nmol/g wet weight 

liver) of trimethylglycine TMG,  (P<0.001); Dimethylglycine, DMG (P<0.001); 

Sarcosine, Sar  (P<0.001); (B) in abattoir-derived (Ab; n=266) and methyl deficient 
(MD; n=83) sheep liver. Individual metabolite concentrations (colour-coded) between 
Ab and MD sheep compared by ANOVA. Mean (+), median, interquartile ranges, and 
1st and 99th percentiles. Dots in boxplots represent outliers. 

2.3.2.8 Polyamine metabolites 

S-adenosylmethionine (SAM) is an essential substrate for polyamine 

biosynthesis (Bistulfi et al., 2010). SAM becomes decarboxylated (dcSAM), as 

catalysed by S-adenosylmethionine decarboxylase (SAMDC; EC 4.1.1.50) and 

donates aminopropyl groups for the synthesis of higher polyamines, spermidine 

(Spd) and spermine (Spm) from precursor, putrescine (Put; Pegg et al., 2006; 

Gamble et al., 2012; Figure 2.11A). Polyamines are growth factors involved in 

the proliferation and differentiation of mammalian cells (Canellakis et al., 1989). 

Whilst they are ubiquitous in all cells, their concentration is greatest in self-

renewing and regenerative tissues, such as liver (Pegg et al., 2016; Larqué et 

al., 2007). Hepatic polyamines were significantly increased in MD sheep; Put 

(Ab: 14.5 ± 0.34 vs MD: 62.8 ± 4.52 nmol/g; P<0.001), Spd (Ab: 13.5 ± 0.99 vs 
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MD: 274.0 ± 20.67; P<0.001) and Spm (Ab: 55.6 ± 5.63 vs MD: 475.5 ± 32.85; 

P<0.001; Figure 2.11B). The present findings agree with those of Sun et al. 

(2002) who reported that hepatic Spd and Spm concentrations in methyl 

deficient rats were 58 and 67% higher, respectively, than in controls.  

 

Figure 2.11 Polyamines increase in methyl deficient sheep liver.  

Polyamine metabolism (A). Concentrations (nmol/g wet weight liver) of putrescine, Put  

 (P<0.001); spermidine, Spd  (P<0.001); spermine, Spm  (P<0.001) (B) in 
abattoir-derived (Ab; n=266) and methyl deficient (MD; n=83) sheep liver. Individual 
metabolite concentrations (colour-coded) between Ab and MD sheep compared by 
ANOVA. Mean (+), median, interquartile ranges, and 1st and 99th percentiles. Dots in 
boxplots represent outliers. 

The origin of this increase remains uncertain. It has been proposed that the 

catalytic activity of rate-limiting enzymes in polyamine biosynthesis, such as 

ODC and SAMDC, are regulated by the SAM:SAH ratio (Kramer et al., 1987).  

As SAH is a competitive inhibitor of most SAM-mediated reactions (Finkelstein, 

1990), the metabolic partitioning of SAM as a methyl donor (transmethylation) 

or aminopropyl donor (polyamine biosynthesis) is determined by the relative 

affinity of SAH for the aforementioned decarboxylase and methyltransferase 

enzymes (Kramer et al., 1987). Perhaps a reduced SAM:SAH ratio leads to the 

upregulation of decarboxylase activity which serves to divert available SAM to 

polyamine biosynthesis at the expense of transmethylation reactions, at least in 

proliferating cells.  

Similarly, methionine deprivation has been reported to induce SAMDC catalytic 

activity (Tidsdale, 1981). Together, regulatory controls over polyamine 

metabolism enzymes evoked by reduced methionine and a decreased 
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SAM:SAH ratio lends credence to the case for increased liver polyamine 

concentrations in MD sheep liver.  

2.3.2.9 Propionate metabolites  

Gluconeogenesis is of great importance in ruminants as almost all dietary 

carbohydrates are fermented to volatile fatty acids (VFA) in the rumen (Young 

et al., 1977). Whilst propionoic acid (PPA) is the only major VFA that contributes 

to gluconeogenesis (Black et al., 1961; McDowell, 2000), a diverse pool of 

biomolecules can be catabolised to produce propionyl-CoA (Tretter et al., 2016; 

Snyder et al., 2015; Figure 2.12A). In the mitochondria, propionyl-CoA is 

carboxylated to D-methylmalonyl-CoA and epimerised to its L-stereoisomer 

(Tretter et al., 2016; Ballhausen et al., 2009). In turn, L-methylmalonyl-CoA is 

converted to succinyl-CoA by AdoCbl-dependent enzyme, methylmalonyl-CoA 

mutase (MUT). Finally, succinyl-CoA is incorporated into the tricarboxylic acid 

(TCA) cycle and converted to succinic acid (SA) for use in gluconeogenesis (De 

Vadder et al., 2016; Figure 2.12A).  

 

Figure 2.12 The propionate metabolome is altered in methyl deficient sheep liver.  

Propionate metabolism (A). Concentrations (nmol/g wet weight liver) of propionoic acid, 

PPA  (P<0.001); succinic acid, SA  (P<0.001); methylmalonic acid, MMA  
(P<0.001) (B) in abattoir-derived (Ab; n=266) and methyl deficient (MD; n=83) sheep 
liver. Individual metabolite concentrations (colour-coded) between Ab and MD sheep 
compared by ANOVA. Mean (+), median, interquartile ranges, and 1st and 99th 
percentiles. Dots in boxplots represent outliers. 

Hepatic concentrations of PPA were decreased in MD sheep compared with Ab 

sheep (Ab: 186.1 ± 6.92 vs MD: 126.8 ± 3.59 nmol/g; P<0.001) whilst SA and 
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MMA concentrations were increased (P<0.001; Figure 2.12B). Such findings 

correspond with those reported by Kennedy and others (1991) where feeding 

lambs a Co-deficient concentrate diet caused a decrease in ruminal PPA but a 

1000-fold increase in SA concentrations, highlighting an imbalance between 

PPA- and SA-producing microbes. Ruminal SA can be absorbed, leading to 

elevated plasma SA concentrations in Co-deficient animals (Kennedy et al., 

1991). Thus, absorbed SA can partially overcome the detrimental effects of 

decreased MUT activity induced by AdoCbl deficiency on gluconeogenesis 

(Section 2.3.2.1; Figure 2.3B). The ~15-fold increase in hepatic MMA 

concentrations measured in MD sheep (Ab: 10.3 ± 0.51 vs MD: 149.6 ± 27.66 

nmol/g; P<0.001) highlights the metabolic effect of AdoCbl deficiency on MUT 

enzyme activity. With the aforementioned points considered (Section 2.3.1), 

plasma MMA is a robust biomarker of vitamin B12 deficiency (McMullin et al., 

2001) and its accumulation in liver has been attributed to AdoCbl deficiency in 

mammals (Smith et al., 1969; Toyoshima et al., 1996).  

2.4 Concluding remarks 

The methods described herein are capable of the simultaneous quantification 

of 1C metabolites and related compounds in a complex tissue matrix, such as 

sheep liver. The HILIC/MS-MS methods used a simple extraction procedure, a 

short analytical run time and a simple mobile phase. Such metabolomic 

platforms will be useful for modelling 1C metabolism and linked biochemical 

pathways in order to facilitate dietary and genetic studies of metabolic health 

and epigenetic regulation of gene expression.   

The large natural variation in hepatic levels of individual 1C metabolites in our 

sheep study populations reflects the dietary and genetic variation in our chosen 

outbred model species. Total 1C metabolite concentrations reported herein 

agree with those published elsewhere (Appendix Table 2.2), with the exception 

of vitamin B6 where concentrations reported in the literature are >10-fold higher. 

This discrepancy is likely due to differences in analytical methodologies 

employed. Previous studies converted all B6 vitamers, including their phosphate 

esters, to free forms (Williams et al., 2007; Fukuwatari et al., 2008) before 

measuring total B6 by microbiological assay (Fukuwatari et al., 2008) or 

reverse-phase HPLC coupled with electrochemical detection (Wehling and 

Wetzel, 1984; Williams et al., 2007; Williams, 2007). Such approaches are 
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quantitative but do not discriminate between individual free and phosphorylated 

vitamers (Zhang et al., 2018).  

The present study provides the first comparison of the relative abundance of 

bioactive 1C metabolites in MD sheep liver. A detailed description of specific 

coenzyme forms can facilitate a more accurate deficiency diagnosis and a more 

thorough understanding about the function of 1C metabolism in response to 

dietary methyl deficiency.  

This study, however, was not without its limitations. Although a comprehensive 

set of metabolites were measured, it was not possible to measure every species 

present in liver. By way of example, vitamin B12 comprises hydroxocobalamin 

(OH-Cbl) and additional analogues (i.e. cobamides and cobinamides). 

Collectively, these analogues constitute ~50% of sheep liver corrinoids (Kelly et 

al., 2006). However, due to their lack of vitamin B12 activity they were not 

included.  

It is also important to acknowledge that measurements of metabolite pools do 

not accurately reflect flux through metabolic pathways, but rather provide a 

‘snapshot in time’ of metabolic status. Metabolite pools are not static but are 

able to exchange with one another via numerous interconversion pathways. 

This is further complicated by the fact that enzymes within these pathways are 

activated and/or inhibited by intermediates elsewhere within the metabolic 

network (Reed et al., 2004). A case in point refers to the allosteric regulation of 

methyltransferase and decarboxylase enzymes by SAH (Section 2.3.2.8). The 

present study did not determine hepatic 1C enzyme expression or catalytic 

activity (which may arise due to SNPs). Nor did it measure 1C metabolite 

concentrations in blood which may have provided valuable information about 

the systemic effects of dietary methyl deficiency.  

The metabolomic analyses were conducted for Ab and MD study cohorts 

separately. Ideally, contemporaneous animals would have been allocated to the 

control or MD diet, maintained on-study for the same duration, and their liver 

samples collected, processed and analysed simultaneously, but this was not 

logistically feasible. Therefore, to avoid artefacts associated with conducting the 

metabolomic analyses for Ab and MD sheep at two independent time points (i.e. 

following slaughter at the abattoir for Ab sheep versus following dietary 

restriction for MD sheep), identical laboratory materials and methods were 

adopted for both analyses.  
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In summary, relevant reductions in dietary methyl availability can lead to 

significant alterations in hepatic 1C metabolite concentrations with downstream 

consequences for functional metabolism at the cell, tissue and whole organism 

level. These findings support the concept that 1C metabolism does not operate 

in isolation but is a central integrator of energy and nutrient status.  

Based on the premise that reproductive and embryonic cells metabolise methyl 

groups differently to hepatocytes, it is possible that the relative concentration of 

1C metabolites will differ from those found in liver. Now that these sensitive 

mass spectrometry-based metabolomic platforms have been developed, future 

experiments can explore the effects of dietary methyl deficiency and inborn 

errors of 1C metabolism in various cells, tissues and biofluids of sheep and 

related ruminant species. Such experiments will bring an unprecedented level 

of mechanistic insight into nutritional biochemistry-mediated epigenetic 

modifications that take place during the periconceptional period, particularly in 

cells of the ruminant ovary and preimplantation embryo.  
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Methionine, 1C metabolism and bovine preimplantation 

embryo development 
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3.1 Introduction  

The developmental potential of the mammalian preimplantation embryo is 

determined to a large extent by its nutritional environment (Bonilla et al., 2010). 

Nutritional perturbations brought about by parental diet or embryo culture can 

affect key developmental and epigenetic programming events that occur during 

preimplantation development, thereby modifying adult health-related 

phenotypes in offspring (Xu and Sinclair, 2015). The importance of an optimal 

environment for early embryonic development is illustrated by the comparison 

of embryos produced under in vivo and in vitro conditions. In vitro produced 

cattle embryos can exhibit biochemical and molecular characteristics that 

compromise their ability to survive cryopreservation and their competency for 

establishing a pregnancy following embryo transfer (Hansen and Block, 2004). 

The nutrient composition of in vitro embryo production (IVP) media is 

responsible for at least some of these ultrastructural alterations (Dumoulin et 

al., 2010; Nelissen et al., 2012; Simpoulou et al., 2018).  

As demonstrated in Chapter 1 (Section 1.7.1), the lack of standardisation of IVP 

media has led to a wide variation in the composition of 1C metabolites (Anckaert 

et al., 2010). Notably, methionine ranges from 0 to 500 μmol/L between 

formulations (Table 1.5). Concentrations of methionine in commercially 

available culture media can be >10-fold higher than concentrations measured 

in the female reproductive tract (Hugentobler et al., 2007) and >20-fold higher 

than the methionine requirement of bovine preimplantation embryos (Bonilla et 

al., 2010; Table 3.1).  

Table 3.1 Methionine concentrations in culture media can be >10-fold higher 
than those found in physiological fluids.  

 
Methionine (µmol/L) 

 
Bovine  Human 

Blood plasma/serum  16 – 35  27 – 30 

Reproductive tract  31 – 49  7 – 49 

Cell/embryo culture media 0 – 500  0 - 500 

Embryo requirement 14 – 21  ? 

Source(s): Hugentobler et al. (2007); Bonilla et al. (2010); Kermack et al. (2015); 
Tarahomi et al. (2019) 

It is unknown whether there are nutritional or physiological circumstances which 

could cause methionine concentrations to decline below ~30 µmol/L in the 
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bovine reproductive tract. Even cows fed a diet low in crude protein (14%) had 

an average plasma concentration of ~21 µmol/L (Piepenbrink et al., 1996). 

However, due to its microbial degradation within the rumen, methionine is the 

first rate-limiting amino acid in the diet of dairy cows and is, therefore, often 

supplemented as a protected formulation (Wiltbank et al., 2014). Feeding 

rumen-protected methionine to lactating dairy cows is reported to increase 

plasma concentrations of methionine (Koenig et al., 2002; Ordway et al., 2009; 

Preynat et al., 2009) with potential benefits for reproductive performance, as 

characterised by increased embryonic size, embryonic survival and pregnancy 

maintenance (Acosta et al., 2016; Toledo et al., 2017).  

Due to the challenges of studying human embryos, there are few data on 

methionine metabolism during human pregnancy (Kalhan, 2009; Drábková et 

al., 2016). Methionine is not endogenously synthesised in sufficient quantities 

by humans and must be obtained from the diet. As animal proteins are a primary 

source of methionine in human diets (Shoob et al., 2001), it follows that 

vegetarians and vegans are at risk of methionine deficiency (Krajcovicová-

Kudlácková et al., 2000; McCarty et al., 2009) and, consequently, adverse 

reproductive outcomes (General Introduction, Table 1). Similarly, methionine-

rich diets are associated with reduced risk of NTDs in pregnant women (Shoob 

et al., 2001; Shaw et al., 2004). Methionine has long been recognised as the 

most toxic amino acid (Benevenga and Steele, 1984; Garlick, 2006) where 

excess concentrations can have detrimental effects on embryo development 

(Rees et al., 2006). Certain pathophysiological conditions lead to excess 

methionine in humans. A case in point concerns Mudd’s disease, a condition 

caused by mutations in the MAT1A gene that is characterised by persistent 

hypermethioninemia (>2000 µmol/L), aberrant cellular methylation and central 

nervous system abnormalities (Chien et al., 2015; Nashabat et al., 2018; Figure 

1.1, Appendix Table 1.1). 

Based on the premise that the bovine preimplantation embryo metabolises 

methionine differently to hepatocytes (Section 1.4), the present study advances 

the hypothesis that bovine embryonic cells are particularly sensitive to 

methionine (i.e. methyl group) availability during the preimplantation period. As 

a domestic livestock species of commercial relevance, it is important to 

investigate the effects of altering methionine during in vitro production of bovine 

embryos. Furthermore, the bovine preimplantation embryo provides a suitable 

model for understanding the development and differentiaton of the early human 



University of Nottingham  Chapter Three 

81 

 

embryo (Shojaei Saadi et al., 2016; Sirard, 2019; Figure 3.1). The cow typically 

carries a single conceptus and has a similar gestation length to the human 

(Bebbere et al., 2013). Furthermore, the timings of key developmental events 

that occur during early embryogenesis, including minor and major embryonic 

genome activation (4-cell and 8-cell stage, respectively) and cell lineage 

specification, are conserved in both species (Kurosaka et al., 2004; Graf et al., 

2014). According to Ménézo and Hérubel (2002), biochemical, metabolic and 

intrinsic regulatory processes are similar in cattle and human embryo 

development. Analagous embryo culture systems are used for both species and 

ART procedures, including IVF and SCNT, are well established in cattle, thereby 

facilitating reverse genetic studies (Simmet et al., 2018). As an annotated Bos 

taurus genome is available, cattle also offer a useful model to study methylome 

changes during early development in response to culture conditions (de 

Montera et al., 2013; See Chapter 4).  

 

Figure 3.1 Developmental stages and epigenetic events in bovine 
preimplantation embryos. 

Source: Clare et al. (unpublished). Abbreviation(s): DNA, deoxyribonucleic acid; Epi, 
epiblast; ICM, inner cell mass; PE, primitive endoderm; TE, trophectoderm.  
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The present study, therefore, comprised two experiments in order to enhance 

our understanding of methionine metabolism in bovine ovarian cells, oocytes 

and preimplantation embryos. Given that transcripts encoding methionine cycle 

enzymes (i.e. MAT1A and BHMT) were either absent or expressed at low levels 

in these cell types (Kwong et al., 2010), the first experiment (Methionine cycle 

enzyme transcripts; Section 3.2.1) sought to confirm the expression of 

methionine cycle enzyme transcripts; MAT2A and BHMT isoforms, in somatic 

cells of the bovine ovary, oocytes and embryos. The MAT1A isoform is largely 

specific to the liver, whereas the low Km MAT2A isoform is expressed in 

extrahepatic tissues, including reproductive cells (Finkelstein, 1999). An 

evolutionary gene duplication event took place at the root of the mammalian 

clade giving rise to BHMT and BHMT2 paralogs. The BHMT enzyme uses 

trimethylglycine (TMG/betaine) as a methyl donor substrate for the 

remethylation of Hcy to methionine, whereas BHMT2 uses S-methylmethionine 

(SMM; Ganu et al., 2015; Figure 3.2). Genetic variation and functional 

divergence between BHMT isoforms have been characterised in several 

mammalian species, including humans, pigs and mice (Appendix Table 3.2), 

however, little is known about the tissue distribution and function of BHMT2 (Li 

et al., 2008), particularly in mammalian reproductive cells and embryos. The 

second experiment (Methionine and embryo development during culture; 

Section 3.2.2) sought to establish the developmental competence of embryos 

produced under in vitro culture conditions with 0 (non-physiological), 10 (low 

physiological), 50 (high physiological), and 500 (supraphysiological) μmol/L 

added methionine (Figure 3.2). Experimental endpoints involved the 

assessment of gross morphological and developmental parameters, including 

blastocyst stage, grade, cell lineage allocation and sex ratio. 
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Figure 3.2. Methionine concentrations added during in vitro production of 
bovine blastocysts.  

Enzymes in italics; BHMT, betaine homocysteine S-methyltransferase; BHMT2, betaine 
homocysteine S-methyltransferase 2. Substrates: DMG, dimethylglycine; Met, 
methionine; SAH, S-adenosylhomocysteine; SAM, S-adenosylmethionine; SMM, S-
methylmethionine; TMG, trimethylglycine. 

3.2 Materials and methods 

 Methionine cyle enzyme transcripts 

The expression of methionine cycle enzyme transcripts; MAT2A, BHMT and 

BHMT2, were analysed in bovine ovarian granulosa cells (GC), cumulus cells 

(CC), germinal vesicle (GV) oocytes, metaphase II (MII) oocytes and 

preimplantation embryos at various developmental stages.  

3.2.1.1 Sample collection  

 Liver (positive control) 

Bovine liver samples were harvested immediately following slaughter. Diced 

sections (5 mm3) were submerged in 2 mL RNAlater® tissue storage reagent 

(Sigma-Aldrich, Poole, UK). Samples were stored at 4oC overnight and 

transferred to -20oC for long-term storage.  

 Germinal vesicle (GV) oocytes  

Ovaries were collected from the abattoir and kept in 39oC pre-warmed 

phosphate buffered saline (PBS) until arrival at the laboratory. Ovaries were 
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rinsed with 70% ethanol and washed with PBS (39oC). Non-haemorrhagic small 

to medium size follicles (3-9 mm) were aspirated using a 19-gauge needle and 

a 10 mL syringe. The contents of each follicle were deposited into a pre-warmed 

50 mL falcon tube and kept at 39oC. Oocytes were graded using a four-point 

scale adapted from Goodhand et al. (1999) according to the number of layers 

of compact cumulus and amount of granulation in cytoplasm (Appendix 3.1).  

Grade 1 and 2 cumulus-oocyte complexes (COCs) were transferred to a 35 mm 

petridish containing warm PBS with 0.1% PVP (w/v) and washed three times. 

Cumulus-oocyte complexes were incubated in PBS/PVP containing 1 mg/mL 

hyaluronidase at 39oC for 2 min to aid the removal of granulosa and cumulus 

cells from oocytes. Cumulus-oocyte complexes were transferred to a 15 ml 

falcon tube containing 3 mL PBS/PVP and denuded by vortexing for 3 min. The 

suspension was transferred to a 35 mm petridish to recover the denuded 

oocytes and the wall of the falcon tube was rinsed with 1 mL PBS/PVP to ensure 

complete recovery. Recovered oocytes were washed three times in PBS/PVP 

and groups of 10 oocytes were transferred to 1 mL Eppendorf tubes before 

centrifugation for 2 min at maximum speed. The supernatant was removed 

leaving oocytes in a minimal volume (~2 μL) for snap freezing in liquid nitrogen 

and storage at -80oC until RNA extraction.  

  Cumulus cells (CC) 

The remaining PBS/PVP suspension used for vortexing and washing oocytes 

contained cumulus cells (CC) and was pooled into a 15 mL falcon tube. Tubes 

were centrifuged for 2 min at maximum speed and the supernatant discarded. 

The cell pellet was resuspended by vortexing in 1 mL fresh PBS/PVP and 

transferred to a 1 mL Eppendorf tube. The tube was centrifuged for 2 min at 

maximum speed, the supernatant was discarded, and the pellet was 

resuspended once again in 100 μL fresh PBS/PVP. Five microliters of cell 

suspension were added to 5 μL trypan blue (0.4% w/w) and 5 μL PBS and a 

live/dead cell count was achieved using a haemocytometer to ensure a 

sufficient number of cells were available for the mRNA extraction kit. Finally, the 

CC pellet was centrifuged for 2 min at maximum speed and the supernatant 

was removed before being snap frozen in liquid nitrogen. Cell samples were 

stored at -80oC until RNA extraction. 
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 Granulosa cells (GC) 

The remaining follicular fluid containing GC was split equally between 15 mL 

falcon tubes and centrifuged for 2.5 min at 2,000 xg. The supernatant was 

discarded and the cell pellet resuspended in 1 mL fresh PBS/PVP using a 

Pasteur pipette. The cell suspensions were centrifuged for 2.5 min at 2,000 xg 

and the supernatant discarded. Potential erythrocytes were lysed by the 

addition of 9 mL warm dH2O. The cell pellet was quickly mixed before the 

addition of 1 mL 10X PBS to prevent granulosa cells lysing. The suspension 

was centrifuged for 2.5 min at 2,000 xg once again, the cell pellet was 

resuspended in 1 mL fresh PBS/PVP and the suspension passed through a cell 

strainer (70 μm; Fisher Scientific) to remove debris. The cell suspension was 

centrifuged for 2 min at 2,000 xg, the supernatant was discarded and the GC 

pellet was resuspended in 1 mL fresh PBS/PVP. Five microliters of cell 

suspension was added to 50 μL trypan blue (0.4% w/w) and 145 μL PBS and a 

live/dead cell count was achieved using a haemocytometer to ensure a 

sufficient number of cells were available for the mRNA extraction kit. Finally, the 

GC pellet was centrifuged for 2 min at maximum speed and the supernatant 

was removed before being snap frozen in liquid nitrogen. Cell samples were 

stored at -80oC until RNA extraction.  

3.2.1.2 In vitro embryo production (IVP)  

Unless otherwise stated, all reagents were obtained from Sigma-Aldrich (Poole, 

UK). For a description of all media used for standard bovine IVP, see Appendix 

3.2). Morphological assessment of embryos was based on that of Bό and 

Mapletoft (2013) according to International Embryo Technology Society (IETS) 

criteria. Evaluation of bovine embryos was achieved with a stereomicroscope at 

50 to 100X magnification with the embryo in a small holding dish. Staging and 

grading of embryos was according to IETS guidelines (Appendix 3.3).  

 Metaphase II (MII) oocytes, zygotes and embryos 

Graded COCs were matured in groups of ~30 in 400 μL maturation media in 4-

well plates under 5% CO2 in air for 22-24 h. Cumulus-oocyte complexes were 

transferred to 50 μL drops containing oocyte wash medium under mineral oil. 

Careful pipetting of COCs allowed for oocyte isolation and a reduction in 

expanded cumulus cell layers to facilitate fertilisation. After washing, COCs 
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were transferred to 50 μL drops of pre-equilibrated fertilisation medium (39oC, 

5% CO2/air) under mineral oil. Motile spermatozoa from a single bull were added 

to each drop (1x106 spermatozoa per mL fertilisation medium) and fertilisation 

was performed for 18-20 h. For a detailed description of sperm preparation by 

swim-up method see Appendix 3.4.   

The day of IVF was counted as Day 0 of embryo development. Following IVF, 

presumptive zygotes were transferred to an Eppendorf containing 0.4 mL pre-

equilibrated synthetic oviductal fluid (SOF) HEPES holding medium (39oC, 5% 

CO2/5% O2) and denuded from attached sperm and remaining cumulus cells by 

vortexing for 1 min. Presumptive zygotes were washed in pre-equilibrated SOF 

HEPES holding media (35 mm Petri dish) and transferred in groups to 4-well 

plates containing 400 μL pre-equilibrated SOF culture medium (39oC, 5% 

CO2/5% O2). Embryo culture media was renewed on Day 2, 4 and 6 of culture.  

Metaphase II (MII) oocytes were collected following 22-24 h of in vitro 

maturation based on the visual observation of extrusion of the first polar body 

(Ikeda et al., 2010). Matured MII oocytes and CC were recovered using the 

protocols described in Sections 3.2.1.1.2 and 3.2.1.1.3, respectively. Embryos 

were classified according to their stage of development (Appendix 3.3). Zygotes 

were collected at Day 1 (~24 h post fertilisation), 2-cell embryos at Day 2 (~48 

hpi), 4-cell and 8-cell embryos at Day 3 (~72 hpi), 8-16 cell embryos at Day 4 

and Day 5 (96 and 120 hpi), morulae at Day 6 (~144 hpi), early expanding 

blastocysts, late expanded blastocysts, hatching and hatched blastocysts were 

collected on Day 7, Day 8 and Day 9 (~168, 192 and 216 hpi). At each sample 

collection, oocytes and embryos were pooled in groups of 10 in minimal volume 

(~2 μL) PBS/PVP, snap frozen in liquid nitrogen and stored at -80oC until RNA 

extraction. 

3.2.1.3 RNA extraction  

 Liver and granulosa cells  

Total RNA was extracted from bovine liver and granulosa cells using the 

RNeasy Mini Kit (Qiagen Ltd., West Sussex, UK) following the manufacturer’s 

protocol. Briefly, 20 mg liver were homogenised using a Polytron 4000 on ice in 

Buffer RLT containing 1% (v/v) 2-mercaptoethanol (600 μL). Up to 1x107 

granulosa cells were homogenised in the buffer by passing the lysate through a 
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20-gauge needle and syringe 10 times. Following homogenisation, samples 

were centrifuged at maximum speed for 3 min. The supernatant was withdrawn, 

transferred to a new microcentrifuge tube and mixed with 1 volume of 50% 

ethanol before being passed through a QIAshredder spin column (Qiagen Ltd.). 

The column containing RNA was successively washed, once with Buffer RW1 

(700 μL) and twice with Buffer RPE (500 μL) before RNA elution using 40 μL 

RNase free water. A 2 μL aliquot was taken to determine the concentration of 

RNA by measuring the absorbance at 260 nm (A260) using a Nanodrop 

Spectrophotometer (ND-1000; UK) For liver, the 260/280 ratio was 2.14. For 

granulosa cells, the 260/280 ratio was 1.98. Remaining RNA was stored at -

80oC. Approximately 900 ng liver RNA was used for reverse transcription. RNA 

was diluted to 0.1 µg/µL before complementary DNA (cDNA) synthesis.  

 Cumulus cells, oocytes and blastocysts 

Due to the small amount of starting material, Poly A+ RNA was extracted from 

CC, oocytes (GV and MII) and blastocysts using Dynabeads® mRNA 

DIRECT™ purification kit (Invitrogen Ltd., Paisley, UK), following the 

manufacturer’s protocol. Ten bovine blastocysts grouped by stage were used 

per extraction. This method uses short sequences of oligo(dT)25 which are 

covalently bound to the surface of the Dynabeads. These oligo-dTs hybridize to 

the polyA tail of mRNA to allow its magnetic isolation. Samples were lysed in 

150 μL lysis/binding buffer at room temperature for 20 min. Following lysis, 40 

μL Dynabeads were added to each sample. The contents were mixed at room 

temperature for 10 min using a gyratory rocker. One sample was handled at a 

time while the others were kept on ice. Samples were placed in a magnetic field 

so that beads were caught by the magnet and the supernatant was discarded. 

The beads were washed three times in 100 μL washing Buffer A and two times 

with 100 μL washing Buffer B. For washing, beads were mixed by gentle 

vortexing and washing buffers were exchanged using the magnetic field. After 

the final wash, beads were resuspended in 10 μL RNase free water and 

incubated at 65oC for 2 min. Tubes were immediately cooled on ice for 3 min 

before transfer to the magnetic field. The supernatant containing mRNA was 

transferred to a fresh tube and kept on ice. If reverse transcription was not 

conducted immediately, RNA was stored at -80oC.  
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3.2.1.4 Reverse transcription (RT)  

Complementary DNA (cDNA) was synthesised using the QuantiTect® Reverse 

Transcription kit (Qiagen Ltd.) due to its ability to reverse transcribe very small 

amounts of RNA (~1 pg). Ten microliters of purified RNA were incubated with 2 

µL gDNA Wipeout Buffer (7X) and 2 µL RNase free water at 42oC for 2 min to 

eliminate contaminating gDNA. Samples were immediately placed on ice and 1 

µL the reaction was removed for a negative control (–RT) reaction and the 

equivalent volume of water added before reverse transcription (RT). The total 

volume of each PCR (+RT) reaction was 20 µL, containing 1 µL Quantiscript 

reverse transcriptase, 4 µL Quantiscript RT buffer (5X), 1 µL RT Primer mix 

(random primers and oligo dT), 1 µL diluted gDNA Wipeout Buffer (1:6) and 13 

µL DNase treated RNA. The +RT reaction was mixed by flicking the tube and 

incubated at 42ºC for 30 min followed by incubation at 95ºC for 3 min to 

inactivate the enzyme. Resultant cDNA products were stored at -20ºC until 

amplification by polymerase chain reaction (PCR).  

3.2.1.5 Polymerase chain reaction (RT-PCR)  

 Primer design  

Transcript expression of methionine cycle enzymes; MAT2A, BHMT and 

BHMT2, was determined by RT-PCR using the Eppendorf AG 22331 (Hamburg, 

Germany). All transcripts were visualised relative to the housekeeping gene, β-

actin (ACTB). Despite the fact that the RT kit effectively eliminates gDNA, 

primers were designed to span exon-exon boundaries, thereby further 

minimising the detection of gDNA. Gene-specific primers were designed using 

Primer Express software version 3.0.1 (Applied Biosystems, Warrington, UK). 

Since BHMT and BHMT2 gene paralogs have high protein sequence homology 

(~73%; Li et al., 2008; Appendix Chapter 3), it was important to design primers 

that specifically amplify each isoform. The Bos taurus cDNA sequence for each 

gene paralog was downloaded using Ensembl genome browser 95 

(https://www.ensembl.org) and their sequence homology was compared using 

the ClustalW2 Multiple Sequence Alignment tool (https://www.ebi.ac.uk; 

Appendix 3.5). Primer specificity was confirmed using Primer-BLAST software. 

Forward and reverse primers for BHMT and BHMT2 were supplied by Sigma-

Aldrich (Poole, UK). Primers for MAT2A and housekeeping gene, ACTB, were 

https://www.ensembl.org/
https://www.ebi.ac.uk/
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supplied by Eurofins Genomics (GmbH, Anzinger Str. 7A, 85560, Ebersberg, 

Germany; Table 3.2). All primers were diluted with RNase free water to a final 

concentration of 10 pmol/μL.  

Table 3.2 Primers used for methionine cycle enzyme transcript expression. 

 Transcript expression  

Polymerase chain reaction was performed in a total volume of 20 μL containing 

10 μL LightCycler® 480 Probes Master 2X (Roche Diagnostic Ltd.), 0.6 μL 

forward and reverse primers, 2 μL cDNA template and RNase free water. A 

negative reagent control (RC) sample was run for each tested primer set using 

water instead of cDNA template. In order to check for DNA contamination in 

samples, the –RT reaction was run using ACTB primer pair since this does not 

span an exon-exon junction (Appendix 3.6). The amplification program 

consisted of denaturation at 95oC for 10 s, followed by 38 cycles as follows: 

95oC for 10 s, 58oC for 15 s, 72oC for 15 s, and 72oC for 10 s; with a final hold 

at 10oC. PCR products (10 μL plus 2 μL 6X loading dye; promega cat no. 

G1881) were run on 2.5% agarose gel stained with ethidium bromide (EtBr; 0.5 

μg/mL) and resultant bands visualised under UV light. Images were captured 

using the UVP GelDoc-IT imaging system. PCR products were sequenced to 

confirm primer specificity using liver cDNA by Source Bioscience (Nottingham, 

UK; Appendix 3.7).  

 Methionine and embryo development during culture  

In vitro maturation (IVM), fertilisation (IVF) and embryo culture (IVC) media were 

formulated to contain 0, 10, 50 and 500 μmol/L added methionine. All reagents 

were obtained from Sigma-Aldrich (Poole, UK), except for methionine-free 

TCM199 41150 media which was formulated by Gibco™ (ThermoFisher 

Scientific). Methionine-free Basal Eagle’s medium (BME) [50X] was formulated 

Gene Primer sequence (5’-3’) 
NCBI  

accession no.  

MAT2A 
FP AGTGCCCAAAAAGCTTAAATATTGA 

NM_001101131 
RP CTTTCCCGCAGAGCTTGAGG 

BHMT 
FP AGAGAAAATATCCGGGCAGAAAG 

NM_001011679.1 
RP TCACACCCCCTGCTACCAAA 

BHMT2 
FP AGCCTGTGGGAAGCTGTAAACA 

XM_003586514.5 
RP CCCCCTGCTACCAAAGCAT 

ACTB 
FP CGTCCGTGACATCAAGGAGAA 

NM_173979.3 
RP CGCGGTGGCCATCTCCTG 
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in-house to contain essential amino acids excluding methionine. For full details 

of custom-made BME and methionine stocks solutions see Appendix 3.8.   

3.2.2.1 High performance liquid chromatography (HPLC) 

Concentrations of methionine and additional amino acids in custom-made IVP 

media formulations were confirmed by HPLC. Amino acid concentrations in 

ovarian follicular fluid were also compared to culture media. The method used 

an Agilent 1100 HPLC and the injection programme is described in Appendix 

2.2.  

 Analytical grade reagents  

Methanol (MeOH), acetonitrile (ACN) and sodium phosphate dibasic (Na2HPO4) 

were purchased from Fisher Scientific (Loughborough, UK). 5-Sulphosalylic 

acid dehydrate (SSA) was purchased from Acros (Fisher Scientific). Amino acid 

standard powders; L-Asparagine (Asn), L-Glutamine (Gln), L-Citrulline (Cit) and 

L-Tryptophan (Trp); amino acid standard mix (AAS18) containing L-Alanine 

(Ala), L-Arginine (Arg), L-Aspartic acid (Asp), L-Cystine, L-Glutamic acid (Glu), 

L-Leucine (Leu), L-Lysine (Lys), L-Serine (Ser), L-Threonine (Thr), L-Tyrosine 

(Tyr), L-Valine (L), L-Histidine (His), L-Isoleucine (Ile), L-Methionine (Met), L-

Phenylalanine (Phe), Glycine (Gly) and internal standard, Norvaline (NVA) was 

purchased from Sigma-Aldrich (Poole, UK). Derivitisation reagents, O-

phthalaldehyde (OPA) and 3-mercaptopropionoic acid (MPA), were also 

purchased from Sigma-Aldrich (Poole, UK). 

 Standard preparation and calibration  

Stock solutions of individual amino acids (Asn, Gln, Cit and Trp) and internal 

standard (NVA) were prepared in water to a final concentration of 10 mmol/L. 

Amino acid standard mix (AAS18) was aliquoted at 2.5 mmol/L. All stock 

solutions were stored at -20oC to prevent degradation. As IVP media contains 

fetal calf serum (FCS, 10% v/v) or bovine serum albumin (BSA, <0.6% w/v), 

water containing 6 mg/mL BSA (Sigma Aldrich cat no. A6003) was used as a 

surrogate blank matrix for the preparation of extracted calibration standards 

over a suitable concentration range. The final IS concentration of NVA was 200 

μmol/L.  
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 Method validation  

Calibration curves were linear over the range of 0-600 μmol/L for all compounds. 

L-Aspartic acid could not be accurately measured due to co-elution with an 

interfering peak. Selectivity was demonstrated by the ability of the assay to 

differentiate and quantify the specific analytes of interest in the presence of 

other components. The lowest concentration of the analytes with an accuracy 

of 80–120% was regarded as the lower limit of quantification (LLOQ). Intra-day 

precision (CV%) was assessed by conducting analyses of at least three 

replicate QC samples in the analytical batch. Recovery (%) was calculated as 

measured analyte concentration/standard analyte concentration*100. Method 

validation parameters for the determination of amino acids are reported in Table 

3.3.  

Table 3.3 Validation data for quantification of amino acids in IVP media and 
ovarian follicular fluid.  

 

 

 

 

*Norvaline (NVA); internal standard 

 Follicular fluid collection  

Abattoir derived ovaries were rinsed with 70% ethanol and washed with PBS. 

Upon assessment of ovarian luteal morphology, ten ovaries at oestrous cycle 

stage III (11-17 days) were selected for aspiration based on criteria defined by 

Ireland et al. (1980). Stage III ovaries were selected as the mid-range of all 

oestrus cycle stages (I-IV) and were characterised by absence of a red/brown 

Amino 
acid 

analyte 

R.T. 
(min) 

 

LLOQ 
(μmol/L) 

Intra-day 
precision 

(CV%) 
Slope R2 

Recovery 
(%) 

Glu 3.20 5 4.20 0.0022 0.99 99.6 
Asn 7.24 25 4.43 0.0020 0.99 93.7 
Ser 7.29 25 5.52 0.0044 0.99 98.4 
Gln 8.49 25 6.13 0.0035 0.99 100.8 
His 8.96 1.25 11.63 0.0027 0.99 117.9 
Gly 9.09 5 13.39 0.0087 0.99 100.1 
Thr 9.40 25 4.98 0.0032 0.99 98.3 
Cit 10.12 25 1.72 0.0040 0.99 103.5 
Arg 11.01 25 3.66 0.0073 0.99 93.2 
Ala 11.24 50 10.53 0.0023 0.99 85.4 
Tyr 13.37 12.5 4.74 0.0032 0.99 84.6 
Cys 15.74 2.5 11.28 0.0037 0.98 96.9 
Val 15.98 12.5 10.79 0.0041 0.99 104.6 
Met 16.36 25 3.25 0.0051 0.99 100.9 

NVA*  16.87 -  - - - 
Trp 17.79 12.5 10.61 0.0046 0.99 83.8 
Phe 18.32 25 6.99 0.0038 1.00 101.3 
Ile 15.57 25 5,45 0.0036 0.99 101.8 

Leu 19.60 25 3.15 0.0041 0.99 104.9 
Lys 20.86 25 4.26 0.0023 0.99 119.4 
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colouration leaving the corpus luteum orange/yellow with visible apical 

vasculature (Figure 3.3A; Orsi et al., 2005; Putluru et al., 2016). Individual 

follicles were graded on the basis of dominance using follicle size and follicular 

fluid volume as markers. Based on the method of Orsi et al. (2005), fluid from 

non-dominant (2 to 6 mm diameter) and dominant follicles (6 to >15 mm 

diameter) was collected in 2 mL syringes fitted with 19-gauge needles and the 

mean fluid volume recorded (Figure 3.3B).  

 

Figure 3.3 Ovarian follicular fluid volume increases with follicular dominance.  

Bovine ovary at oestrus cycle stage III (11-17 days). Source: Putluru et al. (2016) (A). 
Fluid volume according to follicle size (2 mm, n=60; 4 mm, n=12; 6 mm, n=5; 8 mm, 
n=2; 10, n=2; 12, n=2; >15 mm, n=3). Non-dominant follicle (<8 mm); dominant follicle 
(>8 mm) (B). Data presented as mean ± SEM. 

 IVP media and follicular fluid sample extraction  

Due to the aspiration of small follicular fluid volumes from non-dominant follicles 

(<300 μL), aspirant samples were pooled to contain a minimum volume of 500 

μL for amino acid analysis by HPLC (2  mm, n=30 follicles; 4 mm, n=8; 6 mm, 

n=4; 8 mm, n=1; 10 mm, n=1; 12 mm, n=1; >15 mm, n=1). Pooled samples were 

centrifuged for 5 min at 900 xg to remove cell debris and stored at -80oC until 

amino acid extraction. Pooled samples were analysed in duplicate or triplicate. 

For each follicular fluid and IVP media sample to be deproteinized, a 

microcentrifuge tube was prepared containing 30 mg 5-sulphosalicylic acid 

(SSA) powder and cooled to 4oC. Ten μL NVA (10 mmol/L) and 490 μL each 

sample was added to the tube containing SSA. The contents were vortexed and 

kept at 4oC for 1 h. Following protein precipitation, the mixture was centrifuged 

for 15 min at 14,500 xg. The supernatant was transferred to a 1 mL syringe and 

filtered using a Millex-GP syringe filter unit, 0.22 μm (Merck Millipore). The 

filtrate was transferred to an amber HPLC vial for HPLC analysis.
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3.2.2.2 Methionine-adjusted in vitro embryo production (IVP) 

Bovine embryo production was conducted as described previously (Section 

3.2.1.2) but with the following modifications. Grade 1 and 2 COCs were matured 

in groups of ~30 in 400 μL modified maturation medium (0, 10, 50 and 500 

μmol/L added methionine) for 22 h. Matured COCs were inseminated with 

frozen thawed bull sperm at a concentration of 1x106 sperm/mL in modified 

fertilisation medium (0, 10, 50 and 500 μmol/L added methionine). Semen from 

the same bull was used for all experiments. Presumptive zygotes were 

denuded, washed in pre-equilibrated methionine-free SOF HEPES holding 

media and cultured in 400 μL modified SOF culture medium supplemented with 

custom-made BME (0, 10, 50 and 500 μmol/L added methionine) until Day 8 

post insemination. Media was renewed every 48 h. Cleavage was assessed on 

Day 2 (48 hpi) and embryo development was assessed on Day 7 and 8. 

Blastocysts were harvested on Day 8 (n=135) to assess gross morphological 

and developmental parameters (stage, grade, cell lineage allocation and 

primary sex ratio). Treatments were replicated on a minimum of three 

occasions.  

 Whole-mount immunofluorescence 

To investigate the effect of methionine on cell lineage allocation, Day 8 

blastocysts (n=85) cultured at 0, 10 and 50 μmol/L added methionine media 

were immunostained according to Nichols et al. (2009). Primary antibody rabbit 

anti-human NANOG (dilution factor 1:400, Peprotech cat no. 500-P236) and 

secondary antibody Alexa Fluor™ 488 (1:500; Invitrogen cat no. A32790) was 

used to stain the epiblast (Epi). Primary antibody goat anti-human SOX17 

(1:750; R&D cat no. AF1924) and secondary antibody Alexa Fluor™ 647 (1:500; 

Invitrogen cat no. A21447) was used to stain the primitive endoderm (PE). 

Fluoroshield™ with DAPI was used to visualise the trophectoderm (TE). 

The zona pellucida was removed from blastocysts using Pronase (0.5% w/v) for 

approximately 1 min. Zona-free blastocysts were washed twice with warm 

PBS/PVP (0.1% w/v) and fixed using 4% paraformaldehyde for 15 min. Fixed 

blastocysts were washed three times for 5 min each in PBS/BSA (1% w/v) 

before permeabilisation in Triton-X100 in PBS (0.1% v/v) at room temperature 

for 15 min. Blastocysts were washed again, transferred into blocking solution 
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(containing 82% of 5% PBS/BSA, 9% donkey serum and 9% 3 M glycine) and 

incubated at room temperature for 1 h. After blocking, blastocysts were 

transferred to a 96 mini-well plate loaded with primary antibody and incubated 

at 4oC overnight. To remove unbound primary antibody, blastocysts were 

washed four times for 10 min each in PBS/BSA (1% w/v) and transferred to a 

96 mini-well plate loaded with secondary antibody, and incubated at room 

temperature for 1 h. Following incubation with secondary antibody, blastocysts 

were washed again in PBS/BSA (1% w/v) and mounted with minimal volume of 

medium on slides using Fluoroshield™ with DAPI (Sigma-Aldrich). Mounted 

blastocysts were covered with a coverslip, sealed with nail varnish and 

differential staining was visualised using an epifluorescent microscope (Leica, 

DM4000B; Germany). Images obtained under 40X magnification were used to 

count total, TE, ICM, Epi and PE cells using FIJI software (Image J with cell 

counter plug-in).  

 Embryo sexing by polymerase chain reaction (PCR) 

Day 8 bovine blastocysts (n=62) underwent multiplex PCR to investigate the 

effect of methionine concentration during in vitro culture on the primary sex ratio. 

The zona pellucida was removed from blastocysts using Pronase (0.5% w/v). 

Zona-free blastocysts were washed three times in PBS/PVP (0.1% v/v) and 

transferred in minimal volume to PCR tubes. Samples were snap frozen in liquid 

nitrogen and stored at -80oC until PCR analysis.  

Y-chromosome specific (SRY) and bovine specific (BSP) primers were supplied 

by Eurofins Genomics (Table 3.4). All primers were diluted with RNase free 

water to a final concentration of 10 pmol/μL. Polymerase chain reaction was 

conducted using the Eppendorf AG 22331 in a total volume of 25 μL, containing 

12.5 μL Immomix red (Bioline), 0.125 μl forward and reverse BSP primers, 1.25 

μL forward and reverse SRY primers, 7.75 μL RNase free water and 2 μL DNA 

from single embryos or positive control DNA (1 ng DNA extracted from bovine 

male liver and female granulosa cells).  

The amplification program consisted of an initial step at 95oC for 10 min to lyse 

embryonic cells, followed by 38 cycles as follows: 95oC for 30 s, 55oC for 30 s, 

72oC for 1 min, and 72oC for 7 min; with a final hold at 10oC. PCR products were 

run on 1.6% agarose gel stained with EtBr (0.5 μg/mL) and resultant 
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amplification products visualised under UV light. Images were captured using 

the UVP GelDoc-IT imaging system.  

Table 3.4 Primers used for sex determination of Day 8 bovine blastocysts. 

 

 Statistical data analysis  

Statistical analyses were performed within the Genstat statistical package (19th 

Edition, VSN International, 2011). Proportion data were analysed using 

generalised linear regression models assuming binomial errors and used logit-

link functions. Count data were analysed using generalised linear regression 

models assuming poisson errors and used log-link functions. Data are 

presented as adjusted means with SEM. 

3.3 Results and Discussion  

 Methionine cycle enzyme transcripts  

RT-PCR experiments qualitatively revealed the temporal mRNA expression 

patterns of methionine cycle enzymes (MAT2A and BHMT/2) in bovine ovarian 

cells, oocytes and preimplantation embryos. All target enzymes plus the internal 

control (ACTB) were detected in bovine liver which is the principal site of 1C 

metabolism and a tissue characterised to express the complete set of 1C 

metabolism enzymes (Mato et al., 2008; Lu and Mato, 2012). In line with 

previous studies (Kwong et al., 2010; Ikeda et al., 2010), MAT2A was detected 

in ovarian cells, oocytes and embryos throughout all stages of preimplantation 

development (Figure 3.4). 

Gene Primer sequence (5’-3’) 
Product 

(bp) 
NCBI  

accession no. 

SRY 
FP TGAAACAAGACCAAAACCGGG 

339 EU581861.1 

RP TCCATGGACTTGCTCTACTGT 

BSP  

FP TTTACCTTAGAACAAACCGAGGCA 

538 
Rattanasuk et al.  

(2011) RP TACGGAAAGGAAAGATGACCTGAC 
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Figure 3.4 MAT2A, BHMT and BHMT2 transcript expression in bovine ovarian 
cells, oocytes and preimplantation embryos. 

Liver (Liv) positive control; granulosa cells (GC); cumulus cells (CC), matured cumulus 
cells (MII CC); germinal vesicle oocytes (GV); metaphase II matured oocytes (MII); 
zygotes (1C); embryos: 2 cell (2C); 4 cell (4C); 8 cell (8C); 8-16 cell (8-16C); morulae 
(M); Day 7 early blastocysts (EB); Day 8 late blastocysts (LB); Day 9 hatching 
blastocysts (HB); reagent control (RC). 

Interestingly, visible amplification products for BHMT2 were detected in bovine 

CC and GC but were not clearly detected in matured CC, oocytes or 

preimplantation embryos (Figure 3.4). The substrate for BHMT2, S-

methylmethionine (SMM), is a natural sulfonium analogue of SAM that is unique 

to plants and present in high quantities in corn-based diets (Augspurger et al., 

2005; Appendix Chapter 3). A fraction of SMM escapes ruminal fermentation 

and can be used as a source of by-pass methionine and methyl groups in 

ruminants (Matsuo et al., 1980; Hegedüs et al., 1995; Augspurger et al., 2005). 

In addition, SMM is a precursor of the osmolyte, dimethylsufoniopropionate 

(Rouillon et al., 1999). The mechanism of uptake and the biological function of 

SMM within cells of the bovine ovary are unknown and warrant further 

investigation in order to elucidate the role of BHMT2 within these cell types.   

Weak but visible bands detected for both BHMT isoforms in GV and MII oocytes 

could be an experimental artefact due to overexposure of the gel (Figure 3.4). 

The presence of BHMT mRNA, however, supports findings of Ikeda and 

colleagues (2010) who detected BHMT transcript expression in bovine GV and 

MII oocytes, and Benkhalifa et al. (2008) who detected BHMT and BHMT2 

expression in human oocytes. The finding that oocytes express BHMT isoforms 

suggests that these germ cells harbour alternative pathways for methionine 

production and are, therefore, equipped with a unique methylation machinery 

GC CC

MII 

CC GV MII 1C 2C 4C 8C 16C M EB LB HB RCLiv

MAT2A

BHMT

BHMT2

ACTB
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required for the establishment of the oocyte-specific methylome that takes place 

during the later stages of oogenesis (Ikeda et al., 2010; Demond, 2020).  

The present study detected transient BHMT mRNA expression at the morula 

stage of bovine embryos (Figure 3.4). This observation agrees with previous 

studies using bovine (Ikeda et al., 2010) and murine embryos (Lee et al., 2012; 

Section 1.4). In mice, Bhmt mRNA was first expressed in morulae before 

decreasing in blastocysts, whilst BHMT protein expression and activity was not 

detected until the blastocyst stage (Lee et al., 2012). As for mice, it is possible 

that translation of the BHMT transcript does not begin until a later stage of 

development in bovine embryos. Measuring BHMT enzyme expression and 

activity was beyond the scope of the current study, however, an experiment of 

this nature could help to resolve contradictory findings regarding BHMT mRNA 

and enzyme expression, and its putative role in methionine metabolism in the 

bovine preimplantation embryo (Ikeda et al., 2010; Kwong et al., 2010).
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 Methionine and embryo development during culture  

3.3.2.1 Methionine composition of custom-made IVP media  

High performance liquid chromatography (HPLC) analyses confirmed 

concentrations of methionine in custom-made IVP media formulations (Figure 

3.5). Although below the LLOQ, a basal level of methionine was present in all 

media formulations, including 0 μmol/L added methionine (non-physiological 

concentration), due to the addition of macromolecules, fetal calf serum (FCS) 

and bovine serum albumin (BSA), to media (Leibfried-Rutledge et al., 1986). 

Supplementation of IVM media with 10% FCS contributed ~3-4 μmol/L of 

methionine (Figure 3.5A). Supplementation of IVF and IVC media with 0.6% and 

0.3% BSA, respectively, contributed <3 μmol/L (Figure 3.5B, Figure 3.5C).  

 

Figure 3.5 Concentrations of methionine in custom-made in vitro embryo 
production media formulations. 

IVM, in vitro maturation media (A). IVF, in vitro fertilisation media (B). IVC, in vitro culture 
media (C). Data is based on one replicate to confirm added methionine concentration.  

3.3.2.2 Amino acid composition of custom-made IVP media  

The amino acid profile of custom-made IVM and IVC media are presented in 

Figure 3.6. Amino acids were undetected in IVF media as this formulation is not 

supplemented with amino acids other than through the addition of BSA. The 

overall profile of amino acids in custom-made methionine-free TCM199 IVM 

media (Gibco™) was similar to that of the commercial TCM199 GlutaMAX™ 

formulation routinely used in our laboratory. However, there was a large 

discrepancy between glutamine (Gln) concentrations disclosed in the 

commercial formulation and those measured in custom-made media (Figure 

3.6A). 
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Figure 3.6 Amino acid profile of in vitro maturation (IVM) media (A) and in vitro 
culture (IVC) media (B).  

Custom-made media samples analysed over four replicates. Data presented as mean 
± SEM. Abbreviation(s): Ala, alanine; Arg, arginine; Asn, asparagine; BME, Basal 
Medium Eagle; Cys, cystine; EAA, essential amino acids; Gln, glutamine; Glu, 
glutamate; Gly, glycine; His, histidine; Ile, isoleucine; Leu, leucine; Lys, lysine; MEM, 
Minimum Essential Medium; Met, methionine; NEAA, non-essential amino acids; Phe, 
phenylalanine; Ser, serine; Thr, threonine; Trp, tryptophan; Tyr, tyrosine; Val, valine.  

 

A

B
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Due to the high lability of Gln at physiological pH (Khan and Elia, 1991; Jagušić 

et al., 2016), the GlutaMAX™ supplement is a dipeptide, L-alanine-L-glutamine, 

which is more soluble and more stable in aqueous solution and, therefore, does 

not spontaneously degrade. Since it was not possible to measure this dipipetide 

molecule using the HPLC method, concentrations of Gln could not be accurately 

determined in IVM media (Figure 3.6A). 

With respect to embryo culture, the classic subdivision of amino acids is into 

‘essential’ and ‘non-essential’ groups. This subdivision is an over-simplification 

and misleading given that all amino acids are essential for protein synthesis and 

cellular function in the early embryo (Sturmey et al., 2008). During culture, 

essential amino acids (EAA) are typically supplemented to IVC media through 

the addition of Basal Eagle’s Medium (BME) [50X] vitamin solution (4% v/v). 

Formulations include amino acids that are classified as essential; histidine (His), 

arginine (Arg), valine (Val), methionine (Met), tryptophan (Trp), phenylalanine 

(Phe), isoleucine (Ile), leucine (Leu) and lysine (Lys), as well as non-essential 

amino acids (NEAA) that become conditionally essential under culture 

conditions; cystine (Cys), threonine (Thr) and tyrosine (Tyr; Morbeck et al., 

2014; Figure 3.6B). As discussed above (Section 3.3.2.1), basal levels of 

methionine present in custom-made methionine-free IVM and IVC media 

formulations were below the LLOQ (Table 3.3). 

Non-essential amino acids; glutamate (Glu), asparagine (Asn), serine (Ser), 

glutamine (Gln), glycine (Gly) and alanine (Ala), are typically supplemented to 

IVC media through the addition of Minimum Essential Medium (MEM) [100X] 

solution (1% v/v). Glutamine is one of the most abundant amino acids in the 

female mammalian reproductive tract (Orsi et al., 2005; Harris et al., 2005) that 

has a stimulatory effect on preimplantation embryo growth and development 

(Lane and Gardner, 1997; Chen et al., 2018). Because the concentration of Gln 

in MEM is low (~100 μmol/L) and unstable in solution, 1 mmol/L of Gln is 

routinely added to regular media used in IVF laboratories (Lane and Gardner, 

1993; Lane and Gardner, 1997b). Following its addition to our custom-made 

IVC media, the final Gln concentration was 878.3 ± 84 μmol/L (Figure 3.6B). As 

with all amino acids, however, the spontaneous degradation of Gln leads to the 

accumulation of ammonium ions (urea) in culture media which can change pH 

and osmolarity with embryo-toxic consequences (Gardner and Lane, 1993; Orsi 

and Leese, 2004). Therefore, to avoid ammonium toxicity, it was critical to 

renew culture media every 48 h.  
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3.3.2.3 Amino acid composition of bovine follicular fluid  

Ovarian follicular fluid has been used to support the in vitro maturation of bovine 

oocytes albeit with varying degrees of success (Sirard and First, 1988; Takagi 

et al., 1998; Heidari et al., 2019). Considering that nutrient concentrations are 

typically non-physiological in mammalian IVM systems (Nakawaza et al., 1997), 

the addition of follicular fluid aims to expose COCs to a more physiological 

hormonal and nutritional milieu (Orsi et al., 2005). Clearly, fluid within the 

developing antral follicle contains substances required for oocyte maturation 

and fertilisation (Gérard et al., 2002). Efforts have, therefore, been made to 

model nutrient profiles of IVM media on that of preovulatory follicular fluid in 

order to improve oocyte and embryo developmental potential (Krishner and 

Bavister, 1998). 

The profile of amino acids in follicular fluid has been characterised in several 

mammalian species (Leese and Lenton, 1990; Gérard et al., 2002; Sinclair et 

al., 2008). In cattle, the amino acid composition varies throughout the oestrous 

cycle and is influenced by follicular dominance. In line with reports by Orsi and 

others (2005), the present study found that the concentrations of certain amino 

acids were negatively correlated with follicular fluid volume. In particular, Glu, 

Gln, Arg and Ala, tend to decrease with follicular dominance (Figure 3.7).  

Previous studies investigating the amino acid composition of bovine follicular 

fluid reported quantitatively similar profiles (Orsi et al., 2005; Sinclair et al., 

2008) with Gln, Ala and Gly presenting as the most abundant amino acids (Orsi 

et al., 2005; Hugentobler et al., 2007; Sinclair et al., 2008). Discrepancies 

between studies may be accounted for by differences in analytical technique, 

i.e. HPLC (present study) vs GC-MS (Sinclair et al., 2008) and the absence of 

follicular segregation according to oestrus stage across studies. By way of 

example, the present study reports a ~3-fold lower concentration of Gly in 

follicular fluid than concentrations reported by Sinclair et al. (2008) (Figure 3.8). 

This is not surprising given that Gly concentrations can fluctuate markedly in 

follicular fluid according to stage of oestrus, starting at >800 μmol/L at Stage I 

and declining to <300 μmol/L at later stages (Orsi et al., 2005).
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Figure 3.7 Amino acid composition of bovine follicular fluid by follicular size. 

Pooled follicular fluid samples analysed in duplicate. Data presented as mean ± SEM. Abbreviation(s): Ala, alanine; Arg, arginine; Asn, asparagine; Cys, cystine; 
Gln, glutamine; Glu, glutamate; Gly, glycine; His, histidine; Ile, isoleucine; Leu, leucine; Lys, lysine; Met, methionine; Phe, phenylalanine; Ser, serine; Thr, 
threonine; Trp, tryptophan; Tyr, tyrosine; Val, valine. 
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Figure 3.8 A study comparison of the amino acid profile in bovine follicular fluid 
aspirated from non-dominant (2 to 6 mm) and dominant (6 to >15 mm) ovarian 
follicles.   

Pooled follicular fluid samples analysed in duplicate. Data presented as mean ± SEM. 
Abbreviation(s): Ala, alanine; Arg, arginine; Asn, asparagine; Cys, cystine; Gln, 
glutamine; Glu, glutamate; Gly, glycine; His, histidine; Ile, isoleucine; Leu, leucine; Lys, 
lysine; Met, methionine; Phe, phenylalanine; Ser, serine; Thr, threonine; Trp, 
tryptophan; Tyr, tyrosine; Val, valine.  

The amino acid profile of custom-made IVM media used for all methionine-

adjusted IVP experiments in Chapter 3 was similar to that of Stage III bovine 

preovulatory follicular fluid (in vivo), with the exception of 1C metabolites Gly 

and Ser which were present at higher concentrations in IVM media than in 

follicular fluid, and Ala which was 3-fold higher in follicular fluid than in IVM 

media (Figure 3.9). Glycine is an organic osmolyte required for the regulation of 

cell volume homeostasis in oocytes and early cleavage stage embryos (Steeves 

et al., 2003; Tartia et al., 2009; Cao et al., 2016). Both Gly and Ser are required 

for glutathione (GSH) synthesis and are required to protect oocytes against 

oxidative stress (Mattaini et al., 2016; Udhe et al., 2018). The interconversion 

of Ser and Gly catalysed by SHMT in the folate cycle facilitates methyl donation 

required for nucleotide synthesis (Figure 1.1), hence, both amino acids can be 

used interchangeably to support cell growth and development during in vitro 

maturation. The higher concentration of Ala in follicular fluid (Figure 3.9) 

supports observations of Elhassan et al. (2001), who found that Ala 
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concentrations were >3 mmol/L in bovine follicular, oviductal and uterine fluid, 

thereby exceeding concentrations in IVP media. 

 

Figure 3.9 A comparison of amino acids in custom-made TCM199 IVM formulation 
and preovulatory ovarian follicular fluid. 

Data presented as mean ± SEM. Abbreviation(s): Ala, alanine; Arg, arginine; Asn, 
asparagine; Cys, cystine; Gln, glutamine; Glu, glutamate; Gly, glycine; His, histidine; Ile, 
isoleucine; Leu, leucine; Lys, lysine; Met, methionine; Phe, phenylalanine; Ser, serine; 
Thr, threonine; Trp, tryptophan; Tyr, tyrosine; Val, valine.  

The media concentration of amino acids is one matter, but the ratio of amino 

acids is another. It is understood that mammalian oocytes and embryos possess 

an array of specialised amino acid transport systems that each transport a range 

of related compounds (Van Winkle, 2001; Pelland et al., 2009; Guyader-Joly et 

al., 1996). Thus, when amino acids are present at the same concentration, 

competition for transporter binding sites inhibits the entry of some amino acids, 

leading to disequilibrium within the endogenous pool (Ménézo and Hérubel, 

2002). Of particular relevance to the following discussion is the interaction 

between methionine and Gly. Concentrations of Gly can exceed 1.2 mmol/L in 

the female bovine reproductive tract; such concentrations are >20-fold higher 

than those of methionine (Hugentobler et al., 2007; Herrick et al., 2016). The 

high Gly:Met ratio permits entry of Gly into the cells (Ménézo and Hérubel, 2002) 

and will be an important consideration for investigating the effects of adding 

methionine to media formulations during bovine IVP. 
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3.3.2.4 In vitro embryo production with added methionine 

To our knowledge, this is the first investigation into the effect of altering 

methionine concentration during in vitro maturation, fertilisation and culture of 

bovine embryos. An earlier study by Bonilla and colleagues (2010) assessed 

the effects of altering methionine concentration (0-400 μmol/L) from the point of 

embryo culture. However, in the present study, methionine treatments were 

introduced from the point of oocyte maturation as this more suitably 

recapitulates the ‘physiological’ environment. In vivo, gametes and embryos 

encounter moderate fluctuations in methionine (Hugentobler et al., 2007; Bonilla 

et al., 2010) rather than extreme concentration changes brought about by in 

vitro culture.  

 Gross morphology  

Embryos and blastocysts cultured in modified media containing 0, 10, 50 and 

500 μmol/L of added methionine were morphologically assessed according to 

IETS criteria (Appendix 3.3). Whilst there was a tendency for the proportion of 

cleaved embryos to be lowest in those cultured in non-physiological medium (0 

μmol/L added), there was no significant effect of methionine concentration on 

the proportion of embryos cleaved on Day 2 (Figure 3.10).  

 

Figure 3.10 Methionine concentration during bovine IVP had no effect on the 
proportion of inseminated oocytes that cleaved by Day 2 (P=0.147). 

Data obtained over eight experimental replicates and analysed by generalised linear 
regression assuming binomial errors. Total number of inseminated oocytes (n=1,000). 
Data presented as mean ± SEM.  
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These findings were consistent with those of Bonilla et al. (2010) and suggest 

that the methionine requirements of the oocyte, zygote and early cleavage 

embryo are satisfied by oocyte stores and the increase in protein catabolism 

that occurs during oocyte maturation. Recent work by Udhe et al. (2018) 

reported a ~5-fold increase in media concentrations of methionine during bovine 

oocyte maturation. This egression of methionine from oocytes indicates that 

methionine is not limiting but is dispensible during oocyte maturation. Evidence 

suggests that methionine consumption and incorporation into proteins 

increases after the 8-cell stage and compaction (Partridge and Leese, 1996), 

coinciding with bovine embryonic genome activation (EGA; Graf et al., 2014; 

Figure 3.1). However, protein synthesis in the bovine blastocyst is reported to 

increase substantially at the blastocyst stage (Edwards et al., 1997). Indeed, 

results from the present study found an effect (P<0.001) of methionine 

concentration on blastocyst development at Day 7 (Figure 3.11A, Figure 3.11B).  

 

Figure 3.11 Added methionine increases (P<0.001) the proportion of blastocysts 
by Day 7. 

Data obtained over eight experimental replicates and analysed by generalised linear 
regression assuming binomial errors. Total number of blastocysts assessed (n=135). 
Data presented as mean ± SEM. Means labelled (a, b, c) differ (P<0.05).  
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Embryos cultured in non-physiological media (0 μmol/L added methionine) were 

least likely to develop to blastocysts on Day 7 (P<0.001). However, albeit small, 

a proportion of embryos did reach the blastocyst stage by Day 8 (0.14 ± 0.039; 

Figure 3.11D). There is likely to be some variation in the absolute requirements 

of individual bovine embryos for methionine (Bonilla et al., 2010). Perhaps the 

requirements of certain embryos are satisfied by the remethylation of Hcy to 

methionine (Škovierová et al., 2016) or an increased capacity for methionine 

uptake under deficient conditions (Guyader-Joly et al., 1997). It follows that 

amino acid metabolism serves as a biomarker of developmental potential in 

bovine blastocysts (Sturmey et al., 2010). Similarly, embryos cultured in 

supraphysiological media (500 μmol/L added methionine) exhibited reduced 

development to the blastocyst stage (Figure 3.11A, Figure 3.11C). Although not 

statistically significant, of the physiological methionine concentrations tested, 50 

μmol/L of added methionine appears best for blastocyst development (Figure 

3.11C, Figure 3.11D).  

A small proportion of embryos cultured in non-physiological and 

supraphysiological concentrations of methionine were advanced in 

development (i.e. Stage 7-9; late expanded, hatching or hatched from the zona 

pellucida) on Day 8 (P<0.05; Figure 3.12A; Appendix 3.3). Methionine 

concentrations are thought to influence blastocyst expansion and hatching by 

regulating blastocoel cavity size (Bonilla et al., 2010). This role is exerted 

through the conversion of methionine to methyl donor, SAM, which methylates 

cell membrane lipids and proteins to mediate their fluidity (Muriel et al., 1993). 

A prime example is the regulation of the integral membrane protein, Na+/K+-

ATPase. This enzyme is responsible for maintaining cell volume, and intra- and 

extra-cellular electrolyte balance by catalysing the export and import of sodium 

and potassium ions, respectively (Lees, 1991). In rodents, maternal 

hypermethioninemia decreased Na+/K+-ATPase activity, thereby impairing 

sodium-potassium exchange in the developing brain of pups (Schweinberger et 

al., 2014). A similar effect of high methionine within cells of the bovine 

preimplantation embryo might explain, at least in part, the reduction in cavitation 

and blastocyst expansion observed at the supraphysiological concentration of 

methionine used in the present study (Figure 3.12A). 
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Figure 3.12 Physiological (10 and 50 µmol/L) methionine increases the 
proportion (P<0.05) of advanced transferable blastocysts. 

Proportion of Day 8 blastocysts that were advanced stage; late expanded, hatching or 
hatched (A) and of grade 1 and 2 transferable quality (B). Data obtained over eight 
experimental replicates and analysed by generalised linear regression assuming 
binomial errors. Total number of blastocysts (n=135). Data presented as mean ± SEM. 
Means labelled (a, b) differ (P<0.05). 

Although not statistically significant, non-physiological (0 μmol/L added) and 

supraphysiological (500 μmol/L added) concentrations of methionine during IVP 

decreased the proportion of Grade 1 and 2 (transferable) blastocysts (Figure 

3.12B). The greatest proportion of advanced stage and transferable grade 

blastocysts were derived during culture in the high physiological methionine 

concentration (i.e. 50 μmol/L added; Figure 3.12). 

With all aforementioned points considered, methionine deficiency and excess 

appear to be detrimental to bovine preimplantation embryo development. 

Methionine is recognised as the most toxic amino acid (Benevenga and Steele, 

1984; Garlick, 2006) since its catabolism can produce high levels of volatile 

sulphurous compounds (Komarnisky et al., 2003). Thus, it is not surprising that 

continual culture at supraphysiological concentrations of methionine reduces 

embryo viability. As discussed above, the catabolism of amino acids, i.e. 

methionine, can lead to the production of ammonium ions which is detrimental 

to embryo development (Gardner and Lane, 1993; Orsi and Leese, 2004). 

Moreover, excess methionine is diverted towards catabolic pathways which 

requires other amino acids, such as Gly and Ser (Rees et al., 2006). Methionine 

is converted to cysteine and further oxidised to sulphate via the 

transsulphuration pathway using CTH and CBS enzymes (Figure 1.1), or via 

cysteine dioxygenase (CDO; Ueki et al., 2011). However, early studies in 
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human and rodent fetal liver reported absence of CTH and CDO enzymes, 

indicating that the developing fetus has a limited capacity to generate sulphate 

from sulphur-containing amino acids until later stages of gestation (Gaull et al., 

1972; Rakoczy et al., 2015).  

Continuing with the earlier discussion (Section 3.3.2.3), the balance of 

methionine relative to other amino acids is critical for normal embryo 

metabolism and development. At the same molar concentrations, methionine 

almost completely prevents Gly entry into the preimplantation embryo due to its 

high affinity for the same transporter (Gly-specific transport system; 

Khatchadourian et al., 1994). As demonstrated in Figure 3.6B, the typical Gly 

concentration of IVC media is 100 μmol/L based on the composition of Minimum 

Essential Medium (Partridge and Leese, 1996). As a high Gly:Met ratio permits 

entry of Gly into the cells (Khatchadourian et al., 1994; Ménézo and Hérubel, 

2002), culturing embryos in supraphysiological methionine concentrations 

would shift this ratio, thereby leading to Gly deficiency. Due to the diverse roles 

of Gly in antioxidant balance and osmoregulation, Gly deficiency is likely to have 

widespread effects on embryo growth and development (Steeves et al., 2003; 

Tartia et al., 2009; Cao et al., 2016). Such adverse effects of methionine-

induced Gly deficiency have been observed at the whole organism level. Rats 

fed low protein diets (10% casein) with methionine levels 3- to 4-fold greater 

than the estimated requirement (0.5-0.6% of the diet) exhibited suppression of 

voluntary food intake and near-cessation of growth (Harper et al., 1970). 

However, dietary Gly supplementation can reverse this growth retarded 

phenotype in animals fed a high-methionine diet (Benevenga and Steele, 1984).  

In relation to 1C metabolism, methionine deficiency or excess is likely to perturb 

intracellular SAM pools with downstream consequences for methyl metabolism 

in embryos. Shojaei Saadi et al. (2016) cultured bovine embryos in a high but 

non-lethal dose of SAM (2 μmol/L) from the 8-cell stage to blastocyst stage, and 

found that SAM treatment significantly increased blastocyst expansion and 

hatching on Day 8 (Hatching rate: 82% SAM-treated v 33% controls). Ikeda et 

al. (2012) found that culturing embryos with 10 mmol/L of ethionine, a structural 

analogue of methionine, inhibited the morula-to-blastocyst transition in bovine 

embryos but that supplementation of ethionine cultures with SAM (1-2 μmol/L) 

partially restored blastocyst development. Taken together, these findings 

suggest an important role of methionine in methyl donation during bovine 
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preimplantation embryo development and remains the focus of further 

investigation (Chapter 4).   

 Cell lineage specification  

The proliferation of blastomeres is one of the main factors involved in blastocyst 

expansion and hatching (Shojai Saadi et al., 2016). It was, therefore, 

hypothesised that cell number and allocation to the ICM and TE might differ 

according to methionine treatment. As the high physiological methionine 

concentration (50 μmol/L added) yielded the greatest proportion of advanced 

blastocysts (Figure 3.12A), it was expected that blastocysts cultured in this 

concentration would have greater cell numbers and have differentiated earlier 

than those cultured in lower methionine concentrations.  

The bovine embryo transits from the morula to blastocyst stage between days 

5-8 post fertilisation (Figure 3.1). The final stage of blastocyst formation is 

characterised by the emergence of the pluripotent Epi and PE cell lineages 

(within the ICM), and the TE (Kuijk et al., 2012). NANOG is first expressed in 

the 8-cell bovine embryo whilst SOX17 expression begins at the 16-32 cell 

stage. SOX17 is co-expressed with NANOG during early embryogenesis, but 

these markers become mutually exclusive by the late blastocyst stage; NANOG 

is expressed in the Epi and SOX17 is expressed in the PE. Thus, 

immunofluorescence analysis of NANOG and SOX17 were used as reliable 

readouts of Epi and PE, respectively (Canizo et al., 2019; Figure 3.13). 
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Figure 3.13 Blastocyst cell number increases (P<0.001) in a dose-dependent 
manner with methionine. 

Total cell count (A); trophectoderm (TE) cell count (B); inner cell mass (ICM) cell count 
(C); epiblast (Epi) cell count (D); primitive endoderm (PE) cell count (E). Data obtained 
over four experimental replicates and analysed by generalised linear regression 
assuming poisson errors. Total number of blastocysts (n=85). Data presented as mean 
± SEM. Means labelled (a, b, c) differ (P<0.05). 

Blastocyst total cell number increased (P<0.001) in a dose-dependent manner 

with increased methionine (Figure 3.13A). This observation was accompanied 

by significant (P<0.001) outgrowth of the TE, the first epithelium formed in 

development that forms extraembryonic lineages, including the placenta (Figure 

3.13B). Non-physiological concentrations of methionine (0 μmol/L added) 

significantly (P=0.011) reduced outgrowth of the ICM (Figure 3.13C). This 

observation was accompanied by a reduction (P=0.003) of cells in the epiblast 

(Epi); the lineage that will give rise to the embryo proper (Figure 3.13D). 

Primitive endoderm (PE) cells, which will give rise to the yolk sac, were 

unaffected by methionine concentration (P=0.557; Figure 3.13E).  

Previous research has not evaluated the effect of methionine on the allocation 

of embryonic cells to Epi and PE lineages within the ICM, but methionine 

deficiency may reduce total cell numbers and skew the ratio of ICM to TE cells 

within Day 8 bovine blastocysts (Lane and Gardner, 1997). By way of example, 

culturing bovine embryos with methionine antagonist, ethionine, from the 5-cell 

stage reduced the total number of blastocyst cells (Ikeda et al., 2012). Similarly, 

when early cleavage stage bovine embryos (1 to 8-cell) were cultured with the 
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MAT2A inhibitor, fluorinated N,N-dialkylaminostilbene-5 (FIDAS; 10 and 20 

μmol/L), ICM and TE cell proliferation was impaired, and blastocoel formation 

reduced. This inhibitory effect was alleviated by concomitant supplementation 

with a high concentration of methionine (1 mmol/L; Ikeda et al., 2017). In support 

of the finding that TE cell proliferation was significantly altered by methionine 

concentration (Figure 3.13B), Bonilla et al. (2010) also reported a numerically 

lower ratio of TE cells in blastocysts cultured without methionine. According to 

Houghton et al. (2006), the TE consumes more oxygen, produces more ATP, 

possesses a greater number of mitochondria and has a higher rate of 

methionine depletion than the ICM. The pluripotent ICM displays relatively 

quiescent metabolism in comparison to that of the TE. Thus, it is not surprising 

that these cell lineages proliferate differently in response to methionine 

concentration. 

Collectively, these studies highlight the importance of methionine as the 

immediate precursor for SAM biosynthesis, and provide evidence of the role of 

methylation in cell lineage specification within the bovine preimplantation 

embryo.  

 Primary sex ratio 

Sex-specific sensitivity to 1C metabolites in the maternal diet or IVP media can 

affect embryonic development in a sexually dimorphic manner, thereby skewing 

the ratio of male to female embryos (Sturmey et al., 2010; Sadre-Marandi et al., 

2018). Culturing bovine embryos in SAM (2 μmol/L) caused a shift in sex ratio 

in favour of male blastocysts (Shojaei Saadi et al., 2016). It was, therefore, 

hypothesised that increasing methionine during culture would increase the 

proportion of male blastocysts. Although not statistcically significant, embryo 

sexing by PCR revealed that physiological methionine concentrations increased 

the proportion of male blastocysts on Day 8 in a dose-dependent manner up to  

50 μmol/L. Interestingly, 0 μmol/L added methionine significantly reduced the 

proportion (P=0.022; Figure 3.14). It appears that male embryos are less 

developmentally competent following culture in non-physiological methionine (0 

μmol/L), whereas female embryos appear to be more tolerant under 

methionine-deficient conditions (Figure 3.14A). Previous research in cattle 

embryos showed sexually dimorphic differences in methionine metabolism 

between male and female embryos, and females showed increased depletion 

of methionine during in vitro culture compared to males (Sturmey et al., 2010).  
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Figure 3.14 Non-physiological (0 µmol/L) methionine concentration reduces 
(P=0.022) the proportion of male blastocysts. 

Data obtained over three experimental replicates and analysed by generalised linear 
regression assuming binomial errors. Total number of blastocysts (n=62). Data 
presented as mean ± SEM (A). PCR gel electrophoresis to determine the effect of 
methionine on sex of bovine embryos. BSP amplicon (X chromosome; 538 bp) and SRY 
amplicon (Y chromosome; 339 bp)  (B). Lanes 1 and 20: 100 bp marker. 2: Male liver 
+ve control; 3: Female liver +ve control. Lanes 4 to 19: cleaved embryos. Lane 19: 
reagent control (RC).  

Research examining sexually dimorphic differences in embryonic growth and 

survival of human embryos demonstrated that female embryos can respond to 

sub-optimal culture environments by altering the expression of multiple genes 

and proteins to regulate their growth in an an attempt to survive environmental 

insults. On the contrary, males appear to be less versatile and are, therefore, at 

higher risk of developmental arrest (Clifton, 2010; Rubessa et al., 2011; Alur, 

2019). This example of sexual dimorphism has been observed in natural 

populations of ruminant species wherein the sex ratio is biased towards female 

embryo development when nutritional resources are limited. This maternal 

adaptive strategy is thought to compensate for the high metabolic cost of rearing 

males during times of nutritional stress (Clutton-Brock et al., 1986; Kruuk et al., 

1999).   

A sex-specific response to methionine metabolism has been observed 

previously. In sheep and rats, methionine deficiency caused metabolic 

programming of obesity, insulin resistance and hypertension in male offspring 

(Sinclair et al., 2007; Maloney et al., 2011). As male and female embryos differ 

in their cellular metabolism, developmental rate, gene transcription and 

epigenetic processes (Mao et al., 2010; Gallou-Kabani et al., 2010; Rubessa et 

al., 2011), the precise mechanisms underpinning this sex-specific sensitivity to 

methionine are unclear (Laguna-Barraza et al., 2012). One possible mechanism 
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relates to the difference in sex chromosome dosage. Phenotypic differences in 

male and female embryos may be attributed to transcriptional differences 

resulting from unbalanced expression of X-linked genes and the differential 

expression of autosomal genes that are regulated by sex chromosomes 

(Bermejo-Alvarez et al., 2011). Such genes are involved in protein translation, 

catabolism and transport; epigenetic regulation of gene expression via DNA 

methylation; and, mitochondrial activity with widespread effects on molecular 

and metabolic pathways that can influence embryonic survival rate or long-term 

effects for offspring health (Bermejo-Alvarez et al., 2008; Bermejo-Alvarez et 

al., 2010; Sturmey et al., 2010; Heras et al., 2016). 

3.4 Concluding remarks  

HPLC analyses of custom-made IVP media accurately confirmed 

concentrations of methionine in treatments used for in vitro production of bovine 

embryos. In addition, the profile of other amino acids in custom-made IVM and 

IVC media was similar to that of commercial media routinely used in our 

laboratory. Altering the concentration of methionine within normal physiological 

ranges (10 and 50 μmol/L) during IVP affects bovine preimplantation embryo 

development. In support of conclusions drawn by Bonilla and others (2010), the 

methionine requirement of the bovine embryo resides within physiological limits. 

Of those concentrations tested, the high physiological concentration (50 μmol/L 

added methionine) appeared to be best for development, yielding the greatest 

proportion of advanced blastocysts that were expanding, hatching or hatched. 

Blastocysts cultured at this concentration also had the highest total cell number 

which was accompanied by a significant increase in TE cells.  

Culturing embryos in non-physiological methionine (0 μmol/L) reduced the 

proportion of male blastocysts compared to females. These findings suggest 

that sexually dimorphic sensitivity to aberrant culture conditions may originate 

at the earliest stages of periconceptional development. Based on the 

observation that SAM supplementation also favoured male blastocyst 

development during bovine embryo culture (Shojaei Saadi et al., 2016), it is 

hypothesised that epigenetic modifications to DNA methylation are responsible 

for the sex-specific nutritionally programmed effects of methionine. Methylation 

is also involved in the regulation of cell proliferation, lineage specification and 

blastocyst expansion (Muriel et al., 1993; Ikeda et al., 2017), therefore, a 
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primary function of methionine during early embryogenesis is likely exerted 

through the production of methyl donor, SAM.  

Given that culture media concentrations of methionine range from 0 to 500 

μmol/L (Table 1.5), it was important to investigate the developmental effects of 

culturing embryos in clinically relevant concentrations. As was expected, non-

physiological (0 μmol/L) and supraphysiological (500 μmol/L) concentrations 

were detrimental to bovine blastocyst development. Even moderate changes to 

methionine, within physiological limits, affected the gross morphology of 

preimplantation blastocysts, thereby emphasising the importance of providing 

an optimal nutritional environment for healthy embryo development. The visual 

assessment of embryo morphology is an inadequate metric to evaluate the 

safety and efficacy of the culture media composition of methionine.  Hence, an 

epigenetic assessment provides a valuable adjunct to elucidate the molecular 

mechanisms that may underpin the observed phenotypic effects of methionine 

observed during in vitro bovine embryo culture.
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Methionine and epigenetic programming of the bovine 

preimplantation embryo  
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4.1 Introduction  

DNA methylation is an important epigenetic modification that underpins dynamic 

reprogramming during mammalian embryogenesis (Morgan et al., 2005; Guo et 

al., 2014). Primarily, 5-methylcytosine (5mC) is involved in transcriptional 

regulation of gene expression, retrotransposon silencing, X-chromosome 

inactivation and genomic imprinting (Hochberg et al., 2011; Smith and Meissner, 

2013; Messerschmidt et al., 2014). The periconceptional nutritional 

environment, particularly the availability of 1C substrates and cofactors, can 

induce alterations to the embryonic methylome, which can lead to permanent 

changes in the phenotype of offspring (Sinclair et al., 2007; Maloney et al., 

2011). Some of the most remarkable examples of modifying epigenetically 

sensitive genes via maternal diet were demonstrated with metastable epialleles 

in yellow agouti (Avy) mice. Methyl donor supplementation during pregnancy 

increased DNA methylation and altered body composition, and metabolism of 

offspring of Avy mice (Wolff et al., 1998; Waterland and Jirtle, 2003; Dolinoy, 

2008; discussed in Section 1.1.1.2). 

Studies in ruminants have also shown that methyl donor availability during the 

periconceptional period can induce epigenetic changes in offspring.  Relevant 

reductions of methionine and other 1C metabolites in the diet of pregnant ewes 

led to hypomethylation of 88% of loci in offspring fetal liver. As 53% of the 

affected loci were specific to males, the observed epigenetic response to low 

methyl group availability appeared to be sex-specific (Sinclair et al., 2007). On 

the contrary, feeding methyl rich diets to pregnant ewes increased methylation 

and altered the expression of imprinted genes, insulin like growth factor 2 

receptor (IGF2R) and H19, in fetal tissues (Lan et al., 2013). Imprinted genes 

are differentially methylated to allow parent-of-origin-specific monoallelic 

expression during fetal development. It follows that this subset of genes are 

particularly sensitive to aberrant methylation during periconceptional 

development (Kappil et al., 2015). It is, therefore, anticipated that exposure to 

nutritional insult (e.g. low methionine), non-physiological in vitro culture 

environments and embryo manipulations during ART may interfere with the 

establishment and/or maintenance of genomic imprinting in gametes and 

preimplantation embryos (Young et al., 1998; Sinclair et al., 2000; Young et al., 

2001; Anckaert et al., 2010; Chen et al., 2013; Chen et al., 2015). 
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The effect of methionine concentration on the methylome of bovine embryos 

remains inconclusive. Peñagaricano and others (2013) reported that feeding 

dairy cattle a marginal difference in maternal dietary methionine (1.89 v 2.43% 

methionine of metabolisable protein) was sufficient to cause significant changes 

to the methylome and transcriptome of Day 7 embryos. The expression of 72% 

of genes that were critical for embryonic development and adult physiological 

function (i.e. immune response) were decreased at the higher methionine intake 

as a likely result of increased DNA methylation at CpG islands (CGIs) in the 

gene promoters (Peñagaricano et al., 2013). Conversely, Acosta et al. (2016) 

found that supplementation of the maternal diet with methionine (0.08% of dry 

matter intake) reduced cytosine methylation in flushed embryos at Day 6.5.  

The addition of methionine (0, 7 and 21 μmol/L) during in vitro culture of bovine 

embryos was found to have no significant effect on cytosine methylation at Day 

8 (Bonilla et al., 2010). However, the addition of the downstream product of 

methionine, SAM (2 μmol/L), during culture increased cytosine methylation in 

Day 8 bovine blastocysts (Shojaei Saadi et al., 2016). Similarly, the inhibition of 

methionine by the addition of methionine antagonist, ethionine (1-10 mmol/L), 

during culture reduced cytosine methylation in blastocysts (Ikeda et al., 2012). 

These inconsistent findings are likely to be due to different methodologies 

employed to measure 5mC methylation in embryos. A large number of studies 

have measured the intensity of fluorescence after labeling with anti-

methylcytosine (Dean et al., 2001; Beaujean et al., 2004; Park et al., 2007; 

Bonilla et al., 2010; Dobbs et al., 2013; Acosta et al., 2016). Whilst 

immunostaining techniques are descriptive and can provide information about 

overall methylation dynamics, they are only semi-quantitative and cannot 

provide sequence-specific information about differentially methylated regions 

(DMRs). Thus, determination of the effect of methionine supplementation on 

specific DNA methylation patterns in developmentally important genes is 

required in order to understand the functional ramifications for offspring health 

and physiology.  

Based on the observation that altering methionine within physiological ranges 

during IVP affected the gross morphology of bovine blastocysts (Chapter 3), it 

was hypothesised that a subtle reduction in physiological methionine during IVP 

would cause epigenetic changes in preimplantation embryos with implications 

for altered gene expression. The present study, therefore, sought to compare 

the cytosine (CpG) methylation status in the ICM and TE of Day 8 bovine 
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embryos following culture in physiologically high (50 μmol/L) and low (10 

μmol/L) concentrations of added methionine using reduced representation 

bisulphite sequencing (RRBS), a ‘gold standard’ method that provides genome-

wide coverage of dense areas of CpGs methylation (e.g. CGIs) with single-base 

resolution (Chatterjee et al., 2012; Guo et al., 2015).  

4.2 Materials and methods 

 In vitro embryo production  

Full details of IVP procedures for bovine embryos were as described in Section 

3.2.1.2 using custom-made media supplemented with high (50 µmol/L) and low 

(10 µmol/L) added methionine (Appendix 3.8). As DNA methylation can be 

influenced by stage of development, only Day 8 blastocysts that were ≥Stage 7 

(i.e. late expanded, hatching or hatched) were selected for RRBS analysis from 

each treatment. DNA methylation can also be influenced by embryo sex. As 

reported in Chapter 3 (Section 3.3.2.4.3), a statistically similar proportion of 

male blastocysts developed in each physiological concentration (Figure 3.14A). 

As blastocysts produced for RRBS analysis were not sexed it was assumed that 

similar proportions of male and female blastsocysts were used. It was also 

confirmed that stage of development on Day 8 was not influenced by embryo 

sex. Following culture in 50 µmol/L of methionine, 90% of male and 83% of 

female blastocysts were ≥Stage 7. At 10 µmol/L, 67% of male and 67% of 

female blastocysts were ≥Stage 7.  

 Immunodissection of bovine blastocysts  

Inner cell mass (ICM) and trophectoderm (TE) cells were isolated from Day 8 

bovine blastocysts (Stage 7-9, Grade 1 and 2) by immunodissection based on 

the method of Bogliotti et al. (2018) with the following modifications. The zona 

pellucida was removed using Pronase (0.5% w/v) and embryos were washed 

twice in warm PVP/PBS (0.1% w/v) before incubation in SOF HEPES holding 

medium containing 50% anti-bovine serum (Jackson ImmunoResearch) at 38°C 

for 1 h. Following incubation, blastocysts were washed and incubated in SOF 

HEPES holding medium containing 50% guinea pig complement (Innovative 

Research) at 38°C for 3-5 min. Following an additional wash, the ICM was 

isolated from the TE using a small-bore glass pipette. Matched ICM and TE cell 
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samples were pooled by lineage (n=5; Table 4.1) and transferred to a PCR tube 

in 1 μL sterile PBS. Cell samples were kept on dry ice until storage at -80oC until 

DNA methylation analysis by reduced representation bisulphite sequencing 

(RRBS).  

Table 4.1 Immunodissected inner cell mass (ICM) and trophectoderm (TE) cells 
isolated from Day 8 bovine blastocysts were pooled (n=5) by lineage for DNA 
methylation analysis.  

 

Whole embryos (n=5) cultured in each physiological methionine concentration (50 and 
10 μmol/L) immunodissected. Three experimental replicates. Matched ICM and TE 
samples were pooled. Total number of blastocysts (n=30). 

 Validation of cell lineage purity  

To assess the purity of the immunodissected cell samples, the relative 

expression of trophectoderm-specific marker, GATA3 (Ozawa et al., 2012), was 

measured in pooled ICM and TE samples by qPCR. This validation experiment 

was conducted over 5 replicates (each replicate constituted pooled ICM (n=15) 

and pooled TE (n=15) samples). Whole blastocysts (n=40) were used for 

optimisation and validation of the qPCR method.  

4.2.3.1 RNA extraction and cDNA synthesis  

Poly A+ RNA was extracted from pooled whole blastocysts (n=40), pooled ICM 

(n=15) and pooled TE (n=15) using Dynabeads mRNA DIRECT kit (Invitrogen 

Ltd., Paisley, UK) and reverse transcription to cDNA was achieved using 

QuantiTect RT kit (Qiagen Ltd), as described previously (Section 3.2.1.3.2 and 

3.2.1.4). Following DNase treatment using the kit, 1 µL was removed for -RT 

reaction and the equivalent volume of water was added before RT. Blastocyst, 

ICM and TE cDNA was diluted to a final concentration of 0.1 blastocyst/µL, 0.25 

ICM/µL and 0.25 TE/µL, respectively.  

Methionine (µmol/L)

50 10

Rep ICM TE ICM TE

1 5 5 5 5

2 5 5 5 5

3 5 5 5 5
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4.2.3.2 Primer design  

Primers for GATA3 and eight reference genes were designed using Primer 

Express software version 3.0.1 (Applied Biosystems) and were supplied by 

Eurofins Genomics (Ebersberg, Germany; Table 4.2). Primers were tested 

using bovine liver cDNA and PCR products were sequenced by Source 

Bioscience (Nottingham, UK). Calibration standard curves constituting a 5-fold 

dilution series of blastocyst cDNA were conducted to verify assay linearity and 

efficiency of amplification (Appendix 4.1). Data were normalised to the four most 

stable reference genes (YWHAZ, TBP, H2AFZ, B2M) using Reference Gene 

Selector tool in CFX Maestro™ Software based on GeNorm algorithm (Figure 

4.1). Reference gene selection was confirmed using geNorm software based 

on geNorm M and V values (Appendix 4.2).   

Table 4.2. Primers used for the detection of trophectoderm-specific marker, 
GATA3, and reference genes in bovine blastocysts and immunodissected 
embryonic cell samples.  

 

Gene Primer sequence (5’-3’) 
Product 

(bp) 
NCBI  

accession no. 

GATA3 
FP AACATCGACGGTCAAGGCAA 

217 NM_001076804.1 
RP GGTGGATGGACGTCTTGGAG 

YWHAZ 
FP GATATCTGCAATGATGTACTGTCTCTTTT 

107 NM_174814.2 
RP CGGTAGTAGTCTCCTTTCATTTTCAA 

TBP 
FP GAATATAATCCCAAGCGTTTTGCT 

103 NM_001075742.1 
RP TGGCTCCTGTGCACACCAT 

H2AFZ 
FP GCAGGAAATGCATCGAAAGAC 

126 NM_174809.2 
RP AATGACACCACCACCAGCAATT 

B2M 
FP ATCCAGCGTCCTCCAAAGATTC 

132 NM_173893   
RP CTCCCCATTCTTCAGCAAATCG 
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Figure 4.1 Reference gene stability plot using Reference Gene Selector Tool in 
CFX Maestro™ software. 

Green: Reference genes are stable and represent minimal variation across samples 
tested. Any genes can be selected from this group for use as reference genes. Yellow: 
Reference genes are not ideally stable and represent moderate variation across 
samples tested. At least three of these reference genes can be used for study analysis.  

 

4.2.3.3 Quantitative real-time PCR 

The qPCR reaction contained 10 μL QuantiNova® SYBR® Green (Qiagen Ltd.), 

1 μL each primer, 2 μL cDNA template and 6 μL RNase free water. A negative 

no template control sample was run for each tested primer set using water 

instead of cDNA template, and minus reverse transcription (–RT) controls were 

tested to confirm the absence of gDNA. Each 20 μL sample was analysed in 

duplicate using low profile, non-skirted, clear 96-well plates in the Bio-Rad 

thermal cycler CFX96 Real-Time System (Bio-Rad, Hercules, CA, USA). The 

amplification programme included enzyme activation at 95°C for 2 min, followed 

by 40 cycles of 2-step cycling: 95°C for 5 s (denaturation) and 60°C for 10 s 

(annealing and extension). 

 DNA methylation analysis 

4.2.4.1 Reagents  

Unless otherwise stated, the following reagents were purchased from Sigma-

Aldrich. Lysis buffer: Tris-HCl (1 M), EDTA (50 mmol/L), Triton X-100, KCl (1M), 

Nuclease-free PCR water, and Protease (20 mg/mL; Qiagen). Msp1 digest 

master mix, End-repair/dA tailing master mix and adapter ligation mix: Msp1 
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restriction endonuclease (Thermo Fisher Scientific), Tango buffer (Thermo 

Fisher Scientific), unmethylated λ-DNA (Promega), Klenow fragment, exo- 

(NEB), dNTP set (NEB), Blunt-end/TA DNA ligase master mix (NEB), 

Methylated adaptors NEBNext® oligo for Illumina methylated adaptor index 

primer set 1 (NEB) and USER™ enzyme (NEB). tRNA stock: yeast tRNA, 

Binding buffer. Purification: Zymo DNA clean and concentrator kit (Zymo), 

Buffer EB (10 mmol/L Tris; Qiagen). Bisulphite conversion: EZ DNA 

Methylation-Gold™ kit (Cambridge Biosciences). PCR Library Preparation: 

KAPA KiFi HS Uracil+ master mix (Roche), absolute ethanol (Thermo Fisher 

Scientific), MinElute PCR kit (Qiagen), MinElute gel extraction kit (Qiagen), 50 

bp marker (Thermo Fisher Scientific), 100 bp marker (Promega) and Qubit HS 

dsDNA high-sensitivity assay kit (Thermo Fisher Scientific). 

4.2.4.2 Reduced Representation Bisulphite Sequencing (RRBS) 

Library preparation for RRBS described by Guo et al. (2015) was optimised in 

our laboratory by Dr. WY Kwong. Stock and working solutions were prepared 

as described in Appendix 4.3. To improve the suitability of RRBS for a low 

number of embryonic cells and to minimise the loss of DNA, the following 

experimental steps were integrated into a single-tube reaction using 1.5 mL 

LoBind Eppendorf tubes: 

 gDNA purification 

Pooled ICM and separately pooled TE cell samples were thawed and briefly 

centrifuged. Four μL lysis buffer containing protease was added to cell samples 

to release gDNA. Tube contents were mixed and centrifuged before incubation 

at 50oC for 3 h and then 75oC for 30 min to inactivate the protease enzyme.  

 Restriction enzyme (Msp1) digestion  

Each sample was centrifuged once again before the addition of 13 μL Msp1 

digestion mixture containing restriction endonuclease enzyme. Unmethylated λ-

DNA (8 pg/μL) was spiked into all samples before MspI digestion to monitor the 

rate of bisulphite conversion. The digestion mixture was incubated at 37oC for 

3 h and then 80oC for 20 min to inactivate Msp1 before another brief 

centrifugation and storage on ice.  
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 End-repair and dA tailing  

Two μL end-repair/dA tailing master mix containing Klenow fragment, end-

repair dNTP mix and Tango buffer (1X) was added to the Msp1 digestion 

mixture and incubated at 37oC for 40 min. This was followed by an incubation 

at 75oC for 15 min to inactivate DNA Polymerase 1, Klenow fragment. Tubes 

were briefly centrifuged and kept on ice.  

 Adapter ligation  

Samples were incubated at 20oC for 20 min with 5 μL adapter ligation mix 

containing 20-fold diluted methylated adapter. Next, 3 μL USER™ (Uracil-

Specific Excision Reagent enzyme) was added to each sample. The contents 

were mixed and centrifuged before incubation at 37oC for 15 min. Samples were 

centrifuged again and kept on ice. Binding buffer containing 10 ng/μL tRNA was 

added to DNA samples and purification was achieved using Zymo DNA clean 

and concentrator kit. Samples were eluted in 10 μL EB buffer in a 0.2 mL PCR 

tube and stored at -80oC until bisulphite conversion. 

 Bisulphite conversion  

Bisulphite conversion of DNA was achieved using the EZ DNA-Methylation 

Gold™ kit according to the manufacturer’s protocol. First, 10 μL water was 

added to the DNA sample (to achieve a final volume of 20 μL), followed by 130 

μL CT Conversion Reagent. The DNA sample contents were mixed and 

centrifuged prior to bisulphite conversion. The double-stranded DNA was 

denatured during incubation at 98oC for 10 min, then at 64oC for 2.5 h to ensure 

full bisulphite conversion, with a final hold at 4oC. All steps were performed in a 

PCR thermocycler. 

Bisulphite converted DNA was subjected to on-column desulphonation and 

purification using Zymo-Spin™ column technology using 10 ng tRNA as a 

protective carrier. Briefly, M-Binding Buffer (600 μL) plus the converted DNA 

sample were loaded into a Zymo-Spin™ IC column placed inside a collection 

tube. The contents were mixed by gentle inversion before centrifugation for 30 

s at maximum speed. The flow-through was discarded. Next, 100 μL M-Wash 

Buffer was added to the column and the contents were centrifuged for 30 s at 

maximum speed. M-Desulphonation Buffer (200 μL) was added to the column 
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and left to incubate at room temperature for 15-20 min. Following incubation, 

the contents were centrifuged for 30 s, 200 μL M-Wash Buffer was added to the 

column and the contents were centrifuged once more. This wash step was 

repeated. The column was placed in a 1.5 mL microcentrifuge tube and 10 μL 

EB buffer was added directly to the column matrix before centrifugation for 30 s 

to elute the DNA. Bisulphite treated DNA samples were stored at -80oC until 

use.  

i) RRBS Library Preparation  

The purified DNA was subjected to amplification by PCR using the RRBS 

Library Preparation master mix containing KAPA HiFi uracil+ DNA polymerase. 

The amplification conditions were as follows: 95oC for 45 s, followed by 16 

cycles of 15 s at 95°C, 60°C for 30 s, and 72°C for 1 min. PCR products were 

purified using the MiniElute PCR kit (Qiagen) and DNA was eluted in 12 μL EB 

buffer. The speed-vac was used for 5 min to remove residual ethanol and 10 μL 

water was added to each DNA sample.  

4.2.4.3 Library quality control (QC)  

Following PCR enrichment, 1 μL purified PCR product was quantified using the 

Qubit HS dsDNA kit and stored at -80oC. The remaining sample volume was 

sent to Edinburgh genomics (University of Edinburgh, UK) for quality control, 

pooling and next-generation sequencing. DNA concentration, quality and 

integrity were confirmed using the Agilent TapeStation. Libraries were pooled 

and amplified DNA fragments of 200-600 bp were size-selected and primer 

adapters removed using the BluePippin system. 

 Multiplex sequencing  

The final 12 quality-ensured libraries were multiplexed and sequenced on one 

lane of an Illumina NovaSeq™6000 (S1 flow cell) to achieve an average of ~78 

million 150 bp paired-end reads. Data were de-multiplexed with bcl2fastq 

conversion software and quality control was conducted using Sequencing 

Analysis Viewer (SAV) and FASTQC (Babraham Bioinformatics) software. 

Sequences met the standard Illumina quality criteria of cluster density, pass 

filter and quality scores (Q) and were converted to FASTQ files using standard 

Illumina pipeline (Aspera software).  
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4.2.4.4 Bioinformatic Data Analysis 

Raw paired-end FASTQ files were trimmed to remove adapter sequences and 

low quality bases using skewer with commands (-Q 20, -q 3) 

(https://sourceforge.net/projects/skewer; Table 4.3). Clean reads were aligned 

to the Bos taurus reference genome (Bta.ARS-UCD1.2, April 2018) using 

bisulphite read mapper with default settings (Bowtie2; Krueger and Andrews, 

2011). Duplicate reads were marked using MarkDuplicates (Picard tools) and 

methylation values extracted using bismark_methylation_extractor module 

(commands --no_overlap --paired-end). Methylation values were extracted from 

output Sequence Alignment Map (SAM) files using methylKit v1.4.0 

(nolap=TRUE, mincov=5, minqual=20; Akalin et al., 2012). To avoid 

identification of methylation differences that are related to underlying breed 

differences, bases at known variant positions (SNPs) were removed.  

Table 4.3  Summary of Bismark final alignment report.  

Cell lineage ICM  TE 

Methionine 

(µmol/L) 
50  10  50  10 

Replicate 64,582,554a  

18,826,935b 

(29.2)c 

 70,125,142a 

20,930,071b 

(29.8)c 

 83,302,871a  

23,538,817b 

(28.3)c 

 102,310,417a 

31,671,654b 

(31.0)c 

1 
   

2 63,884,223a  

18,968,032b 

(29.7)c 

 

82,902,050a 

25,559,151b 

(30.8)c 

 

77,140,135a 

21,008,778b 

(27.2)c 

 

83,057,058a 

24,657,595b 

(29.7)c 

3 89,320,723a  

26,120,363b 

(29.2)c 

 

78,350,625a 

22,750,802b 

(29.0)c 

 

59,062,149a 

17,074,286b 

(28.9)c 

 

81,772,406a 

23,879,134b 

(29.2)c 

Total sequence pairs read following quality trimminga. Number of paired alignments with 
unique best hitb. Mapping efficiency (%): measure of the sequence pairs that map 
uniquely to the reference genomec. 

Differentially methylated sites (DMS) between groups were identified using the 

Chi-squared test in methylKit and annotated using the genomation package 

(Akalin et al., 2012; Akalin et al., 2015). Due to the inherent level of variability 

of microarray-based hybridisation techniques that are associated with sample 

preparation, loading, microarray probes and detection, it is common to introduce 

a minimum difference threshold to select out DMS with minimal methylation 

difference between two biological conditions (Du et al., 2010). Therefore, DMS 

results were filtered for ‘in gene/promoter’ to remove intergenic regions, and for 

a ‘minimum difference threshold of 20% methylation’ between experimental 

combinations.   

https://sourceforge.net/projects/skewer
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 Gene set enrichment analysis (GSEA) 

Enrichment of gene ontologies (GO) and pathways using KEGG (Kyoto 

Encyclopedia of Genes and Genomes) was performed using hypergeometric 

tests in the (Not) Ingenuity Pathway Analysis (NIPA) tool 

(https://github.com/ADAC-UoN/NIPA). To narrow the number of genes, a sliding 

window approach was used to identify DMS within candidate genes identified 

within experimental combinations highlighted in Figure 4.2.

https://github.com/ADAC-UoN/NIPA
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Figure 4.2 UpSet R plot demonstrates intersection size between the numbers of differentially methylated sites (DMS) across experimental 
combinations. 

Blue circle: DMS affected by methionine concentration in trophectoderm (TE) only (n=6,421). Red circle: DMS affected by methionine concentration in inner cell 
mass (ICM) only (n=4,926). Purple circle(s): DMS affected by methionine concentration in both embryonic cell lineages (n=1,041).

DMS 10 µmol/L ICMvTE

0

DMS 50 µmol/L ICMvTE

DMS ICM 50v10 µmol/L 

DMS TE 50v10 µmol/L 
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Based on the premise that regulatory regions of the genome that are important 

for gene transcription contain clusters of CpGs (Li and Zhang, 2014), genes that 

possessed ≥5 DMS within a sliding window size of 1 kb were selected for gene 

set enrichment analysis (GSEA). A total of 401 clusters of DMS in 179 genes 

were identified in the ICM, and 614 clusters of DMS in 267 genes within the TE 

(Appendix 4.4). Annotated pathways associated with GO terms, such as 

‘Biological Process’, ‘Cellular Component’ and ‘Molecular Function’, and 

pathways within the KEGG database were identified as significant based on 

functional enrichment of genes with differentially methylated clusters of CpGs 

(differentially methylated sites; DMS). The Benjamini Hochberg procedure 

(Benjamini and Hochberg, 1995) was applied to account for multiple testing. 

Functional categories with FDR ≤0.05 were considered signficant (Appendix 

4.5).  

 IGF2R and AIRN transcript expression  

Bioinformatic data analysis included the identification of DMS within imprinted 

genes documented within the Catalogue of Imprinted Genes (University of 

Ortago, NZ; http://igc.otago.ac.nz/home.html). A differentially methylated 

imprinted gene of relevance to the present study was insulin like growth factor 

2 receptor, IGF2R (discussed later; Section 4.3.2.6). Transcript expression 

analysis was undertaken over four experimental replicates to measure 

expression levels of IGF2R gene and its antisense lncRNA transcript, AIRN, in 

pooled bovine Day 8 blastocysts (n=15 minimum per replicate) that were 

cultured in physiologically high (50 µmol/L added) and low (10 µmol/L added) 

methionine concentrations.  

4.2.5.1 RNA extraction and cDNA synthesis  

RNA extraction and reverse transcription and quantitative real-time PCR was 

performed using the protocol described previously (Sections 3.2.1.3.2 and 

3.2.1.4). Blastocyst cDNA was diluted to a final concentration of 0.75 

blastocyst/µL. 

4.2.5.2 Quantitative real-time PCR 

Primers for IGF2R and AIRN transcripts were designed using NCBI blast 

software and were supplied by Eurofins Genomics (Ebersberg, Germany; Table 

http://igc.otago.ac.nz/home.html
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4.4). Primers were tested using liver cDNA and DNA extracted from bovine 

ovaries (Appendix 4.6). PCR products were sequenced by Source Bioscience 

(Appendix 4.7). Calibration standard curves constituting a 5-fold dilution series 

of liver cDNA (Appendix 4.8) and a 3-fold dilution series of blastocyst cDNA 

(Appendix 4.9) were conducted to verify assay linearity and efficiency of 

amplification. Quantitative real-time PCR was conducted as described above 

(Section 4.2.3.3) and data were normalised to TBP and B2M reference genes 

using Reference Gene Selector tool in CFX Maestro™ Software based on 

GeNorm algorithm (Section 4.2.3.2).  

Table 4.4 Primers used for the detection of IGF2R and AIRN in bovine 
blastocysts and immunodissected embryonic cell samples. 

 Statistical data analysis 

Statistical analyses of gene transcript expression were conducted using ANOVA 

within the Genstat statistical package (20th Edition, VSN International, 2011). 

Transcript expression data are reported as means with SEM and presented as 

histograms using GraphPad Prism 8 software. Differentially methylated sites 

(DMS) between treatments and sliding windows were identified using the Chi-

squared test. Gene ontology terms and pathways with an FDR adjusted P-value 

≤0.05 were deemed statistically significant. Mean methylation (%) of genes was 

determined using linear mixed model (residual maximum likelihood; REML) 

analysis within Genstat. The fixed model included the terms ‘Replicate’, 

‘Lineage’ and ‘Methionine’ (Rep+Lineage*Met) for comparisons of differential 

methylation between embryonic cell lineages at two physiological methionine 

concentrations. The random model included individual DMS. These data are 

presented as means with SEM. 

Gene Primer sequence (5’-3’) 
Product 

(bp) 
NCBI  

accession no. 

IGF2R 

FP GCAGCCTGTATACCCATCCC 

152 NM_174352.2 

RP ATCAAACACGTACCCGCTGT 

AIRN 

FP GTGATCAACCTGGATTGCTGC 

185 NR_104052.1 
RP AAGCCTGGGATTCTGACTGG 
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4.3  Results and Discussion  

 Validation of cell lineage purity  

The immunodissection technique offers the advantage of recovering ICM cells 

from blastocysts without mechanical damage. However, due to the nature of the 

technique there is a risk of TE contamination in ICM samples (Handyside and 

Barton, 1977). To validate cell lineage purity in ICM cell samples used for RRBS 

analysis, pooled ICM were examined for TE contamination by measuring the 

relative expression of TE-specific marker, GATA binding protein 3 (GATA3), in 

immunodissected ICM and TE cell samples.  

In the bovine embryo, lineage commitment towards TE cell fate is under the 

control of transcription factors; YAP1, TEAD4, CDX2 and GATA3 (Ozawa et al., 

2012; Negrón-Pérez et al., 2017). As a TE regulator that functions downstream 

of TEAD4 and in parallel with CDX2 (Wu et al., 2016), GATA3 is reported to be 

expressed to a greater extent (2.69-fold) in the bovine TE than in the ICM and, 

therefore, can be considered a reliable marker of TE lineage (Ozawa et al., 

2012). In the present study, qPCR results showed a 5.27-fold difference in 

GATA3 expression between ICM and TE cell lineages, with relative expression 

values of 0.18 ± 0.015 and 0.95 ± 0.160 for ICM and TE, respectively (P=0.004; 

Figure 4.3B).  

 

Figure 4.3 Enrichment of bovine embryonic cell populations following 
immunodissection.  

Microscopy image of immunodissected inner cell mass (ICM) and trophectoderm (TE) 
cells from Day 8 blastocyst (A). Relative expression of TE marker, GATA3, in 
immunodissected ICM and TE (n=15 cell samples pooled over four experimental 
replicates; P=0.004). Relative expression data analysed by ANOVA and presented as 
mean ± SEM (B). 

ICM

TE

A. B.
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A similar pattern of enrichment was observed following immunosurgery in 

murine blastocysts. Quantitative RT-PCR analysis showed that the ICM 

expressed significantly less Gata3 mRNA levels relative to the whole blastocyst 

(Home et al., 2009). Taken together, these findings confirm that Gata3/GATA3 

expression is selectively upregulated within the TE but not the ICM lineage in 

bovine and murine blastocysts.  

Whilst the expression of GATA3 was significantly higher for TE than ICM, there 

are explanations for a reduced enrichment of the primary embryonic cell 

populations following immunodissection: (i) GATA3 is expressed at the morula 

stage of embryo development, thus, there may be residual transcript expression 

within the ICM on Day 8 (Home et al., 2009); (ii) the small amount of GATA3 

transcript detected in the bovine ICM could be due to polar TE cells adhering to 

the ICM; and, (iii) the immunodissection technique involves complement-

mediated lysis of antibody-coated TE cells, therefore, TE cells are lysed whilst 

ICM cells remain intact (Kurome et al., 2018; Figure 4.3A). Lysed TE cells can 

be difficult to recover and the cytotoxic effect of immunodissection on TE cells 

could lead to mRNA degradation. However, because DNA is more stable than 

RNA (Wang and Kool, 1995), and because DNA methylation is stable at room 

temperature (Vilahur et al., 2013), it was hypothesised that the recovery of DNA 

for methylation analysis was unaffected by the immunodissection technique.  

 DNA methylation analyses by RRBS  

4.3.2.1 Mean methylation (%) 

Reduced representation bisulphite sequencing (RRBS) analyses demonstrated 

a significant effect of methionine concentration, within physiological limits (50 v 

10 μmol/L added methionine), on the abundance of CpG methylation within the 

bovine ICM and TE (P<0.001). However, there was no significant difference in 

CpG methylation between the two embryonic lineages (P=0.836; Figure 4.4A). 

Cytosine methylation can also occur at CHG and CHH sites throughout the 

genome, where ‘H’ represents a cytosine (C), thymine (T) or adenine (A) 

nucleotide (de Montera et al., 2013).  As discussed earlier (Section 1.5.1.2), 

non-CpG methylation has been detected in mammalian oocytes (Guo et al., 

2014b; Tomizawa et al., 2011), human embryonic stem cells (Lister et al., 2009), 

and early bovine embryos, and follows a similar enrichment pattern to CpG 

methylation located within CGIs and gene bodies (Jiang et al., 2018). The 
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present study detected a relatively low abundance of non-CpG methylation in 

bovine embryonic cells compared to that of CpG methylation. CHG and CHH 

methylation was 8-fold and 42-fold lower, respectively (Figure 4.4B, Figure 

4.4C).  

The abundance of non-CpG methylation was unaffected by methionine 

concentration and did not differ between the two primary cell lineages (Figure 

4.4). As the primary site of DNA methylation that accounts for up to 80% of the 

total DNA methylation content in mammalian cells (Lim and Maher, 2010; Ziller 

et al., 2011), cytosine methylation in the CpG dinucleotide context is considered 

the most relevant methylation mark and is the focus of the forthcoming 

discussion.  
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Figure 4.4 Low methionine significantly reduced mean cytosine methylation (%) in inner cell mass (ICM) and trophectoderm (TE).  

Mean methylation (%) in CpG (P<0.001) (A) CHG (P= 0.924) (B) and CHH (P=0.253) context (C). CHG and CHH are cytosine methylation sites where ‘H’ 
represents a cytosine (C), thymine (T) or adenine (A) nucleotide. Data presented as mean ± SEM.  
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4.3.2.2 Directional methylation  

Table 4.5 shows the number of sites (CpGs), transcripts and genes that were 

differentially methylated between the ICM and TE following embryo culture in 

each physiological methionine concentration (50 v 10 μmol/L), and those that 

were differentially methylated within each cell lineage (ICM v TE) when the 

methionine concentration was altered within physiological ranges. There was a 

greater number of differentially methylated sites (DMS) between the ICM and 

TE following culture in the high methionine concentration than in the low 

concentration (12,213 v 8,088 for 50 μmol/L and 10 μmol/L, respectively). It 

follows that the number of differentially methylated transcripts and genes was 

also increased in the high methionine concentration (Table 4.5). Considering 

the role of methionine as the direct precursor to the methyl donor, SAM, it was 

not surprising that culturing embryos at the higher methionine concentration 

yielded a greater percentage of DMS with increased methylation (54.6% 

hypermethylated v 45.4% hypomethylated); while culturing under low 

concentrations yielded a greater percentage of DMS that had decreased 

methylation (41.6% hypermethylated v 58.4% hypomethylated). 

Table 4.5 A count of differentially methylated sites (DMS), genes and transcripts, 
and directional methylation for each experimental combination (%). 

 

Arrows represent direction of methylation; hypermethylation (↑) and hypomethylation 
(↓). Abbreviation(s): Differentially methylated site, DMS; inner cell mass, ICM; 
trophectoderm, TE. 

A greater number of DMS, transcripts and genes were identified in the TE than 

within the ICM lineage when methionine was reduced from 50 to 10 μmol/L 

(Table 4.5). This epigenetic asymmetry may be explained by the cell lineage-

specific DNA methylation profile that is established within the Day 8 bovine 

blastocyst. During the wave of de novo methylation that coincides with the first 

Methionine (µmol/L) Cell lineage

50 10 ICM TE

Variable ICMvTE ICMvTE 50v10 50v10

DMS count 12,213 8,088 9,991 13,123

↑ Methylation 6,671 (54.6) 3,365 (41.6) 2,449 (24.5) 2,361 (18.0)

↓ Methylation 5,542 (45.4) 4,723 (58.4) 7,542 (75.5) 10,762 (82.0)

Transcripts 1,773 1,427 1,576 1,743

Genes 1,768 1,425 1,573 1,738
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cell lineage specification event (Figure 3.1), TE-specific methylation takes place 

within the bovine preimplantation embryo culminating in a higher degree of 

methylation within this extraembryonic cell lineage (Hou et al., 2007; Nakanishi 

et al., 2012; Dobbs et al., 2013). More than 75% of DMS were hypomethylated 

in both cell lineages following culture in low methionine (Table 4.5). In support 

of gross phenotypic observations reported in Chapter 3, the molecular results 

presented herein demonstrate that subtle alterations to physiological 

methionine concentration during bovine IVP can epigenetically modify DNA 

methylation in both primary cell lineages of the Day 8 blastocyst.  

4.3.2.3 Distribution of DMS  

The distribution of DMS across genomic regions (promoter, exon, intron, CGI 

and shore) was similar for each experimental combination analysed. Of the 

DMS identified, 6-7% were located in gene promoters, 30-32% were located in 

exons and 62-64% were located in introns (Figure 4.5A). Approximately 54% of 

DMS were located in CGIs and ~46% were located in CGI shores (Figure 4.5B). 

Other studies report a similar distribution pattern of CpG methylation within 

genomic regions in mammalian cells. For example, Wang and Karmideen 

(2019) used RRBS to map the methylome within porcine testis and found that 

the lowest percentage of methylated CpGs were located in gene promoters 

(0.33%), followed by exons (1.71%), introns (5.95%) and intergenic regions 

(92.01%). The authors also measured more methylated CpGs in CGIs (36.86%) 

than in CGI shores (21.65%). This common distribution pattern is a 

consequence of basic gene anatomy and the restriction enzyme-based RRBS 

method. The utility of the Msp1-based approach is limited to a specific subset 

of CpG sites in the genome that are predominantly found in promoters and 

CGIs. These regions are, therefore, selectively enriched whilst others (i.e. CGI 

shores) are under-represented (Smith et al., 2009; Doherty and Couldrey, 

2014). Nevertheless, the RRBS method provides sufficient information to map 

the global effect of methionine during culture on CpG methylation within the 

primary cell lineages of the bovine preimplantation embryo. 



University of Nottingham  Chapter Four 

137 

 

 

Figure 4.5 Distribution of differentially methylated sites (DMS) across genomic 
regions for each experimental combination. 

Promoter, Intron, Exon (A). CpG island (CGI) and CpG island shore (B). 
Abbreviation(s): Differentialy methylated site, DMS; inner cell mass, ICM; 
trophectoderm, TE.   

Distribution of DMS: intron, exon, promoter

50 µmol/L ICMvTE
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Culturing bovine embryos under low physiological concentrations of methionine 

caused hypomethylation of CpGs within all genomic regions (Table 4.6). The 

effect of CpG methylation on gene expression depends on the genomic context 

in which it occurs (Song et al., 2005; Jones, 2012). In the traditional view, gene 

promoter methylation has been associated with transcriptional silencing (Niesen 

et al., 2005). In recent years, other genomic regions have been recognised to 

play critical roles in the regulation of gene transcription. For instance, intragenic 

methylation can mark intron-exon boundaries, thereby influencing the regulation 

of alternative transcription start sites, exon usage and splicing 

(Yegnasubramanian et al., 2011; Messerschmidt et al., 2014). Differentially 

methylated regions (DMRs) are distributed in various functional gene elements, 

including CGIs, repetitive sequences, non-coding RNAs, exons and introns. 

Indeed, 50% of intronic DMRs appear to affect transcription elongation. As 

introns are regions rich in enhancers, intronic methylation can impact 

transcription factor binding and gene expression (Brenet et al., 2011; Zhao et 

al., 2015; Luo et al., 2018; Anastasiadi et al., 2018). It is, therefore, important to 

investigate the effect of methionine on CpG methylation within various functional 

regions, such as DMRs within genes of interest (discussed later; Section 

4.3.2.6).
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Table 4.6 Distribution and direction of differentially methylated sites (DMS) for 
each experimental combination (%) 

 

Arrows represent direction of methylation; hypermethylation (↑) and hypomethylation 
(↓). Abbreviation(s): CGI, CpG island; ICM, inner cell mass; TE, trophectoderm.

Methionine (µmol/L) Cell lineage

50 10 ICM TE

Region ICMvTE ICMvTE 50v10 50v10

Promoter 931 488 656 950

↑ Methylation 557 (59.8) 198 (40.6) 190 (29.0) 163 (17.2)

↓ Methylation 374 (40.2) 290 (59.4) 466 (71.0) 787 (82.8)

Exonic 3,951 2,592 3,322 4,372

↑ Methylation 2,177 (55.1) 1,120 (43.2) 703 (21.2) 723 (16.5)

↓ Methylation 1,774 (44.9) 1,472 (56.8) 2,619 (78.8) 3,649 (83.5)

Intronic 8,082 5,391 6,495 8,655

↑ Methylation 4,421 (54.7) 2,227 (41.3) 1,660 (25.6) 1,592 (18.4)

↓ Methylation 3,661 (45.3) 3,164 (58.7) 4,835 (74.4) 7,063 (81.6)

CGIs 3,536 2,422 3,053 1,709

↑ Methylation 1,719 (48.6) 907 (37.4) 697 (22.8) 354 (20.7)

↓ Methylation 1,817 (51.4) 1,515 (62.6) 2,356 (77.2) 1,355 (79.3)

CGI shores 2,962 2,018 2,364 2,394

↑ Methylation 1,732 (58.5) 906 (44.9) 562 (23.8) 421 (17.6)

↓ Methylation 1,230 (41.5) 1,112 (55.1) 1,802 (76.2) 1,973 (82.4)
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4.3.2.4 Enriched pathways and genes 

Gene set enrichment analysis (GSEA) revealed Gene Ontology (GO) terms and 

KEGG pathways that were significantly enriched (FDR <0.05) with differentially 

methylated genes between the two physiological methionine concentrations (50 

v 10 µmol/L) during bovine embryo culture. Genes harbouring clusters of ≥5 

DMS (within 1 kb) were analysed (ICM = 179 genes, TE = 267 genes; Appendix 

4.4). A total of 121 GO terms and 30 KEGG pathways containing genes with 

DMS clusters were significantly enriched in the ICM, and a total of 144 GO terms 

and 96 KEGG pathways containing DMS clusters were significantly enriched in 

the TE (Appendix 4.5). Due to the greater number of DMS, transcripts and 

genes identified in the TE cell lineage than in the ICM (Table 4.5), it is not 

surprising that a greater number of enriched terms and pathways were identified 

within the TE. The top 10 most statistically significant terms and pathways 

enriched within the ICM and TE are presented in Figure 4.6 to 4.9. 

The most significant terms/pathways enriched within the ICM (FDR=0.0002) 

were ‘Regulation of JNK cascade’, ‘MAP-kinase scaffold activity’ and 

‘Phosphatidylinositol signalling system’ (Figure 4.6, Figure 4.7). Collectively, 

these pathways are involved in cellular processes during embryo development, 

including cell growth, migration, invasion and apoptosis (Zhao et al., 2016; Zeke 

et al., 2016). In the TE, the most significant terms/pathways (FDR=0.0001) were 

associated with cellular transport, including ‘Calcium ion transmembrane 

transport into cytosol’, ‘Secretory granule membrane’ and ‘Glutamate-gated 

calcium ion channel activity’ (Figure 4.8, Figure 4.9).
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Figure 4.6 Top 10 significantly enriched Biological Process (A) and Cellular Component (B) Gene Ontology (GO) terms in the bovine inner cell mass 
(ICM) when methionine concentration is reduced within physiological range during IVP.  
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Figure 4.7 Top 10 significantly enriched Molecular Function Gene Ontology (GO) terms (A) and KEGG Pathways (B) in the bovine inner cell mass 
(ICM) when methionine concentration is reduced within physiological range during IVP. 
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Figure 4.8 Top 10 significantly enriched Biological Process (A) and Cellular Component (B) Gene Ontology (GO) terms in the bovine trophectoderm 
(TE) when methionine concentration is reduced within physiological range during IVP. 
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Figure 4.9 Top 10 significantly enriched Molecular Function Gene Ontology (GO) terms (A) and KEGG Pathways (B) in the bovine trophectoderm 
(TE) when methionine concentration is reduced within physiological range during IVP. 

Ionotropic glutamate 

receptor activity

Phosphatidylinositol 

phospholipase C activity

Ephrin receptor activity

RNA polymerase I activity

Transmembrane-ephrin

receptor activity

Mitogen-activated protein 

kinase binding

O-methyltransferase activity

NMDA glutamate receptor activity

Glutamate-gated calcium 

ion channel activity

MAP-kinase scaffold activity

0.0 2.0 4.0 6.0

Enrichment (-log10 p-value)

Gene count

2

A. Molecular Function GO (TE) B. KEGG Pathways (TE) 

bta04114 Oocyte meiosis

bta04012 ErB signaling 

pathway

bta05214 Glioma

bta04724 Glutamatergic 

synapse

bta05223 Non-small cell lung 

cancer

bta04720 Long-term potentiation 

bta01522 Endocrine resistance

bta04914 progesterone-mediated 

oocyte maturation 

bta05205 Proteoglycans 

in cancer

bta04730 Long-term depression

0.0 1.0 2.0 3.0

Enrichment (-log10 p-value)

Gene count

5

7

6

8

9

10
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In GSEA, pathways are statistically tested for over-representation in the 

experimental gene list relative to what is expected by chance. Several common 

statistical tests consider the number of genes detected in the experiment, their 

relative ranking and the number of genes annotated to a pathway of interest. 

Whilst GSEA offers mechanistic insight into large gene lists generated from 

genomics experiments, it is important to acknowledge that they can be biased 

towards well-known pathways and can make unrealistic assumptions about 

statistical independence amongst genes, ignoring the fact that some genes are 

co-expressed and that some pathways share genes in common (Reimand et 

al., 2019). It follows that statistically significant pathways often comprise a small 

number of differentially methylated genes of interest (GOI). Thus, in order to 

avoid testing overly narrow categories, the present study analysed the top five 

GO terms and KEGG pathways that comprised the highest number of 

differentially methylated GOI (Table 4.7, Table 4.8). Interestingly, pathways with 

the greatest number of differentially methylated GOI that were enriched in the 

ICM following altered methionine concentration during embryo culture were 

broadly associated with protein catabolism and autophagy. The term ‘Cytosol’ 

represents 40 GOI and is involved in protein complex formation (Table 4.7B). 

‘Hydrolase’ (18 GOI) and ‘Proteolysis’ (11 GOI) terms relate to the hydrolysis of 

proteins into amino acids by the cleavage of peptide bonds (Table 4.8A, Table 

4.7A).  

In the TE, ‘Protein kinase activity’ (15 GOI) comprised the greatest number of 

differentially methylated GOI (Table 4.8A). Responsible for the transfer of 

phosphates between substrates (Cheng et al., 2011), protein kinases are vital 

for cell cycle progression, apoptosis and differentiation, and are implicated in 

the control of TE development in the mammalian embryo (Kamei et al., 1997; 

Yang et al., 2016). Additional terms included ‘Cytoskeleton’ (13 GOI) and 

‘Pathways in cancer’ (13 GOI; Table 4.7B, Table 4.8B). Similar to cancer cells, 

TE cells exhibit high rates of protein turnover and energy metabolism (Houghton 

et al., 2006; Kelleher et al., 2006). It is, therefore, plausible that differential 

methylation of genes involved in cell proliferation and differentiation provides an 

epigenetic mechanism responsible for the significant effect of methionine on 

TE-specific outgrowth (Chapter 3; Figure 3.13B). Terms and pathways enriched 

in both cell lineages that had the greatest number of differentially methylated 

GOI were ‘Metabolic pathways’ (Table 4.8B) ‘Phosphorylation’ (Table 4.7A) and 

‘Kinase activity’ (Table 4.8A). These terms were related to others that were 
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exclusively enriched in the ICM or TE. This is because GSEA pathway 

boundaries are arbitrary and the identification of multifunctional genes can lead 

to the enrichment of several related pathways (Reimand et al., 2019). 

Genes of interest (GOI) with the highest number of DMS were selected from the 

first GO term and KEGG pathway in order to illustrate the effects of altering 

physiological methionine concentrations during bovine embryo culture on 

specific loci (Table 4.9). Of the pathways presented, dopamine ß-hydroxylase 

(DBH) had the most differentially methylated CpGs (131 DMS and 146 DMS in 

the ICM and TE, respectively). The gene that encodes the DBH enzyme is 

responsible for the conversion of dopamine to noradrenaline, a catecholamine 

that participates in a number of physiological processes, including the stress 

response (LeBanc and Ducharme, 2007). In mice, disruption of the Dbh gene 

impaired cardiac development (Osuala et al., 2012) and cellular immunity 

(Alaniz et al., 1999). Phospholipase C like 2 (PLCL2), a differentially methylated 

gene that features in multiple cellular pathways within the bovine embryo, is 

involved in the regulation of immune function by acting as a negative regulator 

of B cell activation (Takenaka et al., 2003). Whilst Day 8 bovine embryos do not 

yet have an immune system, differential methylation of key genes could be 

viewed as an important preparatory step for subsequent embryonic 

differentiation. 

Genes critical for early mammalian embryo development were differentially 

methylated following reduced methionine. By way of example, negative 

elongation factor A (NEFLA), a member of the NEFL complex that regulates 

RNA polymerase II pausing in gene transcription (Adelman and Lis, 2012), was 

differentially methylated within the bovine ICM (Table 4.9). Recently, Nefla has 

been identified as a maternal factor that can modulate gene regulatory and 

metabolic networks within murine ESCs to reprogramme totipotency (Hu et al., 

2020), perhaps illuminating a potential role of NEFLA in the molecular control 

of developmental potency within the bovine ICM. Wnt family member 7A 

(WNT7A) was another developmentally important gene that was differentially 

methylated within the bovine TE (Table 4.9). WNT7A is an embryokine that 

mediates cell proliferation, cell fate and patterning, thereby increasing the 

competence of bovine embryos to develop to the blastocyst stage (Tríbulo et 

al., 2018) via its involvement in the β-catenin-dependent pathway, and β-catenin 

independent pathways such as PI3K/Akt, RAC/JNK, and extracellular signal-

regulated kinase 5/PPAR-γ (Lan et al., 2019). 
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Table 4.7 Top five enriched Biological Process (A) and Cellular Component (B) Gene Ontology (GO) terms ranked by number of differentially 
methylated genes of interest. 

 

Abbreviation(s): GOI, genes of interest; FDR, false discovery rate; ICM, inner cell mass; TE, trophectoderm. Venn diagram: pathways enriched in ICM (red 
circle); pathways enriched in TE (blue circle); pathways enriched in ICM and TE (purple intersection).  

A. Biological Process GO 

Inner-cell mass

ICM (n=38)
GOI

FDR

(q-value)

GO:0006508 Proteolysis 11 0.0456

GO:0050821 Protein stabilisation 5 0.0060

GO:0006914 Autophagy 4 0.0060

GO:0010468 Gene expression 4 0.0433

GO:0046854 Phosphatidylinositol phosphorylation 3 0.0060

Trophectoderm

TE (n=58)
GOI

FDR

(q-value)

GO:0035556 Intracellular signal transduction 11 0.0326

GO:0010628 Regulation of gene expression 9 0.0207

GO:0018108 Peptidyl-tyrosine phosphorylation 5 0.0148

GO:0048490 Anterograde synaptic transport 3 0.0013

GO:0008089 Anterograde axonal transport  3 0.0024

ICM and TE

(n=29)

GOI
FDR

(q-value)

ICM TE ICM TE

GO:0016310 Phosphorylation 10 13 0.0168 0.0256

GO:0048015 Phosphatidylinositol signalling 4 3 0.0006 0.0096

GO:0043410 Regulation of MAPK cascade 3 4 0.0154 0.0149

GO:0045766 Regulation of angiogenesis 3 4 0.0221 0.0233

GO:0019722 Calcium signalling 2 5 0.0367 0.0025

B. Cellular Component GO 

Inner-cell mass

ICM (n=18)
GOI

FDR

(q-value)

GO:0005829 Cytosol 40 0.0009

GO:0005815 Microtubule organisation 6 0.0069

GO:0030424 Axon 5 0.0359

GO:0062023 Collagen containing ECM 3 0.0179

GO:0005930 Axoneme 3 0.0150

Trophectoderm

TE (n=19)
GOI

FDR

(q-value)

GO:0005856 Cytoskeleton 13 0.0393

GO:0005623 Cell 8 0.0397

GO:0030496 Midbody 6 0.0127

GO:0098978 Glutamatergic synapse 6 0.0391

GO:0031514 Motile cilium 4 0.0165

ICM and TE

(n=10)

GOI
FDR

(q-value)

ICM TE ICM TE

GO:0005770 Late endosome 4 4 0.0089 0.0338

GO:0030667 Secretory granule 3 4 0.0003 0.0001

GO:0070062 Extracellular endosome 3 3 0.0075 0.0268

GO:0030659 Cytoplasmic vesicle 3 3 0.0138 0.0435

GO:1904115 Axon cytoplasm 2 4 0.0149 0.0040

38 29 58 18 10 19
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Table 4.8 Top five enriched Molecular Function Gene Ontology (GO) terms (A) and KEGG Pathways (B) ranked by number of differentially 
methylated genes of interest. 

 

Abbreviation(s): GOI, genes of interest; FDR, false discovery rate; ICM, inner cell mass; TE, trophectoderm. Venn diagram: pathways enriched in ICM (red 
circle); pathways enriched in TE (blue circle); pathways enriched in ICM and TE (purple intersection). 

A. Molecular Function GO 

Inner-cell mass

ICM (n=15)
GOI

FDR

(q-value)

GO:0016787 Hydrolase activity 18 0.0417

GO:0008233 Peptidase activity 9 0.0186

GO:0008234 Cysteine-type peptidase activity 5 0.0033

GO:0004175 Endopeptidase activity 4 0.0052

GO:0008201 Heparin binding 4 0.0110

Trophectoderm

TE (n=17)
GOI

FDR

(q-value)

GO:0004672 Protein kinase activity 15 0.0392

GO:0004713 Protein tyrosine kinase activity 4 0.0447

GO:0004402 Histone acetyltransferase activity 3 0.0106

GO:0004714 Receptor protein tyrosine kinase 3 0.0279

GO:0022849 Glutamate-gated ion channel activity 2 0.0001

ICM and TE

(n=11)

GOI
FDR

(q-value)

ICM TE ICM TE

GO:0016301 Kinase activity 9 12 0.0291 0.0412

GO:0030165 PDZ domain binding 2 3 0.0225 0.0171

GO:0008081 Phosphoric diester hydrolase 2 3 0.0432 0.0351

GO:0015485 Cholesterol binding 3 2 0.0033 0.0478

GO:0005078 MAP-kinase scaffold 2 2 0.0002 0.0007

15 11 17

B. KEGG Pathways

ICM and TE

(n=22)

GOI
FDR

(q-value)

ICM TE ICM TE

bta01100 Metabolic pathways 17 25 0.0457 0.0157

bta05205 Proteoglycans in cancer 6 10 0.0348 0.0010

bta04360 Axon guidance 4 6 0.0449 0.0112

bta04140 Autophagy – animal 4 5 0.0351 0.0133

bta04390 Hippo signalling pathway 4 5 0.0361 0.0161

8 22 74

Inner-cell mass

ICM (n=15)

GO

I

FDR

(q-value)

bta00562 Inositol phosphate metabolism 3 0.0349

bta04152 AMPK signalling pathway 3 0.0457

bta04136 Autophagy – other 2 0.0349

bta00513 N-Glycan biosynthesis 2 0.0361

bta03050 Proteosome 2 0.0361

Trophectoderm

TE (n=17)
GOI

FDR

(q-value)

bta05200 Pathways in cancer 13 0.0072

bta04151 PI3K-Akt signalling 10 0.0078

bta04010 MAPK signalling 9 0.0065

bta04014 Ras signalling 8 0.0065

bta05166 HTLV-I infection 8 0.0065
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Table 4.9 Genes of interest (GOI) with the highest number of differentially methylated sites (DMS) selected from the first Gene Ontology (GO) term 
and KEGG Pathway. 

 

Abbreviation(s): BP, Biological Process; CC, Cellular Component; CGI, CpG island; ICM, inner cell mass; KEGG, Kyoto Encyclopedia of Genes and Genomes; 
MF, Molecular Function; TE, trophectoderm. DMS distribution across genomic regions show an excess of annotation due to overlapping genes and inaccurate 
annotation of promoter regions in Bos taurus genome (Bta.ARS-UCD1.2, April 2018).

Pathways enriched in ICM Differentially methylated GOI CpGs Promoter Exon Intron CGI Shore

BP GO:0006508 Proteolysis PMPCA
Peptidase, mitochondrial 

processing alpha subunit
48 1 22 27 24 20

CC GO:0005829 Cytosol NELFA
Negative elongation factor

complex member A
50 1 15 35 31 10

MF GO:0016787 Hydrolase PLCL2 Phospholipase C like 2 92 0 9 85 38 19

KEGG
bta00562 Inositol phosphate 

metabolism
PLCG1 Phospholipase C gamma 1 24 0 6 18 10 5

Pathways enriched in TE Differentially methylated GOI CpGs Promoter Exon Intron CGI Shore

BP GO:0035556 Signal transduction PLCL2 Phospholipase C like 2 118 0 6 112 51 16

CC GO:0005856 Cytoskeleton FARP1
FERM, ARH/RhoGEF and

pleckstrin domain protein 1
49 1 3 46 5 17

MF GO:0004672 Protein kinase IGF1R
Insulin like growth factor 1

receptor
61 1 19 57 29 11

KEGG bta05200 Pathways in cancer WNT7A Wnt family member 7A 69 0 3 57 16 31

Pathways enriched in ICM and TE Differentially methylated GOI CpGs Promoter Exon Intron CGI Shore

ICM TE ICM TE ICM TE ICM TE ICM TE ICM TE

BP GO:0016310 Phosphorylation TOLLIP Toll interacting protein 70 83 4 4 32 31 38 47 23 39 34 34

CC GO:0005770 Late endosome IGF2R
Insulin like growth factor 2 

receptor
25 51 0 11 7 5 18 46 8 32 10 12

MF GO:0016301 Kinase activity 
PRKAR1

B

Protein kinase cAMP-

dependent type 1 subunit β
56 81 0 1 6 15 53 75 35 45 16 32

KEGG bta01100 Metabolic pathways DBH Dopamine β-hydroxylase 131 146 5 9 22 24 103 115 38 55 50 61
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Insulin-like growth factors, IGF1 and IGF2, are potent mitogens that play a 

predominant part in embryonic growth and morphogenesis (Kowalick et al., 

1999). It follows that aberrant methylation and expression of their respective 

receptors can have detrimental consequences for embryo development 

(Agrogiannis et al., 2014). Both IGF1R and IGF2R genes were differentially 

methylated in the bovine embryo following altered methionine during culture 

(Table 4.9). Of particular interest is the methylation status of the imprinted locus, 

IGF2R, due to its association with LOS in ruminants (discussed later). 

4.3.2.5 Imprinted genes 

Genomic imprinting is an epigenetic mechanism that leads to parental allele-

specific gene expression (Barlow and Bartolomei, 2014). Around 150 imprinted 

genes have been identified in humans and mice, and ~30 have been identified 

in cattle (Chen et al., 2016; Table 4.10). Imprinted genes play a pivotal role in 

feto-placental growth and development, metabolism and postnatal behaviour 

(Fowden et al., 2006; Smith et al., 2006; Glenn et al., 1997). Their monoallelic 

expression is governed by asymmetrical epigenetic marks on either the 

maternal or paternal allele. Typically, imprinted genes are organised in clusters 

that are regulated by CpG-rich domains known as imprint control regions and/or 

DMRs (Barlow and Bartolomei, 2014). It follows that aberrant CpG methylation 

within these regulatory domains has been implicated in imprinting disorders. In 

humans, loss of imprinting (LOI) of CDKN1C, H19 and IGF2 is associated with 

Beckwith-Wiedemann syndrome (BWS; Sinclair et al., 2000; Chen et al., 2013); 

LOI of MEST is associated with Silver-Russell syndrome (Riesewijk et al., 

1998); and, LOI of UBE3A and SNRPN is associated with Prader-Willi 

syndrome and Angelman syndrome (Glenn et al., 1997).
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Table 4.10 Monoallelically expressed genes in cattle.   

Imprinted genes  Non-imprinted 

Chr Gene   Chr Gene   Chr Gene   Chr Gene 

4 PEG10 ♀  18 PEG3/USP29 ♂  21 RTL1 ♀  4 ASB4 

4 PON3 ♂  18 ITUP1 ♀  21 PERK10/MEG8 ♂  4 MAGI2 

4 MEST ♀  18 PEG3 ♀  29 CDKN1C ?  5 SLC38A4 

6 NAP1L5 ♀  18 ZIM2 ♂  29 H19 ♂  5 DCN 

9 IGF2R ♂  21 GTL2/MEG3 ♂  29 IGF2 ♀  12 HTR2A 

9 PLAGL1 ♀  21 SNRPN ♀  29 PHLDA2 ♂  15 SDHD 

13 GNAS ♂  21 MEG8 ♂  X XIST ♀  18 ZFP264 

13 NNAT ♀  21 MIRG/MEG9 ♂  ? MAGEL2 ♀  22 COPG2 

14 DGAT1 ?  21 MKRN3 ♂  ? COPG2IT1 ♂  26 IMPP5F-v2 

18 MIMT1 ♂  21 UBE3A ♂  ? TSSC4 ♂  ? CD81 

18 USP29 ♂  21 XLOC ♀      ? OSBPL5 

Adapted from the Catalogue of Imprinted Genes (http://igc.otago.ac.nz/home.html), Chen et al. (2015) and Chen et al. (2016).  

Imprinted genes with DMS coloured in blue. Imprinted genes associated with fetal overgrowth phenotype in humans and animals shaded in grey. Paternally 
imprinted gene (♂), maternally imprinted gene (♀). Non-imprinted genes that are monoallelically expressed or classified as imprinted in other species coloured 
in red.  

http://igc.otago.ac.nz/home.html
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In the present study, six imprinted genes (PEG10, NAP1L5, IGF2R, NNAT, 

SNRPN and PHLDA2) were differentially methylated in Day 8 bovine embryos 

as a consequence of reduced methionine (50 v 10 µmol/L) during IVP (Table 

4.10). In both embryonic cell lineages, DMS were generally hypomethylated 

following culture in the low physiological methionine concentration (10 µmol/L) 

relative to the high concentration (50 µmol/L; Figure 4.10).  

 

Figure 4.10 Low physiological methionine concentration during culture 
decreases CpG methylation of six imprinted genes within the primary cell 
lineages of the Day 8 bovine preimplantation embryo. 

Colours indicate methylation level (%) from low (white) to high (red) of differentially 
methylated sites (DMS) within imprinted genes enriched within the trophectoderm (TE) 
and inner cell mass (ICM) at physiologically high (50 µmol/L) and low (10 µmol/L) 
methionine concentration during in vitro embryo culture.  
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The insulin-like growth factor 2 receptor (IGF2R) had the greatest number of 

CpGs (156 DMS) that were significantly (P<0.001) hypomethylated in the ICM 

and TE as a consequence of reduced physiological methionine (50 v 10 µmol/L) 

during IVP (Figure 4.11A). Since reduced methylation of IGF2R appears to be 

causative of the fetal overgrowth phenotype, known as large offspring syndrome 

(LOS) in ruminants exposed to ART procedures (Young et al., 2001; Young et 

al., 2003; Section 1.7), this gene was selected for further investigation into the 

effect of low methionine during bovine embryo culture on the methylation status 

of CpGs within a specific regulatory region of the IGF2R gene (Section 4.3.2.6).  

Small nuclear ribonucleoprotein polypeptide (SNRPN) is another imprinted 

gene implicated in LOS in cattle (Smith et al., 2015) that was hypomethylated 

in both embryonic cell lineages due to low methionine (P<0.001; Figure 4.11E). 

Demethylation of the maternal SNRPN DMR in embryonic and extraembryonic 

tissues of in vitro and SCNT derived bovine embryos indicates that embryo 

manipulations can induce epigenetic alterations in imprinted genes that persist 

beyond implantation (>Day 19; Lucifero et al., 2006; Suzuki et al., 2009).  

Imprinted genes that are specifically important for the regulation of placental 

growth were differentially methylated in the present study. Cytosine methylation 

of the paternally imprinted pleckstrin homology-like domain family A member 2 

(PHLDA2) gene was significantly reduced in both cell lineages following culture 

in 10 µmol/L methionine (P<0.001; Figure 4.11B). Reduced expression of 

PHLDA2 in the bovine placenta is associated with placentomegaly following 

SCNT (Guillomot et al., 2010). Similar observations have been reported in 

Phlda2-null mice that exhibited placental overgrowth (Frank et al., 2002).  In 

contrast, LOI of PHLDA2 in human placenta is linked to intrauterine growth 

restriction (Salas et al., 2004; Diplas et al., 2009). These findings support the 

conclusion that PHLDA2 serves as a regulator of placental growth in mammals. 

There was a significant interaction between methionine concentration and cell 

lineage on the methylation status of paternally expressed 10 (PEG10; P=0.03; 

Figure 4.11D). A functional study of Peg10 using a knockout mouse model 

caused early embryonic lethality owing to placental defects (Ono et al., 2006). 

Similarly, silencing of PEG10 in human placental extracts inhibited trophoblast 

proliferation and invasion (Chen et al., 2015), thereby supporting its critical role 

in normal placental formation.  

Although not statistically significant, neuronatin (NNAT) had 12 DMS that were 

generally hypomethylated in both cell lineages following culture in low 
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physiological methionine (P=0.075; Figure 4.11C) and nucleosome assembly 

protein 1-like 5 (NAP1L5) had 2 DMS that were hypermethylated in low 

physiological methionine (P=0.204; Figure 4.11F). Both of these genes are 

maternally imprinted and paternally expressed in multiple fetal tissues in cattle, 

including the brain, lung, liver, kidney, intestine, muscle, ovary and eye 

(Zhaitoun and Khatib, 2006), suggesting broad roles of these imprinted genes 

in fetal development.  

 

 

Figure 4.11 Mean methylation (%) of six differentially methylated imprinted 
genes in bovine inner cell mass (ICM) and trophectoderm (TE) following culture 
in physiologically high (50 µmol/L) and low (10 µmol/L) methionine. 
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4.3.2.6 Insulin-like growth factor 2 receptor (IGF2R) 

The IGF2R gene, otherwise known as the cation-dependent mannose-6-

phosphate receptor, encodes a multifunctional protein that is involved in 

lysosomal trafficking, tumour suppression, T-cell mediated immunity and fetal 

growth (Wang et al., 1994; Lau et al., 1994; Motyka et al., 2000; Killian et al., 

2001). Its involvement in regulating fetal growth is facilitated through binding 

IGF2 for degradation and removing the potent mitogen from the circulation 

(Barker et al., 1993; Wang et al., 1994). The imprinted expression of IGF2R is 

conserved across diverse mammalian species, including cattle (Long and Cai, 

2007), sheep (Young et al., 2001), pigs (McElroy et al., 2007), mice (Barlow et 

al., 1991), rats (Vu et al., 2006), dogs (O’Sullivan et al., 2007), kangaroos 

(Yandell et al., 1999) and opossums (Weidman et al., 2006). IGF2R does not 

appear to be imprinted in monotremes or primates (Kalscheuer et al., 1993; 

Killian et al., 2001) and its imprinted expression in humans remains ambiguous. 

Adult human tissues lack imprinted expression (Kalscheuer et al., 1993; Ogawa 

et al., 1993) whereas fetal tissues and Wilm’s tumours are imprinted in some 

cases, however, the trait is highly polymorphic (Yotova et al., 2008). This broad 

conservation across eutherian mammals reinforces the proposed link between 

genomic imprinting and parental-specific control of feto-placental growth and 

development (Haig, 2004; Killian et al., 2000). It follows that the fetal overgrowth 

phenotype exhibited by cattle and sheep that is caused by aberrant IGF2R 

imprinting is also conserved. In mice, disrupted Igf2r expression also leads to 

excessive fetal and placental growth, cardiac abnormalities, cleft palate and 

increased perinatal mortality. It is assumed that reduced Igf2r stimulates fetal 

growth because of impaired IGF2 clearance from the circulation (Baker et al., 

1993; Lau et al., 1994; Wang et al., 1994; Melnick et al., 1998). However, 

plasma levels of IGF2 in sheep fetuses with LOS were not significantly higher 

than controls (Young et al., 2001), thus, the physiological and epigenetic 

mechanisms of IGF2R imprinting are postulated to differ across species. 

Most of the research investigating the regulation of IGF2R imprinting pertains 

to studies with mice, with relatively little research conducted in cattle. In both 

species, the Igf2r/IGF2R gene is paternally imprinted and transcribed 

exclusively from the maternal allele in all fetal and adult tissues examined 

(heart, liver, kidney, lung, skeletal muscle and placenta), with the exception of 

the brain (Yotova et al., 2008; Bebbere et al., 2013). In both species, 

Igf2r/IGF2R imprinting is developmental stage- and tissue-specific. Initially, 
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Igf2r/IGF2R expression levels are biallelic and switch to maternal expression 

after implantation (Lerchner and Barlow, 1997; Long and Cai, 2007). In cattle, 

the degree to which paternal IGF2R is repressed differs between tissues of 

endodermal (liver and lung), mesodermal (heart, skeletal muscle) and 

ectodermal origin (brain). Moreover, the expression of IGF2R was reported to 

be 3- to 4-fold higher in bovine placenta than in fetal tissues. This is reflective 

of ‘partial imprinting’ in extraembryonic tissues (Bebbere et al., 2013), a 

mechanism whereby both parental alleles are differently expressed instead of 

the complete silencing of one parental allele and full expression of the other 

(Baran et al., 2015). Expression of both parental IGF2R alleles in the TE may 

provide a plausible explanation for the significantly lower CpG methylation 

measured in this lineage relative to the ICM in both methionine treatments 

(P<0.001; Figure 4.11A).  

 Regulation of IGF2R imprinting   

The IGF2R gene comprises 48 exons and is part of an imprinted cluster that 

contains maternally expressed SLC22A2 and SLC22A3, and paternally 

expressed long non-coding ncRNA (lncRNA), Airn/AIRN (Antisense to Ifg2r 

RNA Noncoding), in addition to non-imprinted genes; SLC22A1, MAS1, and 

PLG (Stöger et al., 1993; Wutz et al., 1997; Latos et al., 2012). In mice, this 

imprinted cluster spans 500 kb on chromosome 17 (Yotova et al., 2008). In 

cattle, the analogous cluster is located on chromosome 9 (Farmer et al., 2016). 

In both species, the Igf2r/IGF2R gene encodes two reciprocally imprinted 

transcripts, each of which is associated with a DMR (Wutz et al., 1997; Long 

and Cai, 2007). DMR1 encompasses the Igf2r/IGF2R promoter CGI that is 

methylated on the paternally inherited allele. DMR2 is located within intron 2 of 

the Igf2r/IGF2R gene and encompasses the Airn/AIRN promoter CGI that is 

methylated on the maternally inherited allele (Wutz et al., 1997; Long and Cai, 

2007; Figure 4.12A).  

In cattle, DMR2 is 2,620 bp in length. Bovine AIRN is an unspliced, 

polyadenylated lncRNA that is 117 kb long and transcribed from the paternal 

allele in the antisense orientation from the transcription start site located 623 bp 

upstream of DMR2. AIRN transcription extends into intron 1 of the neighbouring 

gene, MAS1, thereby overlapping IGF2R and silencing its expression by 

transcriptional interference (Farmer et al., 2016; Latos et al., 2012; Figure 

4.12A). How AIRN silences non-overlapped imprinted genes SLC22A2 and 
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SLC22A3, remains disputed. Recently, it was proposed that AIRN targets 

distant promoters and recruits repressive chromatin complexes. Whilst such 

interactions are lost once silencing is established, silenced genes are covered 

with H3K27me3 modifications on the repressed paternal allele (Andergassen et 

al., 2019; Figure 4.12A).  

 

Figure 4.12 Bovine IGF2R gene is imprinted by antisense transcript, AIRN.  

Source: Clare et al. (unpublished). Bovine genomic region on Chromosome 9 specific 
to IGF2R and AIRN (A). Multiple sequence alignment for Igf2r/IGF2R intron 2 with 
putative transcription initiation site and consensus binding site of core promoter 
elements in the bovine genomic region. Nucleotide numbers refer to location on 
chromosomes (B). Abbreviation(s): AP1, activator protein 1; DPE, downstream 
promoter element; INR, initiation response element.  
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mouseintron2      ------------------------------------------------------------ 1903 

ratintron2        AATTAACTTAATCCTATCTGTACAATAAATCTTTAC-TTATAACTA-CATTGAATCTTTT 8532 

sheepintron2      ------------------------------------------------------------ 1546 

humanintron2      TTTCCTCTTTCACTTTTCGCTAGGAGTAATCATTAGCTCCCATCTTGTATTAATTTTTTT 15598 

cowintron2        G--CTCCTGTCTCTCCTCACTGGAGGTAATCATTTGCCCACATCCTGTATACCAACATTT 7549 

pigintron2        T--CCATTCTCTCTCTTTCCTGGACGTCATCATTCACTCACACCCTGTATTTAAAATTTT 6926 

                                                                               

mouseintron2      ------------------------------------------------------------ 1903 

ratintron2        GTGAGGTTCAAG-TGAAGTCTTCCATACA------------------------------- 8560 

sheepintron2      ------------------------------------------------------------ 1546 

humanintron2      TTTTTTTTACTGTATCTAATTTCCAAAAA----------------------------AAA 15630 

cowintron2        CCTTTTTTCTCTCTTACTTTAGT----CA----------------------------GAG 7577 

pigintron2        TCTTCCTTGCTTCTTCTCTTTCCTAGTCAGAGTCAGTCACTCCCCCCCGCCCCCCCAAAA 6986 
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The AIRN promoter region was identified by analysing the bovine IGF2R 

sequence (https://www.ensembl.org/; ENSBTAG00000002402) in an antisense 

direction upstream of DMR2 for possible core promoter elements (Figure 

4.12B). In accordance with consensus sequences reported by Farmer and 

colleagues (2016), a TATA-box was identified 20 bp upstream of the 

transcription start site; an activator protein-1 (AP1) binding site was identified 

upstream of the TATA-box (Suslov et al., 2010); and, an initiation response 

element (INR-site) and down-stream promoter element (DPE) was identified 

downstream of the TATA-box (Burke and Kadonaga, 1997). This clustering of 

four initiation sequences within 200 bp of the bovine AIRN promoter has also 

been observed in the murine Airn promoter sequence (Lyle et al., 2000), 

suggesting that DMR2 encompasses the promoter in both species. Putative 

DMR2 regions have also been identified in sheep (Young et al., 2003), pigs 

(Shen et al., 2012), rats (Killian et al., 2000), and humans (Reisewijk et al., 

1995), however, the nucleotide sequence homology and core promoter 

elements differ between species (Figure 4.12B; discussed later).  

 Loss of methylation in DMR2  

The present study identified two clusters of DMS that were hypomethylated 

within DMR2 in the TE of bovine embryos following culture in low physiological 

methionine (50 v 10 µmol/L; Figure 4.13). Only one DMS was hypermethylated 

at nucleotide position 96221634 (Figure 4.13B). The methylation status of each 

DMS located within the second intron of IGF2R in the TE lineage can be found 

in Appendix 4.10. In the ICM, DMR2 methylation was relatively unaffected by 

the reduction in methionine as demonstrated by the hypomethylation of only one 

DMS (Figure 4.13A).  

Little is understood about the loss of DMR2 methylation in bovine placenta since 

previous studies have focused on DMR2 methylation in fetal tissues following 

ART procedures. Long and Cai (2007) reported that tissue-specific variation in 

DMR2 methylation levels in the liver, brain, heart and lung of normal bovine 

fetuses ranged from 54 to 99%. These levels were disrupted in tissues from 

cloned fetuses, and methylation levels decreased to 25% in the heart. In 

addition, loss of DMR2 methylation on the maternal allele in LOS bovine fetuses 

following SCNT was associated with decreased IGF2R transcript abundance 

(Chen et al., 2017). Similar observations have been reported in sheep. Ovine 

IGF2R DMR2 had strongly reduced levels of DNA methylation in tongue tissue 

https://www.ensembl.org/
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following SCNT (Young et al., 2003) and hypomethylation of this regulatory 

region was correlated with reduced expression of IGF2R by 30-60% in LOS 

fetuses relative to controls (Young et al., 2001). Collectively, these results show 

that IGF2R was not fully reprogrammed during early development after nuclear 

transfer and that this locus may be similarly dysregulated in ruminant species. 

Multiple sequence alignment revealed high IGF2R gene sequence homology 

between cattle and sheep (91.9%). However, intron 2 was less conserved 

(45.8%) and the two cluster regions within DMR2 did not align despite the 

phylogenetic similarity between the two species (Appendix 4.11). Intriguingly, 

intron 2 was more conserved between cattle and pigs (74%), and the first and 

second DMS clusters were 87.1 and 88.0% homologous between the two 

species, respectively. Cytosine residues that were differentially methylated in 

cattle embryos within the second cluster were highly conserved between cattle 

and pigs (90.9%). A high percentage of cytosines in the second cluster were 

conserved in humans (81.8%; Appendix 4.11). Whilst DMR2 harbours a 

maternal-specific methylation imprint in pigs and humans (Shen et al., 2012; 

Reisewijk et al., 1995), there is no evidence for paternal AIRN transcription in 

either species (Braunschweig, 2012; Oudejans et al., 2001), highlighting 

evolutionary differences in nucleotide sequence and imprinting status of IGF2R 

between species (Killian et al., 2000). 
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Figure 4.13 Two clusters of DMS were hypomethylated within DMR2 of the 
IGF2R gene in the trophectoderm (TE) lineage following bovine embryo culture 
in low physiological methionine (50 v 10 µmol/L).  

Bedgraphs demonstrate loss (↓, hypomethylation) and gain (↑, hypermethylation) of 
methylation at individual cytosine residues, and location of DMS clusters ----- (A). 
Nucleotide sequence showing the two clusters in red. Hypomethylated cytosines in blue 
and hypermethylated cytosine (position 96221634) in pink c (B).  

A

AAGGTGCTGAGAAGGCTCGGCGCCCGCAGGCTGGGCCCCGTGGCCGCCGGCGGAGGCGCG 

GTCGCCAGGCCGAGCAGCCTCAGCGAGGTCGGGTTGCGAGCTCGGCCGGGCTCGGCCGCG 

AGCGCCGAGGGCGGCAGGCGAGGCCCGGCCGGCCTGGCACGCGGCCTGGTCGGGCGGACT 

CTGGTGAGCGCGGCCGAGCGCGCAGGGTCTGCAGGACCCGGCGTGGCCTGGCCGGCGGCG 

CGTGGCTGGGGCTGGCGGGCGCGGGCGAGCGCTGCCGGACGGGCGCCCTGGCGCGCAGGG 

TCGAGAGGACCCGGCGCGGCCCGGGCTGCAGAGCGTGGCTGGGTCTGACGGGCTCGGGCG 

AGCGTGGCCTGGCGGGAGCCCTGGCGTGCAGGGTCGGGAGGACCTCGCGGGGCCTGGCCG 

GTAGCGTGTGGCCGGGTCTGGTGGGTCCGGGTGAACGTGGCCTGGTCTGGCGGGCCCGGG 

CGAGCGCGGCCTGGAGAGCCCGGCCTGGAGAGCGCTGTCTGGAGGGCCCAGCGCGTGGTC 

TGGCGGACCCGGCGCGGTCTGGCGGCCCCGGCCTGGAGACCGCGATCGGGTGGACCCGCC 

ACTGCCTGGCGGGCTCGGCAAGTGCGGTTTGGTCTGGCGGGCCCAGGCGAGCGCGGCTCG 

GTCTGGGGGGCTCTGCCTGGAGGCTGCGGTCGGACAGGTCTGGCAGGCCCTGGACGCGCG 

GCCTGGTCTGGAGGACCCGGCCTGGAGAGCGCGGCCTGGAGGACCCGGCGCGGTCTAGTC 

TGGTGGGGTCTCGCCAGTGCTGTCTGGTCTGGTGGGCCCGGGTGAGCTCGGCCTGGTCTG 

GCGGACCTGGCCTGGAGAGCGCCGTCTGGAGGACCCGGCGCGGCCTGGCGGGCCCTGGCG 

AGCGCGGCCTGGCGGGCCCGGGGCGCAGGGTCTGAAGGACCCGGCGTGGCCTGGCTTGGA 

GAGCTCGGCCTGGTCTGGCGGACCCGGCCTGGAGAGCGCCGTCTGGTGGGCCTGGCGCGC 

GTGGCCTCGTTTGGAGGACCCGGCCTGGAGACCGTGATCTGGAGGGCCTGGAGCGCACGG 

TCTGGCGCGGTCCGGAGGACCCGGCGCGATCTGGTGGGCCCGGTGAGCGCGAGCTGGTCT 

GGTGGGCCCAGCGCGCGCGGCCTGGTCTGGTGGACCCGGCCTGGAGAGCGTGGTCTGGAG 

GACCCGGCGCGCGCGGTCTGGCGGGCCTGGCGCGGTCCGGTTGGCCGAGCGCGCGGTCTG 

GAGGACCCAGCGCGGTCTGGCGGACCCGGCCTGGAGAGCGCGGTCTGGAGGACCCGGCGC 

GGCCTGGCGGGCCTGGGCGGACGCGGCCTGGTCTGGCGGGCCCTGCCGGGAGACCGCGGT 

CTGGCCGGCACGGCGCGCGCAGCCCGGTCTGGAGGACCCGGCCTGGAGAGCGCGGCCTGG 

AGGACCCGGCGCGGTCTGGTCTGCTGGGGCCCCGCCAGTGTGGTCTGGTCTGGCGCGCCC 

GGCCTGGAGAGCGTGGTCTGGCGGGCCCGGCGCGCGGTCTGGAGGACCCGGCGCGATCTG 

GCGGGCCCGGCGAGCGCGGCCCAGCCCATTTGGCGCCGTCCTCGGGAGCTGGCCGTGGGC 

CTGGCGTGCTGGCCGCCGCCCCGCAGTCCTCGCCCGGCCTTCGTCCGGGGAGGACGGCCA 

GGCTGGCCGGGGTGCCGCGGGAGTCCGCCGCGGGGGCGCTGCCGCGGTGCACCGCGGCCT 

CTTGCCGAGTGCCGGGGTGGGCAATCGGTCCTGGCCAGTAGGCGGAGGAGCGGGCTGCAG 

GCAGGCTGGACGGGCGAGCGGGCGCGGTGCCGATGGGGCCTGACGCTGAGGGACGCCGCT 

GTCCCCAGCGCCGCGGCCGCGGAGCTCGGCCGGTCCGTCTCGGCTCAAGGCCAGGGCCCG 

B

↑ 96221634 C
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 IGF2R and AIRN transcript expression  

It was hypothesised that culturing bovine embryos in low physiological 

methionine (10 µmol/L) would cause loss of methylation within DMR2 of IGF2R 

(on the maternal allele) which, in turn, would cause biallelic expression of 

antisense transcript, AIRN, thereby causing repression of IGF2R gene 

experession from both parental alleles. Whilst there was a significant difference 

between IGF2R and AIRN transcript expression (P<0.001), there was no 

significant effect of methionine during embryo culture (P=0.405; Figure 4.14). 

There are several explanations for why the loss of methylation observed had no 

effect on IGF2R/AIRN imprinted expression in the present study.  

 

Figure 4.14 Relative transcript expression of IGF2R (A) and antisense transcript, 
AIRN (B) in Day 8 bovine blastocysts cultured at physiologically high and low 
methionine concentrations.  

Relative expression data analysed by ANOVA and presented as mean ± SEM. 
Significant difference between IGF2R and AIRN transcript expression (P<0.001); no 
effect of physiological methionine concentration (P=0.405). Abbreviation(s): AIRN, 
Antisense to IGF2R RNA noncoding; IGF2R, insulin like growth factor 2 receptor.  

Studies have reported that IGF2R expression levels in preimplantation cattle 

embryos are biallelic and switch to maternal expression after implantation 

(Lerchner and Barlow, 1997; Long and Cai, 2007) at which stage the gene is 

only partially imprinted in the placenta (Bebbere et al., 2013). Indeed, Farmer 

et al. (2013) reported absence of AIRN in pools (2 to 11) of bovine embryos until 

Day 18, a stage of development that coincides with implantation and maternal 

recognition of pregnancy (Thatcher et al., 1984). Albeit 2- to 3-fold lower than 

IGF2R expression, the present study measured detectable levels of AIRN in 

pools (15 to 28) of Day 8 preimplantation blastocysts. It is important to 

acknowledge that developmental stage, cell lineage and inter-individual genetic 
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variation may lead to variability in the degree of imprinting between embryos 

that cannot be identified by measuring transcript abundance in pools of 

embryos. A solution would be to measure transcript expression in individual 

embryos, or in immunodissected ICM and TE cells, however, the qPCR 

methods used in this study were not adequately sensitive to measure these low 

abundance transcripts with accuracy and reliability. Another factor to consider 

is that it was not possible to determine the parental origin of methylation using 

pools of embryos.  

Whilst hypomethylation of DMR2 has been associated with decreased IGF2R 

expression in cattle fetuses, it is not necessarily downregulated by AIRN. As 

discussed earlier (Section 4.3.2.6.2), Chen et al. (2017) correlated loss of DMR2 

methylation with loss of IGF2R expression in skeletal muscle of LOS fetuses, 

however, AIRN was biallelically expressed in LOS and control fetuses. The 

precise function of DMR2 in regulating imprinted expression of IGF2R by AIRN 

remains unclear. It has been proposed that the CGI within DMR2, located at the 

5’-end of the AIRN transcription start site (Figure 4.12), is required for RNA 

polymerase II transcript initiation, elongation and processivity. However, it is the 

CGI sequence (i.e. tandem direct repeats) rather than its methylation status that 

correlates with efficiency of AIRN transcription (Koerner et al., 2012). 

Furthermore, additional regulatory elements, such as DMR1 methylation and 

histone modifications, are likely to operate in synergy with AIRN to repress 

paternal IGF2R (Sleutels et al., 2002; Long and Cai, 2007).  

It is uncertain whether the TE-specific loss of DMR2 methylation in Day 8 bovine 

preimplantation embryos as a consequence of reduced methionine during 

embryo culture is sufficient to affect IGF2R gene dosage at later stages of 

development. These results illustrate that subtle reductions in physiological 

methionine levels alone can influence the methylation status of IGF2R, thereby 

raising questions about the safety and efficacy of current in vitro embryo 

production protocols, particularly those involving invasive embryo manipulation 

techniques (e.g. SCNT), extended culture periods or non-physiological 

methionine concentrations.  

4.4 Concluding remarks  

The findings presented herein support the conclusion that altering the 

concentration of methionine, within physiological limits (50 v 10 µmol/L), during 
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the periconceptional period can lead to epigenetic alterations to DNA 

methylation of genes that regulate developmental processes in the bovine 

preimplantation embryo. Specifically, culturing gametes and embryos in low 

physiological methionine (10 µmol/L) reduced CpG methylation within key 

genomic regions of the ICM and TE, demonstrating that both primary cell 

lineages of the Day 8 blastocyst are sensitive to subtle reductions in methionine 

during the first week of preimplantation development. Given that methionine is 

a rate-limiting amino acid in maternal diets (Laurichesse et al., 1998; Schwab 

and Broderick, 2017) and that concentrations in commercial embryo culture 

media range from 0 to 500 µmol/L in ART procedures (Table 1.5) these findings 

are of concern regarding the safety and efficacy of dietary and culture media 

supplementation of methionine during early embryonic development.  

Methionine supplementation during in vitro embryo culture was previously 

reported to have no effect on DNA methylation in whole blastocysts (Bonilla et 

al., 2010). This conclusion, however, was drawn using an insensitive and non-

specific immunocytochemistry approach to quantification. To date, no study has 

examined the effect of methionine on the methylome within the ICM and TE 

independently. Reduced representation bisulphite sequencing (RRBS) 

analyses of CpG methylation within immunodissected embryonic cell samples 

provides a high level of refinement in this regard. The methodology was 

sufficiently sensitive to reveal lineage- and sequence-specifc methylation 

differences in response to a moderate decrease in methionine. The observation 

that the TE had a greater number of hypomethylated DMS than the ICM 

following culture in low physiological methionine reaffirmed that the primary cell 

lineages acquire distinct methylation marks during preimplantation development 

(Morgan et al., 2005) and that the contribution made by these two embryonic 

cell types to methionine metabolism in the blastocyst is different. It has been 

postulated that the TE has a higher metabolic rate and methionine turnover 

relative to the ICM (Hougton et al., 2006). Moreover, GSEA identified that 

statistically significant GO terms and pathways enriched within the ICM were 

associated with protein catabolism and autophagy, whereas significant terms 

and pathways enriched within the TE were associated with cellular transport. 

The differential methylation of imprinted genes, principally IGF2R, between the 

ICM and TE also highlights epigenetic, transcriptomic and functional metabolic 

differences between the embryonic and extraembryonic lineages that could not 

have been identified by analysing methylation in intact blastocysts. 
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Despite the fact that RRBS enriches functional regions of the genome by 

selectively targeting CpG-rich regions (i.e. CGIs/DMRs) for sequencing at 

single-nucleotide resolution (Chatterjee et al., 2012), the approach is limited by 

restriction enzymes that cleave DNA at specific sites. This biased sequence 

selection means that CpG-poor regions are under-represented in the library 

(Doherty and Couldrey, 2014). Moreover, the method cannot distinguish 

between 5mC and 5hmC methylation. Although 5hmC has been detected in 

bovine embryos and is enriched at repeat sequences, such as LINEs and LTRs 

(de Montera et al., 2013), its precise role in regulating gene transcription during 

embryo development is unknown. Future experiments assessing the effect of 

methionine on the embryonic methylome could employ oxidative bisulphite 

sequencing (Booth et al., 2013) to elucidate the function and interplay between 

5mC and 5hmC modifications during early development.  

 



University of Nottingham  Chapter Five 

165 

 

 

Donor cell type and epigenetic reprogramming of cloned 

sheep hepatocytes 
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5.1 Introduction 

July 2021 will mark the 25th anniversary of the birth of ‘Dolly’, the first mammal 

to be cloned from an adult cell by somatic cell nuclear transfer (SCNT; Wilmut 

et al., 1997). The potential of SCNT to induce pluripotency in terminally 

differentiated cells has since been demonstrated in more than 20 mammalian 

species (Matoba and Zhang, 2018), including human cells (Tachibana et al., 

2013; Yamada et al., 2014). Aside basic research, SCNT has many applications 

that promise to benefit livestock production and regenerative medicine, such as 

reproductive and therapeutic cloning (i.e. transgenic animal and autologous 

stem cell production) (Niemann and Lucas-Hahn, 2012; Figure 5.1). 

 

Figure 5.1 Procedure and potential applications of somatic cell nuclear transfer 
(SCNT).  

Abbreviation(s): 2n, diploid; IVC, in vitro culture; MII, metaphase II; n, haploid. 

Despite recent technological advances in SCNT (Ogura et al., 2013), its 

practical use is limited by low efficiency (1-5%; Gouveia et al., 2020; Wang et 

al., 2020) which is exemplified by early pregnancy and/or perinatal losses of 

reconstructed cloned embryos (Hill et al., 1999; Rhind et al., 2003). Incomplete 

epigenetic reprogramming of somatic cell nuclei leads to aberrant DNA 

methylation (Wang et al., 2020). Studies have reported that cloned embryos 

only partially demethylate their genomes and begin the de novo methylation 

process earlier than their in vivo-derived counterparts, which means that donor 

cell methylation is maintained (Dean et al., 2001; Kang et al., 2003). This can 
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result in the continuous expression of tissue-specific genes and inefficient 

activation of genes critical for embryonic development, thereby reducing the 

developmental competence of cloned embryos (Peat and Reik, 2012; Niemann, 

2016). Epigenetic perturbations associated with SCNT may contribute to 

embryonic mortality and congenital abnormalities in offspring. Such 

abnormalities include organ defects (e.g. kidney and heart), enlarged 

placentomes and enlarged umbilical cords, high-birth weight and LOS (Kang et 

al., 2003; Rhind et al., 2003; Smith et al., 2012). As discussed in Chapter 4 

(Section 4.3.2.5), there is an association between SCNT, aberrant methylation 

of imprinted genes and LOS in ruminant fetuses. By way of illustration, loss of 

methylation at IGF2R DMR2 is correlated with aberrant IGF2R expression in 

tissues derived from cloned sheep and cattle (Young et al., 2001; Chen et al., 

2017).  

Several factors are believed to affect the efficiency of epigenetic reprogramming 

following SCNT. Such factors include oocyte source and quality; cell cycle 

synchronisation between donor cells and recipient oocytes; timing of fusion and 

activation; in vitro embryo culture conditions of the reconstructed cloned 

embryo; and, donor cell type (Campbell and Alberio, 2003; Kato and Tsunoda, 

2010; Akagi et al., 2014). Various different somatic cell types have been used 

for nuclear transfer, including mammary epithelial cells (Wilmut et al., 1997), 

fetal fibroblasts (Rathbone et al., 2010), sertoli cells (Ogura et al., 2000), ovarian 

cumulus cells, macrophages (Wakayama and Yanagimachi, 2001) and 

leukocytes (Galli et al., 1999). However, there is limited information available 

with regard to the effect of donor cell type on cloning efficiency.  

The epigenetic status of the donor cell genome, which encompasses a tissue-

specific DNA methylome and chromatin structure, varies according to cell 

phenotype and genotype (Inoue et al., 2003). In support of comparative mouse 

cloning experiments that used early blastomeres, ESCs and terminally 

differentiated cells (Oback and Wells, 2007), it has been postulated that nuclear 

reprogramming and cloning efficiency can be increased by selecting less 

terminally differentiated cell types as nuclear donors. For example, the 

reprogrammability of early blastocysts appears to be higher than that of somatic 

cells (Oback and Wells, 2007). It has not been determined conclusively whether 

differentiation status of the donor cell affects efficiency of epigenetic 

reprogramming after SCNT. The present study, therefore, sought to investigate 

the effect of donor cell type on cloning efficiency by measuring DNA methylation 
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in hepatocytes isolated from cloned Finn Dorset (D) and Lleyn (L) sheep derived 

from mammary epithelial (OP5) and fetal fibroblast (LFF4) donor cells, 

respectively. Finn Dorset and L sheep breeds were selected as they have both 

been used for SCNT experimentation and were used to investigate the healthy 

ageing of cloned sheep (Sinclair et al., 2016). Three experimental comparisons 

assessed cytosine methylation reprogramming between: i) hepatocytes derived 

from cloned sheep (DvL); ii) Finn Dorset hepatocytes and their mammary 

epithelial donor cell line (DvOP5); and, iii) Lleyn hepatocytes and their fetal 

fibroblast donor cell line (LvLFF4).  

5.2 Materials and methods 

 Animals, treatments and tissue collection  

All procedures were conducted in accordance with the requirements of the UK 

Home Office Animals (Scientific Procedures) Act (1986) and were approved by 

the University of Nottingham Animal Welfare and Ethical Review Board.  

Animals used for this study were the same as those used to assess the healthy 

ageing of cloned sheep by Sinclair et al. (2016). Four Finn-Dorset clones (D1 to 

D4) born in July 2007 were derived from the same mammary epithelial cell line 

(OP5) used as the somatic cell nuclear donor for the cloning of ‘Dolly’, as 

reported by Wilmut et al. (1997). Five Lleyn clones (L1 to L5) born in June 2008 

were derived from the primary fetal fibroblast cell line (LFF4), as reported by 

Rathbone et al. (2010).  

5.2.1.1 Donor cell culture  

Ovine mammary epithelial cells were isolated from a 6-year-old Finn Dorset ewe 

in the last trimester of pregnancy and cultured for three to six passages in 

TCM199 and F12 (supplemented with mammogenic hormones) before use as 

OP5 somatic cell nuclear donors (Finch et al., 1996; Wilmut et al., 1997). Ovine 

primary fetal fibroblasts were isolated from a Day 30 fetus obtained from a 

purebred Lleyn ewe and cultured for two passages in Dulbecco’s modified 

eagle’s medium (DMEM) supplemented with FCS before use as LFF4 somatic 

cell nuclear donors (Rathbone et al., 2010). 
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5.2.1.2 Somatic cell nuclear transfer (SCNT) 

All procedures were based on those of Campbell et al. (1996). Briefly, MII 

arrested oocytes were stripped of cumulus cells by vortexing, washed in SOF 

HEPES holding medium and enucleated using a glass micropipette. Enucleated 

oocytes were cultured in maturation medium supplemented with 10 mmol/L 

caffeine for 6 h (18-24 h post-onset of maturation). At 24 h post-onset of 

maturation, somatic donor cell nuclei (OP5 or LFF4) were fused with an 

enucleated oocyte using two DC pulses. Fused couplets were activated by a 5 

min exposure to 5 mmol/L calcium ionophore and a 5 h incubation in modified 

SOF medium. After activation, reconstructed embryos were cultured under 

mineral oil in pre-equilibrated SOF culture medium (39oC, 5% CO2/5% O2). 

Cleavage was assessed on Day 2 and blastocyst development on Day 7. Up to 

three blastocysts were surgically transferred into the uterus of synchronised 

surrogate ewes. The genetic identity of cloned offspring was confirmed using 

21 microsatellite markers, including those recommended by the International 

Society of Animal Genetics (Sinclair et al., 2016).   

5.2.1.3 Isolation of hepatocytes  

Fresh liver samples were harvested immediately following the slaughter of 

cloned Finn Dorset (D; n=4) and Lleyn (L; n=5) ewes. Primary ovine 

hepatocytes were isolated using a two-step collagenase perfusion method 

based on the method of Shibany et al. (2016). For D clones, the average cell 

yield was 15.3 ± 2.05x107 cells/g perfused liver tissue, and the viability and purity 

of cell samples were 94.6 ± 1.47% and 97.4 ± 0.41%, respectively. For L clones, 

the average cell yield was 99.2 ± 9.14x106 cells/g perfused liver tissue, and the 

viability and purity of cell samples were 96.6 ± 0.44% and 97.1 ± 0.78%, 

respectively. 



University of Nottingham  Chapter Five 

170 

 

 DNA methylation analysis  

Reduced representation bisulphite sequencing (RRBS) was conducted to 

measure cytosine (CpG) methylation in hepatocytes isolated from cloned Finn 

Dorset (D) and Lleyn (L) sheep, and their respective somatic donor cell lines 

(OP5 and LFF4). The RRBS method employed was similar to that described in 

Chapter 4 (Section 4.2.4) but with the following modifications. DNA was 

extracted from homogenised hepatocyte cell samples and somatic donor cell 

lines using the Qiagen DNeasy kit. For each sample, DNA was eluted in 150 µL 

EB buffer and concentrated by ethanol precipitation. Briefly, 405 µL ice cold 

ethanol (100% v/v) and 13.5 µL sodium acetate (3M) was added to each DNA 

sample and the contents were incubated at -80°C for 1 hour. Samples were 

centrifuged for 20 min at 13,000 xg in the cold room. The supernatant was 

removed, washed with 500 µL ethanol (75% v/v) twice. The samples were 

centrifuged for 20 min at 13,000 xg after each wash. The supernatant was 

removed and the DNA pellet was air-dried until clear for 10-15 min at room 

temperature. The pellet was resuspended in 25 µL RNase free water and stored 

20°C until bisulphite conversion. Full details of working and stock solutions and 

methods used for Msp1 restriction enzyme digestion, end-repair and dA tailing, 

adapter ligation, bisulphite conversion and RRBS library preparation are listed 

in Appendix 5.1.  

5.2.2.1 Library quality control (QC)  

Quality control, pooling and next-generation sequencing of bisulphite converted 

DNA samples was conducted by Deep Seq (The University of Nottingham, UK). 

DNA concentration, quality and integrity were confirmed using the Agilent 

TapeStation. Libraries were pooled and amplified DNA fragments of 200-400 

bp were size-selected and primer adapters removed using the BluePippin 

system. 

5.2.2.2 Multiplex sequencing  

The final 11 quality-ensured libraries were multiplexed and sequenced on an 

Illumina NextSeq 500 to achieve an average of ~33 million 75 bp paired-end 

reads. Data were de-multiplexed with bcl2fastq conversion software and quality 

control was conducted using Sequencing Analysis Viewer (SAV) and FASTQC 
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(Babraham Bioinformatics) software. Sequences met the standard Illumina 

quality criteria of cluster density, pass filter and quality scores (Q), and were 

converted to FASTQ files using standard Illumina pipeline (Aspera software).  

5.2.2.3 Bioinformatic Data Analysis 

Analysis was conducted as described in Chapter 4 (Section 4.2.4.4) but with the 

following modifications. Briefly, raw paired-end FASTQ files were trimmed to 

remove adapter sequences and low quality bases (-Q 20, -q 3) and reads were 

aligned to the Ovis aries reference genome (Oar v3.1, April 2012) using 

bisulphite read mapper with default settings (Bowtie2; Krueger and Andrews, 

2011; Table 5.1). Duplicate reads were marked and methylation values 

extracted as described above (Section 4.2.4.4). To avoid identification of 

methylation differences that are related to Finn Dorset and Lleyn breed 

differences, bases at known variant positions (SNPs) were removed. 

Differentially methylated sites (DMS) between groups were identified and 

results were filtered for a ‘minimum difference threshold of 10% methylation’ 

between experimental combinations.  

Table 5.1 Summary of Bismark final alignment report. 

 Hepatocytes  Donor cell  

Replicate 
Finn Dorset 

(D) 
 

Lleyn  

(L) 
 

Mammary 

(OP5) 
 

Fibroblast 

(LFF4) 

1 26,934,703a  

11,918,193b 

(44.2)c 

 23,161,065a 

9,841,851b 

(42.5)c 

 11,447,143a  

10,088,425b 

(44.9)c 

 104,679,515a 

48,790,696b 

(46.6)c 
   

2 24,237,849a  

11,534,956b 

(47.6)c 

 

31,918,792a 

14,447,491b 

(45.3)c 

 -  - 

3 30,487,827a  

14,787,691b 

(48.5)c 

 

26,430,474a 

10,552,266b 

(39.9)c 

 -  - 

4 30,408,350a  

13,827,199b 

(45.5)c 

 

26,693,119a 

11,803,131b 

(44.2)c 

 -  - 

5 

-  

27,433,294a 

12,286,345b 

(44.8)c 

 -  - 

Total sequence pairs read following quality trimminga. Number of paired alignments with 
unique best hitb. Mapping efficiency (%): measure of the sequence pairs that map 
uniquely to the reference genomec. 
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 Gene set enrichment analysis (GSEA) 

Enrichment of gene ontologies (GO) was performed using hypergeometric tests 

in the (Not) Ingenuity Pathway Analysis (NIPA) tool (https://github.com/ADAC-

UoN/NIPA). As before, genes that possessed clusters of DMS (≥5 DMS within 

a sliding window size of 1 kb) were selected for gene set enrichment analysis 

(GSEA). A total of 545 clusters of DMS in 409 genes were identified between 

Finn Dorset and Lleyn hepatocytes (DvL); 7,846 clusters of DMS in 3,569 genes 

were identified between Finn Dorset hepatocytes and their mammary epithelial 

donor cell line (DvOP5); and, 10,581 clusters of DMS in 4,486 genes were 

identified between Lleyn hepatocytes and their fetal fibroblast donor cell line 

(LvLFF4). Annotated pathways associated with ‘Biological Process’, ‘Cellular 

Component’ and ‘Molecular Function’ GO terms were identified as significant 

based on functional enrichment of genes with clusters of differentially 

methylated sites (DMS).  

 Statistical data analysis 

Differentially methylated sites (DMS) between experimental comparisons and 

sliding windows were identified using the Chi-squared test. Gene ontology terms 

with an FDR adjusted P-value ≤0.05 were deemed statistically significant. 

Differences in mean methylation (%) of genes between isolated hepatocytes 

and founder somatic cells for each clonal group were determined using linear 

mixed model (REML) analysis within Genstat. The fixed model included the 

terms ‘Dolly’ (Finn Dorset) and ‘Lleyn’ for comparisons of differential methylation 

between each founder cell line and their respective clonal population of isolated 

hepatocytes, and the random model included individual DMS. These data are 

presented as means with SEM.  

 

 

https://github.com/ADAC-UoN/NIPA
https://github.com/ADAC-UoN/NIPA
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5.3 Results and Discussion  

 Overall CpG methylation 

RRBS analyses identified a total of 609,854 CpGs in all samples (D, L, OP5 and 

LFF4), of which 547,719 CpGs were identified as methylated (Figure 5.2). The 

majority of CpGs (n=336,128) were methylated to some degree in all four cell 

types, however, a subset of methylated CpGs were unique to each cell type, 

thereby highlighting the presence of cell type-specific DNA methylation 

signatures (Varley et al., 2013). The fetal skin fibroblast (LFF4) cell line had the 

greatest number of methylated CpGs (n=472,897), whereas the mammary 

epithelial cell line (OP5) had the lowest number (n=377,669). The number of 

methylated CpGs was greater in Lleyn than Finn Dorset hepatocytes (463,410 

v 459,795, respectively). This modest difference in global methylation between 

hepatocytes derived from D and L clones could be due to genotype (DvL) or the 

donor cell line (OP5vLFF4) from which they were derived.  

 

Figure 5.2 Distribution of methylated CpGs across hepatocyte cell samples 
derived from cloned Finn Dorset (D) and Lleyn (L) sheep, and their respective 
somatic donor cell lines.  

Source: Venny 2.1.0, bioinfogp (https://bioinfogp.cnb.csic.es/tools/venny/index.html). 
Number of methylated CpGs in parentheses. 

 

547,719 methylated CpGs

(377,669) (472,897)

(459,795) (463,410)

https://bioinfogp.cnb.csic.es/tools/venny/index.html
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Pearson correlation coefficients were established for comparisons between 

samples using percent methylation values (Figure 5.3). Methylation was most 

strongly correlated (0.951) between hepatocytes isolated from D clones, closely 

followed by L clones (0.942; Figure 5.3A). Finn Dorset and L clone hepatocytes 

were more highly correlated (0.936) with one another than they were with their 

respective donor cell lines (D v OP5: 0.793; L v LLF4: 0.826). Taken together, 

these findings suggest that global CpG methylation is largely influenced by cell 

phenotype and function rather than epigenetic reprogramming following nuclear 

transfer. 

 

Figure 5.3 Correlation of CpG methylation (%) between cell samples (n=11). 

Correlation matrix shows conservation of methylated CpGs beteween hepatocytes 
isolated from cloned sheep and their derivative cell lines (A). Cladogram plot shows 
clustering of cell types based on methylation similarity (B).  Abbreviation(s): D1 to D4, 
Finn-Dorset clone hepatocyte samples; L1 to L5, Lleyn clone hepatocyte cell samples; 
LFF4, Lleyn fetal fibroblast; OP5, mammary donor cell line.  

D1 D2 D3 D4 OP5 L1 L2 L3 L4 L5 LFF4

D1 1.000 0.948 0.949 0.954 0.785 0.923 0.941 0.931 0.937 0.939 0.816

D2 1.000 0.947 0.953 0.788 0.922 0.938 0.929 0.935 0.938 0.821

D3 1.000 0.956 0.804 0.924 0.945 0.931 0.939 0.941 0.834

D4 1.000 0.793 0.928 0.946 0.937 0.943 0.946 0.829

OP5 1.000 0.773 0.794 0.775 0.783 0.787 0.836

D 0.951  0.0037 L1 1.000 0.936 0.928 0.932 0.935 0.818

L 0.942  0.0094 L2 1.000 0.944 0.953 0.956 0.836

D v L 0.936  0.0075 L3 1.000 0.941 0.944 0.821

D v OP5 0.793  0.0083 L4 1.000 0.951 0.824

L v LFF4 0.826  0.0072 L5 1.000 0.830

LFF4 1.000

A

B
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 Directional methylation  

Table 5.2 shows the number of CpGs and genes that were differentially 

methylated between D and L clone hepatocytes, and their respective donor cell 

lines at the 10% minimum difference threshold. It was not surprising that the 

hepatocytes shared the lowest count of DMS (n=22,984) and differentially 

methylated genes (n=8,047) given that they are the same cell type. As stated 

earlier, differential methylation of CpGs between D and L clone hepatocytes is 

confounded by difference in genotype (DvL) and donor cell line (OP5vLFF4).  

There was a greater number of DMS and differentially methylated genes 

between L hepatocytes and their LFF4 donor cell line, than between D 

hepatocytes and their OP5 donor cell line (Table 5.2). Such findings suggest 

that the level of CpG methylation within the mammary epithelial cells is more 

similar to those of clone hepatocytes than is the case for the fetal fibroblasts. In 

both comparisons, a higher percentage of DMS are hypomethylated in clone 

hepatocytes relative to the donor cell line (DvOP5: 54.9% and LvLFF4: 62.1%, 

respectively) demonstrating that, in general, these somatic donor cells lose 

methylation during epigenetic reprogramming to become hepatocytes. 

Table 5.2 A count of differentially methylated sites (DMS) and genes, and 
directional methylation for each experimental combination (%).  

 

Arrows represent direction of methylation (hypermethylation, ↑; hypomethylation, ↓) in 
cell sample as represented by underlined abbreviation (D relative to L/OP5, and L 
relative to LFF4). Abbreviation(s): Differentially methylated site, DMS; Finn Dorset (D); 
Lleyn (L); LFF4, Lleyn fetal fibroblast; OP5, mammary donor cell line.  

Variable   D v L  D v OP5  L v LFF4 

DMS count  22,984  112,937  152,869 

↑  Methylation  10,134 (44.1)  50,934 (45.1)  57,935 (37.9) 

↓ Methylation   12,850 (55.9)   62,003 (54.9)  94,934 (62.1) 

Genes  8,047  13,966  15,807 
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 Distribution of DMS  

A similar genomic distribution pattern of CpG methylation was observed across 

experimental comparisons. Around 8-9% of DMS were located in gene 

promoters, 13-15% were located in exons and 34-39% were located in introns. 

Around ~17% of DMS were located in CGIs and ~23% were located in CGI 

shores (Table 5.3). As discussed in Chapter 4 (Section 4.3.2.3), this pattern of 

methylation is commonly observed in studies using RRBS due to basic gene 

anatomy and the method of DNA methylation analysis which enriches a 

representative sample of the genome. The percentages of hyper- and 

hypomethylated CpGs were similar for each genomic region studied (Table 5.3). 

Table 5.3 Distribution of differentially methylated sites (DMS) for each 
experimental combination (%). 

 

Arrows represent direction of methylation (hypermethylation, ↑; hypomethylation, ↓) in 
cell sample as represented by underlined abbreviation (D relative to L/OP5, and L 
relative to LFF4). Abbreviation(s): Differentially methylated site, DMS; Finn Dorset (D); 
Lleyn (L); LFF4, Lleyn fetal fibroblast; OP5, mammary donor cell line.

Region  D v L  D v OP5  L v LFF4 

Promoter  1,874 (8.2)  9,800 (8.7)  13,486 (8.8) 

↑  Methylation  833 (44.5)  3,621 (36.9)  3,600 (26.7) 

↓ Methylation   1,041 (55.5)  6,179 (63.1)  9,886 (73.3) 

Exonic   3,366 (14.6)  15,182 (13.4)  21,021 (13.8) 

↑  Methylation  1,378 (40.9)  5,533 (36.4)  6,327 (30.1) 

↓ Methylation   1,988 (59.1)  9,649 (63.6)  14,694 (69.9) 

Intronic   8,874 (38.6)  42,337 (37.5)  58,329 (38.2) 

↑  Methylation  3,646 (41.1)  18,467 (43.6)  22,896 (39.3) 

↓ Methylation   5,228 (58.9)  23,870 (56.4)  35,433 (60.7) 

CGIs  4,005 (17.4)  20,103 (17.8)  24,728 (16.2) 

↑  Methylation  1,903 (47.5)  7,008 (34.9)  6,303 (25.5) 

↓ Methylation   2,102 (52.5)  13,095 (65.1)  18,425 (74.5) 

CGI shores  5,123 (22.3)  26,151 (23.1)   34,946 (22.9) 

↑  Methylation  2,014 (39.3)  11,274 (43.1)  12,393 (35.5) 

↓ Methylation   3,109 (60.7)  14,877 (56.9)  22,553 (64.5) 
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 Enriched pathways and genes  

The flowchart summarises the systematic methodology of GSEA and the 

selection of GOI for comparative methylation analysis (Figure 5.4). As clusters 

of methylated CpGs appear to be important for the regulation of gene 

transcription (Li and Zhang, 2014), genes that possessed ≥5 DMS within 1 kb 

were selected for GSEA (DvOP5: 3,569 genes; LvLFF4: 4,486 genes).  

 

Figure 5.4 Flowchart of the methodology used to select differentially methylated 
tissue-specific genes (n=9) between donor cell lines and clone hepatocytes. 

Mammary-specific genes (n=4); fetal fibroblast-specific genes (n=2); liver-specific 
genes (n=3) were selected for detailed methylation analysis. Abbreviation(s):  D, Finn 
Dorset; DMS, differentially methylated site; GO, gene ontology; GOI, genes of interest; 
L, Lleyn; LFF4, Lleyn fetal fibroblast; OP5, mammary donor cell line; RRBS, reduced 
representation bisulphite sequencing; SCNT, somatic cell nuclear transfer. 
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All GO terms associated with ‘Biological Process’, ‘Cellular Component’ and 

‘Molecular Function’ significantly enriched within DvOP5 and LvLFF4 

experimental comparisons are presented in Appendix 5.2. The top five terms 

were ranked by number of GOI (Table 5.4). Biological Process GO terms with 

the greatest number of differentially methylated GOI were involved in 

‘anterior/posterior pattern specification’ (33 GOI) and ‘Negative regulation of fat 

cell differentiation’ (15 GOI) for DvOP5 and LvLFF4 experimental comparisons, 

respectively (Table 5.4A). 

The ‘Sequence-specific DNA binding’ Molecuar Function GO term was selected 

for further investigation as it was significantly enriched in both experimental 

comparisons and comprised a high number of differentially methylated GOI 

(DvOP5: 139 genes, LvLFF4: 162 genes; Table 5.4C). Of those GOI, 104 genes 

were common to both DvOP5 and LvLFF4 comparisons (Appendix 5.3). Due to 

the high number of common genes, a reductionist approach was taken to 

minimise the number of genes to a manageable list for comparative methylation 

analysis. In order to do so, common genes (n=104) were cross-referenced with 

the ‘high resolution atlas of gene expression in the domestic sheep (Ovis aries)’ 

published by the Roslin Institute, Edinburgh, UK (Clark et al., 2017; Dataset S2: 

https://doi.org/10.1371/journal.pgen.1006997.s005).  

Interrogation of the atlas revealed 18,994 genes expressed in the mammary 

gland of an adult Texel ewe; 16,388 genes expressed in the 35 Day Texel x 

Scottish Blackface (TxBF) sheep fetal fibroblast; and 18,159 genes expressed 

in the adult Texel liver. Of those, 934 genes were specific to the mammary 

gland; 203 genes were specific to the fetal fibroblast; and, 402 genes were 

specific to the liver (Figure 5.4). Although transcriptomic differences between 

sheep genotypes (e.g. Finn Dorset v Texel and Lleyn v TxBF) were expected, 

the tissue-specific transcriptome data published by Clark et al. (2017) provided 

suitable gene candidates for comparative DNA methylation analysis in the 

present study.  

Of those 104 common genes enriched within the ‘Sequence-specific DNA 

binding’ GO term, 92 are expressed in the mammary gland; 85 in the fetal 

fibroblast; and, 80 in the liver (Figure 5.4). Tissue-specific genes were selected 

to compare methylation reprogramming between clone hepatocytes and their 

respective donor cell lines (mammary, n=4; fetal fibroblast, n=2; liver, n=3) 

based on the hypothesis that expressed genes would exhibit a different degree 

and pattern of methylation than genes repressed in specific-tissues.

https://doi.org/10.1371/journal.pgen.1006997.s005
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Table 5.4 Top five enriched Gene Ontology (GO) terms ranked by number of differentially methylated genes of interest (GOI). 

 

Abbreviation(s): FDR, false discovery rate; GOI, genes of interest; LFF4, Lleyn fetal fibroblast; OP5, mammary donor cell line.

A. Biological Process GO 

Finn-Dorset (D) v OP5 cell line

(n=186)
GOI

FDR

(q-value)

GO:0009952 Anterior/posterior patterning 33 0.0019

GO:0060021 Roof of mouth development 21 0.0275

GO:0042472 Inner ear morphogenesis 19 0.0060

GO:0006909 Phagocytosis 15 0.0403

GO:0001656 Metanephros development 14 0.0001

Lleyn (L) v LFF4 cell line

(n=193)
GOI

FDR

(q-value)

GO:0045599 Regulation of fat cell differentiation 15 0.0471

GO:0035115 Embryonic forelimb morphogenesis 13 0.0435

GO:0010596 Endothelial cell differentiation 11 0.0050

GO:0030878 Thyroid gland development 10 0.0426

GO:0032331 Chondrocyte differentiation 9 0.0255

B. Cellular Component

Finn-Dorset (D) v OP5 cell line

(n=7) 
GOI

FDR

(q-value)

GO:0044309 Neurone spine 3 0.04782

GO:0098839 Postsynaptic density membrane 3 0.04782

GO:0005610 Laminin-5 complex 2 0.0000

GO:0005899 Insulin receptor complex 2 0.0000

GO:0031095 Platelet dense tubular network 2 0.0000

Lleyn (L) v LFF4 cell line

(n=12)
GOI

FDR

(q-value)

GO:0033093 Weibel-Palade body 3 0.0000

GO:0035976 TF AP-1 complex 3 0.0000

GO:0005608 Laminin-3 complex 2 0.0000

GO:0005899 Insulin receptor complex 2 0.0000

GO:0017109 Glutamate-cysteine ligase complex 2 0.0000

C. Molecular Function

Finn-Dorset (D) v OP5 cell line

(n=30)
GOI

FDR

(q-value)

GO:0003700 DNA binding TF activity 160 0.0227

GO:0043565 Sequence-specific DNA binding 139 0.0004

GO:0000981 DNA binding TF activity, RNAPII 37 0.0169

GO:0005089 Rho guanyl-nucleotide exchange 13 0.0008

GO:0001972 Retanoic acid binding 8 0.0001

Lleyn (L) v LFF4 cell line

(n=43)
GOI

FDR

(q-value)

GO:0043565 Sequence-specific DNA binding 162 0.0040

GO:0005089 Rho guanyl-NT exchange factor 14 0.0023

GO:0071889 14-3-3 protein binding 8 0.0380

GO:0001972 Retanoic acid binding 7 0.0074

GO:0004668 Protein-arginine deaminase activity 5 0.0000
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5.3.4.1 Mammary-specific genes  

Figure 5.5 shows mammary-specific genes (POU5F1, BARHL2, SOX30, 

LMX1A) enriched within the ‘Sequence-specific DNA binding’ GO term ranked 

according to their total number of DMS clusters. In general, DMS within these 

mammary specific genes were hypermethylated in the OP5 and LFF4 somatic 

donor cell lines relative to the clone hepatocytes. Furthermore, their degree of 

hypermethylation was significantly greater in the OP5 mammary cell line relative 

to the D clone hepatocyte, than in the LFF4 cell line relative to the L clone 

hepatocyte (P<0.001; Figure 5.5B, Figure 5.5D). The exception to this rule was 

LIM Homeobox Transcription Factor 1 Alpha (LMX1A) which was generally 

hypermethylated in the D clone hepatocyte relative to the OP5 mammary cell 

line. Out of 14 DMS identified in the LMX1A gene sequence, six DMS located 

at the 5’-end were hypomethylated in the D clone hepatocyte, whereas eight 

located towards the 3’-end of were hypermethylated in the D clone hepatocyte 

relative to the OP5 mammary cell line (Figure 5.5E).  

The POU class 5 homeobox 1 (POU5F1) gene had the greatest number of DMS 

clusters (n=3) in both DvOP5 and LvLFF4 experimental combinations (Figure 

5.5A). The POU5F1 gene encodes octamer-binding transcription factor-4 

(OCT4), a protein that establishes and maintains pluripotency during embryonic 

development and serves as a core molecular marker of stem cells (Shi and Jin, 

2010). Although silenced in the vast majority of terminally differentiated somatic 

cell types, expression of POU5F1 is upregulated in the lactating mammary 

gland, thereby highlighting a potential role of the pluripotency gene network in 

mammary stem cell self-renewal that drives the remodelling of the gland into a 

fully mature milk-secretory organ (Hassiotou et al., 2013).   

The five-exon structure of POU5F1 is conserved across mammalian orthologs 

(Medvedev et al., 2008). However, little is known about epigenetic regulation of 

POU5F1 gene expression in sheep, thus, its regulatory regions have not been 

fully deciphered. The present study found clusters of DMS within the POU5F1 

gene that were located around the exon-intron 1 junction in both DvOP5 and 

LvLFF4 experimental comparisons (Figure 5.6). A study in rabbit blastocysts 

reported progressive methylation within the 5′ regulatory region and the first 

exon that accompanied cellular differentiation and the gradual repression of 

POU5F1 (Canon et al., 2018). Whilst the biological relevance of this pattern of 

differential methylation is uncertain in the absence of complementary 
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transcriptomic data, it follows that methylation within this region may be 

responsible for the transcriptional regulation of POU5F1.  

In humans, the POU5F1 gene comprises three main isoforms (OCT4A, OCT4B 

and OCT4B1) that are generated by alternative splicing. These variants are 

different at the 5’-end and identical at the 3’-end as exon 1 is present in OCT4A 

but is spliced in OCT4B and OCT4B1 (Wang and Dai, 2010). If similar POU5F1 

transcript variants exist in sheep, perhaps the sharp transition in methylation 

that surrounds the exon-intron 1 boundary (Figure 5.6) marks the regulatory 

region for alternative splicing of the ovine POU5F1 gene.  

5.3.4.2 Fetal fibroblast-specific genes  

Figure 5.7 presents the differential methylation of fetal fibroblast-specific genes 

enriched within the ‘Sequence-specific DNA binding’ GO term between somatic 

donor cell lines and clone hepatocytes. Paired like homeodomain 1 (PITX1) and 

Paired box protein Pax-7 (PAX7) are transcription factors involved in the 

reprogramming of fetal fibroblasts into skeletal muscle progenitor cells (Ito et 

al., 2017). Differentially methylated sites identified within both genes were 

hypermethylated in the LFF4 donor cell line relative to the L clone hepatocytes 

(Figure 5.7B, Figure 5.7C). However, DMS within the PAX7 gene were 

hypomethylated in the OP5 mammary cell line relative to the D clone hepatocyte 

(Figure 5.7C).  

Methylation analysis of individual DMS across the PITX1 gene shows that DMS 

at the 5’-end of the sequence tend to be hypermethylated in the somatic donor 

cell lines relative to the clone hepatocytes, whilst those at the 3’-end of the 

sequence tend to be hypomethylated in the donor cells relative to clone 

hepatocytes (Figure 5.7B, Figure 5.8). This pattern of differential methylation 

along the gene sequence was similar for both DvOP5 and LvLFF4 experimental 

comparisons. However, the degree of differential methylation was greater 

between D and OP5, than between L and LFF4 (Figure 5.7B, Figure 5.8). The 

observation that CpG methylation was altered in the same direction at common 

sites for both experimental comparisons suggests that their specific methylation 

status may be, at least in part, important for cell fate reprogramming to produce 

hepatocytes irrespective of the somatic donor cell type.  

A recent assessment of the DNA methylation profile of the PITX1 gene in the 

goat mammary gland revealed that methylation of a CGI located within the 3’-
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flanking region of the gene was correlated with lactation performance. A 

reduction in methylation was observed within this region during lactation, 

however, the gene was not expressed in the mammary gland during the dry or 

lactational period (Zhao et al., 2019). Since differential methylation was 

observed within the 3’ region of PITX1 between the OP5 mammary cell line and 

D clone hepatocytes in the present study, it is plausible that methylation within 

this genomic region could provide an epigenetic marker of cell phenotype and 

function (e.g. indicator of lactational performance) independent of mRNA 

transcript expression. 

Genetic markers in the form of SNPs and copy-number variations have been 

identified and associated with complex production traits in livestock (König et 

al., 2009). It is, however, accepted that genomic information alone does not 

account for all of the heritable variation in traits of interest. A review by Ibeagha-

Awemu and Zhao (2015) discusses the potential of epigenetic marker-assisted 

selection (eMAS) in livestock production programmes. Essentially, this entails 

the use of stable and transgenerationally inherited epigenetic marks (e.g. DNA 

methylation) that can be used as prognostic tools for certain phenotypic traits 

and disease aeitiology (Flintoft, 2010). The characterisation of stable and 

functional epigenetic modifications could not only prove useful for eMAS in 

selective breeding at the DNA level (Zhao et al., 2019), but may also prove 

useful targets to further investigate and evaluate the economic, health and 

wellbeing traits of cloned animals.  

5.3.4.3 Liver-specific genes  

The differential methylation of liver-specific genes between the somatic donor 

cell lines and clone hepatocytes is presented in Figure 5.9. Lim homeobox 5 

(LHX5) is involved in patterning and differentiation of diverse cell types during 

embryonic development, primarily cells within the central nervous system (Zhao 

et al., 2000; Figure 5.9D). Forkhead box transcription factors (FOXA2 and 

FOXN4) are critical for the development of numerous endodermal tissues, 

including the liver (Lee et al., 2005; Gosalia et al., 2015; Figure 5.9B, Figure 

5.9C). In particular, the Forkhead box A2 (FOXA2) is a ‘pioneer’ transcription 

factor meaning that it recognises binding sites on nucleosomal DNA and alters 

chromatin structure to permit the recruitment of downstream transcription 

factors during endoderm differentiation (Cernilogar et al., 2019).  
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Differentially methylated sites identified within the FOXA2 gene were generally 

hypomethylated in OP5 and LFF4 donor cell lines relative to D and L clone 

hepatocytes (Figure 5.9B, Figure 5.10). It may seem paradoxical that tissue-

specifc genes, such as FOXA2, that are expressed exclusively in the liver (and 

not in the mammary cell or fetal fibroblast) have DMS that were 

hypermethylated in clone hepatocytes but hypomethylated in the OP5 and LFF4 

cell lines. An unexpected methylation pattern was also described by Halpern 

and others (2014), who found a CGI within the promoter region of the human 

FOXA2 gene that displayed high levels of methylation in expressing tissues, but 

low levels in non-expressing tissues. The authors postulated that the lack of 

CpG methylation permitted the binding of repressive proteins, such as 

Polycomb complexes, which in turn inhibited FOXA2 gene expression (Halpern 

et al., 2014).  

Figure 5.10 shows that the majority of DMS that were hypermethylated in the 

liver (and hypomethylated in the donor cell line) were common to both 

experimental comparisons (DvOP5 and LvLFF4) and were located within the 

exon 2 of the FOXA2 gene. Whilst it is well-accepted that the enrichment of 

DNA methylation within gene bodies is positively correlated with gene 

expression (Yang et al., 2014), the functional significance of CpG 

hypermethylation within the final exon of FOXA2 with respect to gene 

transcription is unknown. 
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Figure 5.5 Differential methylation of mammary-specific genes (n=4) between clone sheep hepatocytes and their somatic donor cell lines.  

A. Mammary-specific genes

Data analysed using REML analysis. Bars represent mean 

 SEM. Scatter plots represent mean difference (Δ) in 

methylation between clone hepatocyte and donor cell line 

(D-OP5, L-LFF4) at individual DMS in 5’  3’ orientation 

along gene sequence. 

Abbreviation(s):  BARHL2, BarH Like Homeobox 2 ; Chr, 

chromosome; D, Finn Dorset; DMS, differentially methylated 

site; GOI, gene of interest; L, Lleyn; LFF4, Lleyn fetal

fibroblast; LMX1A, LIM Homeobox Transcription Factor 1 

Alpha; OP5, mammary donor cell line; POU5F1, POU class 

5 homeobox 1; SOX30, SRY-Box Transcription Factor 30. 
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Figure 5.6 Clusters of differentially methylated sites (DMS) in the POU5F1 gene are hypermethylated in somatic donor cell line (OP5 and LFF4) 
relative to clone hepatocyte (D and L).   

Bedgraphs demonstrate loss (↓, hypomethylation) and gain (↑, hypermethylation) of methylation at individual cytosine residues, and location of DMS clusters -- 
Abbreviation(s): D, Finn Dorset; L, Lleyn; LFF4, Lleyn fetal fibroblast; OP5, mammary donor cell line; POU5F1, POU class 5 homeobox 1. 
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Figure 5.7 Differential methylation of fetal fibroblast-specific genes (n=2) between clone sheep hepatocytes and their somatic donor cell lines. 

A. Fetal fibroblast-specific genes

GOI with

DMS clusters

(n=2)

DvOP5 LvLFF4

Cluster

count

DMS

count

Cluster

count

DMS

count

PITX1 7 61 5 48

PAX7 1 40 6 64

Data analysed using REML analysis. Bars represent mean 

 SEM. Scatter plots represent mean difference (Δ) in 

methylation between clone hepatocyte and donor cell line 

(D-OP5, L-LFF4) at individual DMS in 5’  3’ orientation 

along gene sequence. 

Abbreviation(s): Chr, chromosome; D, Finn Dorset; DMS, 

differentially methylated site; GOI, gene of interest; L, Lleyn;

LFF4, Lleyn fetal fibroblast; OP5, mammary donor cell line; 

PAX7, Paired Box 7; PITX1, Paired Like Homeodomain 1.
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Figure 5.8 Clusters of differentially methylated sites (DMS) in the PITX1 gene are hypermethylated in somatic donor cell line (OP5 and LFF4) 
relative to clone hepatocyte (D and L).   

Bedgraphs demonstrate loss (↓, hypomethylation) and gain (↑, hypermethylation) of methylation at individual cytosine residues, and location of DMS clusters -- 
Abbreviation(s): D, Finn Dorset; L, Lleyn; LFF4, Lleyn fetal fibroblast; OP5, mammary donor cell line; PITX1, Paired like Homeodomain 1.
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Figure 5.9 Differential methylation of liver-specific genes (n=3) between clone sheep hepatocytes and their somatic donor cell lines. 

Data analysed using REML analysis. Bars represent mean ± SEM. Scatter plots represent mean difference (Δ) in methylation between clone hepatocyte and 
donor cell line (D-OP5, L-LFF4) at individual DMS in 5’  3’ orientation along gene sequence. Abbreviation(s): Chr, chromosome; D, Finn Dorset; DMS, 
differentially methylated site; FOXA2, Forkhead box protein A2; FOXN4, Forkhead Box N4; GOI, gene of interest; L, Lleyn; LFF4, Lleyn fetal fibroblast; LHX5, 
LIM homeobox 5; OP5, mammary donor cell line.  

A. Liver-specific genes

GOI with

DMS clusters

(n=3)

DvOP5 LvLFF4

Cluster

count

DMS

count

Cluster

count

DMS

count

FOXA2 4 38 6 46

FOXN4 2 22 4 27

LHX5 1 13 1 22
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Figure 5.10 Clusters of differentially methylated sites (DMS) in the FOXA2 gene are hypomethylated in somatic donor cell line (OP5 and LFF4) 
relative to clone hepatocyte (D and L).  

Bedgraphs demonstrate loss (↓, hypomethylation) and gain (↑, hypermethylation) of methylation at individual cytosine residues, and location of DMS clusters -- 
Abbreviation(s): D, Finn Dorset; FOXA2, Forkhead Box A2; L, Lleyn; LFF4, Lleyn fetal fibroblast; OP5, mammary donor cell line.
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 Imprinted genes  

As referred to earlier (Section 5.1), SCNT has been linked to aberrant 

methylation of imprinted genes and developmental anomalies in mammalian 

offspring (Young et al., 2001; Chen et al., 2017). The present study identified 

16 genes that are recognised as imprinted in sheep or cattle (Catalogue of 

Imprinted Genes; http://igc.otago.ac.nz/home.html) that were differentially 

methylated between DvOP5 and/or LvLFF4 experimental comparisons (Table 

5.5).  

Table 5.5 Imprinted genes in sheep and/or cattle that were differentially 
methylated between clone hepatocytes and donor cell lines.  

DvOP5 
 

 
LvLFF4 

 

Gene  
Cluster 
count 

DMS  
count 

 
Cluster  
count 

DMS  
count 

DLK1 ♀ 7 65  6 64 
GRB10 ♂ 4 39  9 69 
IGF2R ♂ 3 41  5 61 

SLC6A3 ♀ 3 28  1 26 
IGF2 ♀ 2 18  5 29 

GNAS ♂ 1 7  7 39 
USP29 ♂ 1 8  1 8 
UBE3A ♂ 1 5  1 5 
PLAGL1 ♀ 1 6  - 5 
PEG10 ♀ - 2  3 23 
MKRN3 ♂ - 17  2 28 
MAGEL2 ♀ - 2  1 5 
NAP1L5 ♀ - 1  - - 
PON3 ♂ - 1  - 4 
MAGI2 ♂ - 1  - 3 
NNAT  ♀ - 1  - 3 

Adapted from the Catalogue of Imprinted Genes (http://igc.otago.ac.nz/home.html). 
Abbreviation(s): D, Finn Dorset; DMS, differentially methylated site; L, Lleyn; LFF4, 
Lleyn fetal fibroblast; OP5, mammary donor cell line. Imprinted genes with differentially 
methylated sites (DMS). Paternally imprinted gene (♂), maternally imprinted gene (♀). 

Genes in white represent 6 of 20 records in ovine catalogue. Genes shaded in grey: 10 

of 45 records in bovine catalogue.  

Clear differences in CpG methylation of imprinted genes between D clone 

hepatocytes and their founder OP5 mammary cell line were observed (Figure 

5.11A). Likewise, patterns of methylation in imprinted genes were distinct 

between L clone hepatocytes and the LFF4 cell line (Figure 5.11B). Differences 

in methylation of imprinted genes between D and L hepatocytes are likely due 

to differences in genotype (Figure 5.11). As genomic imprinting is species-, 

tissue- and stage-specific, with some genes partially imprinted in certain tissues 

(Bebbere et al., 2013; O’Doherty et al., 2015), it is uncertain whether the 

differential methylation measured between clone hepatocytes and their donor 

http://igc.otago.ac.nz/home.html
http://igc.otago.ac.nz/home.html
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cell lines had any effect on the imprinted status of these genes in the cell types 

studied. Moreover, without methylation assessment of positive control 

hepatocytes isolated from an uncloned (i.e. naturally conceived) Finn Dorset 

and Lleyn sheep, it was not possible to determine the effect of the SCNT 

procedure on the methylation status of imprinted genes in the liver of cloned 

sheep.  

 

Figure 5.11 CpG methylation levels of imprinted genes (n=16) differ between the 
OP5 donor cell line and D clone hepatocytes (A), and between the LFF4 donor 
cell line and L clone hepatocytes (B).  

Colours indicate methylation level (%) from low (blue) to high (red) of differentially 
methylated sites (DMS) within imprinted genes enriched within mammary cell (OP5), 
Lleyn fetal fibroblast (LFF4), Finn Dorset hepatocyte (D) and Lleyn hepatocyte (L).  

A

B
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5.3.5.1 Delta-like 1 (DLK1) and Growth factor receptor bound protein 10 

(GRB10)  

Imprinted genes that harboured the greatest number of DMS between DvOP5 

and LvLFF4 experimental comparisons were Delta-like 1 (DLK1) and Growth 

factor receptor bound protein 10 (GRB10), respectively (Table 5.5; Figure 5.12). 

The DLK1 gene encodes a ligand that promotes fetal growth and restricts 

adipose deposition, whereas GRB10 encodes a signalling protein that restricts 

fetal growth and promotes adipose deposition (Madon-Simon et al., 2014). Both 

genes are reciprocally imprinted and antagonistically expressed to define a 

mammalian growth axis independent of the insulin-like growth factor (IGF) 

pathway (Madon-Simon et al., 2014). It follows that genetic and epigenetic 

dysregulation of these genes can lead to disproportionate fetal growth, and 

impaired energy metabolism (Charalambous et al., 2003; Madon-Simon et al., 

2014). In sheep, a SNP (A-to-G substitution) located within the DLK1-DIO3 

imprinted gene cluster on ovine chromosome 18 imposes a distinct 

hypomethylation mark in cis orientation that leads to long-range intergenic 

transcription and ectopic expression of DLK1 in skeletal muscle which, in turn, 

results in the ‘callipyge’ muscular hypertrophy phenotype (Takeda et al., 2006; 

O’Doherty et al., 2015). In mice, mutant studies have associated LOI of DLK1 

with adult-onset obesity and metabolic syndrome (Peters, 2014). 

Like many imprinted genes, DLK1 and GRB10 share complex tissue-specific 

expression patterns, however, most of the research pertains to studies in mice 

where both genes are imprinted in the liver (Gagne et al., 2014), embryonic 

fibroblasts (Tran et al., 2014) and mammary epithelial cells (Cowley et al., 2014; 

Hanin and Ferguson-Smith, 2020). The present study found that DMS located 

within the DLK1 gene were generally hypermethylated in clone hepatocytes 

relative to their respective donor cell lines. In particular, the methylation 

difference between the D clone hepatocyte and the OP5 cell line was 

significantly greater than the difference between the L clone hepatocyte and the 

LFF4 cell line (P<0.001; Figure 5.12A). Conversely, Figure 5.12B shows that 

DMS located within GRB10 were typically hypomethylated in clone hepatocytes 

compared to their donor cell lines. Because monoallelic bivalent chromatin 

domains (i.e. parent allele-specific histone modifications) have been implicated 

in the regulation of expression of GRB10 and other imprinted genes (Sanz et 

al., 2008), CpG methylation alone cannot explain tissue-specific differences in 
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genomic imprinting nor can it explain the full effect of SCNT on the epigenetic 

reprogramming of imprinted genes.   

 

Figure 5.12 Differential methylation of imprinted genes, DLK1 and GRB10, 
between clone sheep hepatocytes and their somatic donor cell lines. 

Data analysed using REML analysis. Bars represent mean ± SEM. Scatter plots 
represent mean difference (Δ) in methylation between clone hepatocyte and donor cell 
line (D-OP5, L-LFF4) at individual DMS in 5’  3’ orientation along gene sequence. 

Abbreviation(s): Chr, chromosome; D, Finn Dorset; DLK1, Delta-like 1; DMS, 
differentially methylated site; GRB10, Growth factor receptor bound protein 10; L, Lleyn; 
LFF4, Lleyn fetal fibroblast; OP5, mammary donor cell line. 
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5.3.5.2 Insulin-like growth factor 2 receptor (IGF2R) 

In keeping with the previous discussion concerning nuclear transfer and 

aberrant imprinted expression of IGF2R, the present study identified clusters of 

CpGs located within the IGF2R gene that were differentially methylated 

between DvOP5 and LvLFF4 experimental comparisons (Table 5.5; Figure 

5.13). The majority of the DMS were hypomethylated in clone hepatocytes 

relative to their donor cell lines. However, methylation differences were 

significantly greater between D clone hepatocytes and the OP5 cell line, than 

between L clone hepatocytes and the LFF4 cell line (P<0.05; Figure 5.13). 

Differentially methylated sites were located in several exonic and intronic 

regions of the gene. Only one CpG (nucleotide position 82885570) was 

differentially methylated within intron 2 which is the genomic region comprising 

the putative regulatory region, DMR2 (Figure 5.14). 

 

Figure 5.13 Differential methylation of IGF2R gene between clone sheep 
hepatocytes and their somatic donor cell lines. 

Data analysed using REML analysis. Bars represent mean ± SEM. Scatter plots 
represent mean difference (Δ) in methylation between clone hepatocyte and donor cell 
line (D-OP5, L-LFF4) at individual DMS in 5’  3’ orientation along gene sequence.  

Abbreviation(s): Chr, chromosome; D, Finn Dorset; IGF2R, insulin-like growth factor 2 
receptor; L, Lleyn; LFF4, Lleyn fetal fibroblast; OP5, mammary donor cell line.  

In sheep, IGF2R is thought to be paternally imprinted and maternally expressed 

in adult somatic tissues (Table 5.5; Killian et al., 2001). As mentioned 

previously, it is uncertain whether the differential methylation detected between 

clone hepatocytes and their donor cell lines affects the imprinted status of 

IGF2R in these cell types. As discussed in Section 4.3.2.6.3, a plethora of 

chromatin structural features, such as histone modifications, operate in 
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conjunction with differential methylation to distinguish the parental alleles at the 

imprint control region (Sleutels et al., 2002; Long and Cai, 2007). Thus, with 

respect to genomic imprinting, development and long-term health, DNA 

methylation is only a small part of the complex story.  

Hypomethylation within IGF2R DMR2 has been associated with SCNT and LOS 

in sheep (Young et al., 2001; Young et al., 2003). However, IGF2R methylation 

levels appeared normal in adult somatic tissues derived from cloned calves that 

died within 24 h of birth relative to healthy clones and animals born by artificial 

insemination (Smith et al., 2015). Furthermore, maternal IGF2R DMRs in 

tissues isolated from in vivo-derived or cloned individuals were consistently 

hypermethylated, irrespective of whether the clones were born in good health. 

Yet, the finding that biallelic IGF2R expression was higher in in vivo-derived 

animals than in clones implies that an alternative epigenetic mechanism may 

be responsible for altering its expression following nuclear transfer (Smith et al., 

2015).  
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Figure 5.14 Clusters of differentially methylated sites (DMS) in the IGF2R gene between somatic donor cell line (OP5 and LFF4) and clone 
hepatocyte (D and L).  

Bedgraphs demonstrate loss (↓, hypomethylation) and gain (↑, hypermethylation) of methylation at individual cytosine residues, and location of DMS clusters -- 
Abbreviation(s): D, Finn Dorset; IGF2R, insulin-like growth factor 2 receptor; L, Lleyn; LFF4, Lleyn fetal fibroblast; OP5, mammary donor cell line. 

Intron 2
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5.4 Concluding remarks 

Reduced representation bisulphite sequencing (RRBS) analyses revealed cell 

type-specific DNA methylation signatures between clone hepatocytes and their 

respective somatic donor cell lines. The finding that methylation was more 

closely correlated between D and L clone hepatocytes than between clones and 

their founder cells indicated that the hepatic methylome was driven primarily by 

cell phenotype and function, rather than by methylation reprogramming errors 

following SCNT. Given that the cloned animals used in the present study 

developed to term and aged healthily according to measured musculoskeletal, 

metabolic and blood pressure parameters (Sinclair et al., 2016), it may be 

assumed that epigenetic reprogramming was successfully achieved to facilitate 

their normal development to an advanced age.  

The present study measured a higher degree of differential methylation between 

L clone hepatocytes and their LFF4 donor cell line, than between D clone 

hepatocytes and their OP5 donor cell line. The LFF4 cell line was more 

hypermethylated relative to the L clone hepatocyte (Table 5.2). Whether or not 

this greater difference in somatic donor cell type methylation had any bearing 

on the efficiency of epigenetic reprogramming remains inconclusive. Measuring 

the effect of donor cell type on methylation reprogramming of isolated 

hepatocytes following SCNT was confounded by the fact that donor cells were 

derived from two different sheep breeds. Although nucleotide bases at known 

SNP positions were removed during bioinformatic analyses in order to avoid 

methylation differences that were related to genotype, it is plausible that there 

was a minor effect of genotype on epigenetic regulation of gene expression via 

DNA methylation. Hepatocytes isolated from a contemporaneous group of 

naturally conceived sheep that were of the same age, genotype (D and L) and 

environment would, therefore, have served as ideal positive control samples to 

accurately assess whether the methylation status of clone hepatocytes was due 

to aberrant epigenetic reprogramming or cell type.   

Gene set enrichment analysis identified a subset of genes that encoded 

transcription factor proteins involved in ‘Sequence-specific DNA binding’ as 

differentially methylated between clone hepatocytes and their donor cell lines. 

This was not surprising given that transcription factors govern the complex 

system of gene expression control that permits cellular differentiation and 

development in multicellular oganisms (Davidson, 2010). In addition to 
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investigating the differential methylation between clone hepatocytes and their 

respective donor cell lines (DvOP5, LvLFF4), it may be interesting to explore 

differential methylation of these transcription factor genes between the two 

donor cell lines (OP5vLFF4) to determine the methylation difference between 

them. Replicate samples of somatic donor cell lines would be required for DNA 

methylation analysis in order to do this accurately and reliably.  

As the present study did not measure the transcriptome of the clone 

hepatocytes and their respective donor cell lines, it was useful to select tissue-

specific GOI for detailed methylation analyses using the Sheep Genome Atlas 

(Clark et al., 2017). As the largest open access resource of any livestock 

species, the atlas provides RNA-seq libraries from cells and tissues that 

represent the major organ systems from prenatal, neonatal, juvenile and adult 

developmental time points. Whilst reuse of the atlas spared time, duplication of 

effort and financial expense, there are a number of caveats which concern the 

validity of its use to assess cell type-specific methylation in the current study. 

Firstly, transcriptomic data published in the atlas is restricted to Texel and TxBF 

sheep with no available data for D or L genotypes. Secondly, the data is 

representative of isolated cell populations (e.g. mammary gland, embryonic 

fibroblast) rather than cell lines (e.g. OP5, LFF4) which could be epigenetically 

different if methylation differences are induced by cell culture. Thirdly, it is 

important to acknowledge that methylation differences between cell types do 

not necessarily correlate with transcriptional (or translational) differences. 

Future work could, therefore, measure mRNA transcript abundance of the nine 

mammary-, fetal fibroblast- and liver-specific transcription factor genes that 

were differentially methylated between clone hepatocytes and donor cells.  

Several imprinted genes were differentially methylated between clone 

hepatocytes and donor cells. Since imprinted genes affect various livestock 

production traits, including milk yield, carcass quality, fat and muscle deposition, 

and embryonic development (Smith et al., 2015), an improved understanding of 

their functional sequences, methylation status, and transcriptional/translational 

control in different ruminant tissues is warranted to assess the merit of cloning 

as a safe and efficacious reproductive technology of the future. Studies 

investigating the involvement of imprinted genes in the aetiology of fetal 

overgrowth following SCNT could compare the methylome of donor cells with 

cell types (cardiovascular, neural) commonly affected in LOS in cloned animals.
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Discussion and Conclusion
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6.1 General discussion 

One-carbon metabolism serves as a biochemical conduit between external 

environment and epigenetic regulation of early development (Clare et al., 2019). 

The periconceptional period is highly sensitive to the availability of methionine 

and other key 1C metabolites for the provision of methyl donors for methylation 

reactions (Sinclair et al., 2007; Louis et al., 2008; Maloney et al., 2011; 

Steegers-Theunissen et al., 2013; Padhee et al., 2015). It is well-documented 

that reproductive failures and problems associated with epigenetic 

programming of offspring health are due to disturbances in 1C pathways during 

periconceptional development. It follows that altering the levels of 1C substrates 

and cofactors (e.g. methionine) in the maternal diet (in vivo) or in embryo culture 

media (in vitro) can affect epigenetic programming of mammalian development 

via changes to DNA methylation (Chapter 1; Table 1.6). In addition, embryo 

manipulation procedures during ART (e.g. IVP and SCNT) can lead to heritable 

alterations to the epigenome that are linked to subsequent development and 

late-onset chronic disease (Young et al., 1998; Young et al., 2001; Young et al., 

2003; Kohda and Ishino, 2013).  

Whilst 1C metabolite status during periconceptional development has an 

important impact on pregnancy outcome (Chapter 1; Section 1.1.1.2), most of 

the research investigating the function of 1C metabolic pathways pertains to 

studies undertaken in the liver where the full complement of 1C metabolism 

enzymes are expressed (Balaghi et al., 1993). Comparatively little research has 

been conducted in reproductive cells and embryos, however, the literature 

suggests that 1C metabolism is functional in these cell types (Steele et al., 2005; 

Bhenkhalifa et al., 2010; Ikeda et al., 2010; Lee et al., 2012).  Due to the 

absence or low expression of specific methionine cycle enzyme transcripts 

(MAT1A and BHMT) in bovine ovarian and embryonic cells (Kwong et al., 2010), 

it has been proposed that 1C metabolism functions differently in these cell types 

compared to the liver. Species- and tissue-specific differences in 1C metabolism 

mean that mathematical models based on the rodent liver are not entirely 

suitable to model 1C metabolic function in all mammalian species and tissue 

types. In addition, the complexity and multitude of allosteric interactions involved 

in 1C metabolism makes it a considerable challenge to evaluate the impact of 

nutritional or environmental perturbation to 1C pathways within different cell 

types.   
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Understanding the function of 1C metabolism in ruminants is of considerable 

economic importance to the livestock production industry. Cattle and sheep 

have low dietary intake of methyl donors in the post-ruminant state and are, 

therefore, sensitive to perturbations to 1C metabolic pathways (Snoswell and 

Xue, 1987). Moreover, ART procedures that involve the in vitro handling of 

gametes and embryos have been employed to achieve genetic improvement in 

domestic ruminant species (Chakravarthi and Sri Balaji, 2010). Since embryonic 

manipulation and non-physiological in vitro culture environments can lead to 

defective epigenetic reprogramming and fetal overgrowth in livestock species 

(Young et al., 2001), the widespread application of these technologies remains 

limited. This thesis, therefore, sought to improve current understanding of the 

regulation of 1C metabolism in the ruminant liver, ovary and preimplantation 

embryo through in vivo and in vitro nutritional supplementation experiments 

coupled with metabolomic, transcriptomic and epigenetic analyses.  

6.2 Summary of key findings  

Most of the research investigating 1C metabolism in ruminants have used 

enzyme activity assays in sheep liver (Xue and Snoswell, 1985; Xue and 

Snoswell, 1986; Snoswell and Xue, 1987). However, the function of 1C 

metabolism can also be monitored by the quantitative measurement of hepatic 

1C metabolic intermediates (Xu et al., 2020). As the liver is the largest metabolic 

organ of the body responsible for 50% of methionine metabolism and 85% of 

methylation reactions (Lu and Mato, 2012), it was hypothesised that relevant 

reductions in dietary methyl group availability would lead to significant 

alterations to hepatic 1C metabolite concentrations. The study reported in 

Chapter 2 addressed this hypothesis in sheep, and provided an unprecedented 

insight into the metabolic burden of methyl deficiency in an outbred population 

of domestic ruminant species. Not only are sheep a species of clinical interest 

with respect to methyl group (i.e. vitamin B12) deficiency, but they are a suitable 

model for humans.  

There was a considerable heterogeneity in hepatic levels of individual 1C 

metabolites measured in Ab and MD sheep study populations which reflected 

the dietary and genetic variation in the chosen model species. Importantly, there 

was a significant difference in hepatic levels of B vitamins, folates and 1C-

related amines between Ab and MD sheep. Diminished methionine and B 

vitamins (primarily B12), caused an accumulation of 5-mTHF in liver during a 
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physiological response to impending methyl deficiency known as the ‘methyl-

folate trap’. In particular, the marked reduction in B vitamins, which serve as 

bioactive coenzymes or as a reserve pool for coenzyme synthesis, had a 

cumulative ‘knock-on’ effect throughout linked 1C metabolism pathways in MD 

liver. This ‘knock-on’ effect was illustrated by a decrease in amino acid 

intermediates, and concurrent increase in polyamines and propionate 

metabolites in MD liver. This study confirmed that moderate reductions to 

dietary inputs can have a global impact on 1C metabolism and related pathways 

in sheep liver, ultimately leading to system-wide alterations to biochemistry and 

physiology.  

Extending from ruminant hepatocytes to reproductive cells, Chapter 3 

investigated the effect of altering methyl group (i.e. methionine) availability on 

bovine preimplantation embryo development. The first experiment confirmed 

that cells of the bovine follicle-enclosed oocyte and preimplantation embryo lack 

specific methionine cycle enzymes and may, therefore, be particularly sensitive 

to methionine supply. In accordance with previous studies, MAT2A was 

detected in the somatic cells of the ovary, oocyte and preimplantation embryo 

(Ikeda et al., 2010; Kwong et al., 2010), and BHMT was detected in oocytes and 

morulae (Benkhalifa et al., 2008; Ikeda et al., 2010; Lee et al., 2012). It is 

possible that transient expression of BHMT at the morula stage precedes 

protein translation at the blastocyst stage in bovine embryos, however, further 

research is required for clarity. This study was the first to detect BHMT2 in 

somatic cells of the bovine ovary and the oocyte, suggesting that reproductive 

cells are equipped to use S-methylmethionine (SMM) to generate methionine 

(Chapter 3; Section 3.3.1). However, the levels of this substrate in follicular fluid, 

ovarian cells and oocytes have not been measured and the mechanisms of 

uptake in reproductive cells are unknown.  

The second experiment of Chapter 3 sought to establish the developmental 

competence of bovine embryos produced under in vitro culture conditions 

containing 0, 10, 50 and 500 μmol/L of added methionine. Although previous 

studies introduced variable methionine concentrations from the point of embryo 

culture (Bonilla et al., 2010), no such study had investigated the effect of altering 

methionine from the point of oocyte maturation. This study reported that altering 

methionine throughout all stages of IVP had a significant effect on embryo 

development. Embryos cultured in non-physiological (0 μmol/L added) or 

supraphysiological (500 μmol/L added) methionine concentrations exhibited 
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reduced development to blastocyst stage, and a low proportion of these 

embryos were developmentally advanced relative to embryos cultured at 

physiological concentrations. Of those tested, the high physiological 

concentration of methionine (50 μmol/L added) appeared to be optimal for 

development, as reflected by the increased proportion of advanced, grade 1 

(transferable quality) blastocysts that possessed the greatest total cell number 

and TE outgrowth.  

In addition to the observed phenotypic effects, Chapter 4 found that reducing 

methionine within physiological limits (from 50 to 10 μmol/L added) during IVP 

significantly reduced DNA methylation within the primary cell lineages of Day 8 

bovine blastocysts. Although both cell lineages were hypomethylated following 

culture in low methionine, the TE had a greater number of DMS compared to 

the ICM. Moreover, different GO terms and KEGG pathways were significantly 

enriched between the cell lineages following culture in low methionine. Terms 

enriched within the ICM were involved in protein catabolism and autophagy, 

whereas terms enriched within the TE were involved in cellular transport and 

cell cycle progression. Taken together, these findings imply that the contribution 

of the two primary cell lineages to methionine metabolism within the whole 

blastocyst is different and warrants further investigation.   

Six imprinted genes, including IGF2R, were differentially methylated in bovine 

blastocysts in response to low physiological methionine. Loss of methylation 

within DMR2 of IGF2R appears to be causative of LOS in ruminants exposed 

to ART procedures (Young et al., 2001; Young et al., 2003). Detailed 

methylation analysis of this regulatory region identified two clusters of DMS 

within DMR2 that were hypomethylated in the TE of Day 8 bovine blastocysts 

following culture in low physiological methionine. Considering that IGF2R 

expression is not imprinted by the paternal AIRN transcript until the 

postimplantation stage (Day 18), it was not surprising that methionine 

concentration had no effect on IGF2R and AIRN transcript expression in Day 8 

bovine blastocysts. Repeating these methylation and transcriptomic analyses in 

cell lineages isolated from postimplantation stage embryos would help to 

illuminate the putative role of DMR2 methylation on imprinted expression of 

IGF2R by AIRN.  

In addition to the nutrient composition of culture media, accumulating evidence 

suggests that embryonic manipulaton during ART procedures, such as SCNT, 

can alter the epigenome of embryos with adverse effects for offspring health 
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and development (Kang et al., 2003; Rhind et al., 2003; Smith et al., 2012). 

One-carbon metabolic pathways provide a biochemical conduit between 

environment and epigenetic regulation of mammalian development by 

supplying methyl groups for methylation reactions. It follows that perturbations 

to 1C pathways, brought about by embryo manipulation or nonphysiological 

culture environments used in SCNT, can disrupt the dynamic methylation 

reprogramming events that take place during early embryo development (Figure 

3.1). In some cases, this can lead to the developmental failure of cloned 

embryos. As discussed earlier (Section 5.1), it has been reported that cloned 

embryos only partially demethylate their genomes and begin the de novo 

methylation process earlier than their in vivo-derived counterparts (Dean et al., 

2001; Kang et al., 2001). If donor cell methylation patterns are maintained this 

can result in the continuous expression of tissue-specific genes and inefficient 

activation of genes critical for embryonic development, thereby reducing the 

competence of reconstructed embryos (Peat and Reik, 2012; Niemann et al., 

2016). 

With this in mind, Chapter 5 investigated the effect of somatic donor cell type 

(e.g. OP5, mammary; LFF4, fetal fibroblast) on reprogramming efficiency by 

measuring CpG methylation in hepatocytes isolated from Finn Dorset (D) and 

Lleyn (L) cloned sheep. In general, somatic cell nuclei were hypermethylated 

relative to clone hepatocytes, and the difference in methylation was greatest 

between LFF4 donor cells and L clone hepatocytes. A subset of imprinted 

genes, and genes encoding transcription factors in mammary, fetal fibroblast 

and liver cells, were differentially methylated between donor cells and clone 

hepatocytes. However, in the absence of a positive control (i.e. hepatocytes 

isolated from naturally conceived D and L sheep), it was not possible to 

determine whether the differential methylation between donor cells and clone 

hepatocytes was a consequence of SCNT. Likewise, without measuring 

transcript abundance to corroborate methylation data, it was not possible to 

determine whether differential methylation had any effect on gene expression 

in the cell types analysed.  

6.3 Clinical impact  

The outcomes of this thesis provide evidence that relevant reductions in the 

dietary provision of methyl groups can perturb epigenetic programming of 

mammalian development. As a central integrator of nutrient status, insults to 1C 
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metabolism, particularly during the periconceptional period, can exert a global 

impact on cellular biochemistry and epigenetics, with implications for long-term 

health and disease. Whilst the primary objective of this research was to 

investigate the function of 1C metabolism within cells of the ruminant liver, ovary 

and preimplantation embryo, the experimental findings can be translated to 

humans. Cattle and sheep are valuable models for biomedical research due to 

their physiological parallels with humans, especially during preimplantation 

embryo development (Ménézo and Hérubel, 2002; Sirard, 2019).  

It follows that dietary restriction of 1C metabolites is associated with several 

serious health conditions in humans and ruminants which, if left untreated, can 

result in death (Suttle, 2010; Hannibal et al., 2016). It follows that accurate 

deficiency diagnosis is critical. It has been established that measuring 

standalone biomarkers of methyl deficiency, such as total serum B12 or MMA, 

has limited diagnostic value (Hannibal et al., 2016). Therefore, the 

commercialisation of simple analytical platforms that can quantify a 

comprehensive suite of chemically distinct, bioactive 1C metabolites in complex 

mammalian biofluids and tissues are required. Metabolomic platforms, such as 

those developed in Chapter 2, could be used in corroboration with epigenomic 

and transcriptomic studies to facilitate dietary and genetic studies of metabolic 

health in humans and animals. Such platforms may also prove useful for the 

quantitative profiling of 1C metabolites in commercial cell and embryo culture 

media, or in spent culture media as a non-invasive method of evaluating the 

function of 1C metabolism.   

The implications emerging from the studies presented herein emphasise the 

importance of methionine for the mammalian preimplantation embryo. In 

support of findings reported by Bonilla et al. (2010), a lower proportion of bovine 

embryos that were cultured in nonphysiological or supraphysiological 

concentrations of methionine developed to blastocyst stage, and fewer 

blastocysts were developmentally advanced (i.e. late expanded, hatching or 

hatched) at these concentrations. Taken together, these findings indicate that 

bovine preimplantation embryo development is sensitive to methionine during 

the first week of development. The MAT2A enzyme, which is responsible for 

SAM biosynthesis from methionine, has been detected in bovine embryos of 

various developmental stages up to Day 8 (Chapter 3; Ikeda et al., 2010; Kwong 

et al., 2010). The low Km range of MAT2A (4-10 μmol/L) means that the maximal 

rate (Vmax) of reaction is reached at physiological methionine concentrations (i.e. 
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<50 μmol/L; Frau et al., 2013). Thus, it appears that bovine embryonic cells are 

not well-equipped to metabolise concentrations outside of this range. In 

addition, subtle reductions in methionine during IVP caused global 

hypomethylation within the primary cell lineages of bovine blastocysts. The 

epigenetic effect of methionine in mammalian cells and embryos has been well-

documented (Section 1.7.2; Table 1.6). More specifically, Ikeda et al. (2012) 

reported that culturing bovine embryos in the presence of methionine 

antagonist, ethionine, reduced DNA methylation, and, in vivo dietary 

supplementation of methionine altered the transcriptome of bovine embryos 

(Peñagaricano et al., 2013).  

The sensitivity of the mammalian preimplantation embryo to small fluctuations 

in methionine is relevant for several reasons. Firstly, methionine deficiency and 

excess have been implicated in adverse reproductive health outcomes in 

humans (General Introduction, Table 1) and animals (Rees et al., 2006). 

Secondly, methionine is not endogenously synthesised by mammals and, 

therefore, must be obtained in the diet (Shoob et al., 2001). As a rate-limiting 

amino acid in both human and animal diets (Laurichesse et al., 1998; Wiltbank 

et al., 2014; Schwab and Broderick, 2017), more attention must be paid to the 

dietary inclusion of methionine, particularly during the periconceptional period. 

As discussed above (General Introduction), most of the research concerning 

periconceptional nutrition has focused on the preventative effect of folic acid 

supplementation against NTDs (De-Regil et al., 2010). Yet, as animal proteins 

are a primary source of methionine in human diets, vegetarian and vegans may 

be at increased the risk of methionine (and B12) deficiency (Krajcovicová-

Kudlácková et al., 2000; McCarty et al., 2009) and, consequently, adverse 

reproductive outcomes during periconceptional development. As increasing 

concerns over health, environment and econonomic consequences of a diet rich 

in animal produce focuses the attention on those who exclude these foods from 

their diet (Appelby and Key, 2015), it is important to investigate the health effects 

of methionine (and methyl group) deficiency in this subpopulation. In dairy cattle 

diets, the supplementation of rumen-protected methionine results in higher milk 

production, better metabolic health, and improved reproductive performance 

(Toledo et al., 2017). Thus, determining the optimal level of methionine in 

metabolisable protein for maximising milk protein production, fertility and 

reproduction is required to maximise profitability within the industry (Cho et al., 

2007; Morton et al., 2017). 
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Thirdly, the concentration of methionine in cell and embryo culture media varies 

dramatically between formulations, ranging from 0 to to 500 μmol/L (Section 

1.7.1; Table 1.5). This wide variation in concentration reflects the lack of 

standardisation between embryo production protocols with respect to IVP media 

formulations, thereby raising questions for the safety and efficacy of their 

commercial use. As media concentrations of key 1C substrates and cofactors, 

including folate (B9) and vitamin B12, are not routinely measured or disclosed 

(Sunde et al., 2016; Table 1.5), knowledge of their interaction with methionine 

and other 1C metabolites during the consecutive stages of IVP is unknown. In 

keeping with the earlier discussion concerning the comprehensive profiling of 

1C metabolites, robust analytical platforms to enable their simultaneous 

quantification could form part of a robust quality control and efficacy evaluation 

of commercial cell and embryo culture media.  

This thesis also confirmed that in vitro embryo culture conditions and 

manipulation procedures used during ART can disturb 1C metabolism in 

gametes and preimplantation embryos, causing epigenetic alterations to DNA 

methylation affecting developmentally important genes. A case in point refers 

to the differential methylation of imprinted genes, such as IGF2R, following in 

vitro culture at low physiological methionine (Section 4.3.2.6) and following 

SCNT (Section 5.3.5.2). Several factors are thought to affect the epigenetic 

reprogramming of cloned embryos, including donor cell type, oocyte quality, 

timing of fusion and activation, and in vitro culture conditions of the 

reconstructed cloned embryo (Campbell and Alberio, 2003; Kato and Tsunoda, 

2010; Akagi et al., 2014). With this in mind, the potential adverse impact of 

exposure to nonphysiological concentrations of 1C metabolites during embryo 

culture is confounded by the invasive nuclear transfer technique, and extensive 

handling of gametes and embryos thereafter. 

The processes underlying the epigenetic reprogramming of cloned embryos and 

IVP embryos are different, thus, it is likely that cloned embryos have different 

physiology and nutritional requirements as they undergo reconstruction 

(Mastromonaco et al., 2004; Cordova et al., 2017). It follows that media must 

be developed according to the special physiology and metabolic requirements 

of cloned embryos. However, studies evaluating suitable culture conditions for 

the successful reprogramming of cloned embryos are limited.  

Investigation into the effect of adding protein macromolecules during the culture 

of cloned bovine embryos found that supplementation of SOF media with BSA 
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and FCS promoted development of cloned embryos to blastocyst stage (Choi 

et al., 2002). Yet, as discussed in Chapter 1 (Section 1.7), the addition of serum 

to media has been implicated in fetal overgrowth in ruminants (Thompson et al., 

1995; Young et al., 2001; Rooke et al., 2007). The development of BSA- and 

serum-free culture media for cloned embryos is, therefore, important to avoid 

postnatal complications associated with exposure to these macromolecules in 

vitro.  

Similarly, supplementation of culture media with antioxidants, such as vitamin 

C and flavones, improved the developmental competence of cloned embryos 

as evidenced by enhanced morulae compaction, blastocyst production and the 

expression of developmentally important genes (Li et al., 2014; Su et al., 2014). 

In addition, co-culture with with buffalo rat liver, and bovine oviduct, cumulus 

and granulosa cells have been shown to improve the development of cloned 

embryos (Saikhun et al., 2002; Lu et al., 2005; Li et al., 2007). Despite the efforts 

taken to develop suitable culture media, successful in vitro preimplantation 

development does not necessarily contribute to improving pregnancy outcomes 

following embryo transfer (Cordova et al., 2017). 

To our knowledge, no study has specifically investigated the effect of 

supplementing embryo culture media with 1C metabolites on the development 

of cloned embryos. There is, however, evidence to suggest that the addition of 

epigenetic modifying agents, such as DNMT1 and HDAC inhibitors (i.e. 5-aza-

2’-deoxycytidine, trichostatin A, scriptaid and valproic acid), can improve 

genomic methylation reprogramming and transcript expression in embryos 

following SCNT (Zhao et al., 2010; Costa-Borges et al., 2010; Xu et al., 2013). 

In accordance with the findings presented in Chapter 4, it is hypothesised that 

adding methionine to media may alter the methylation reprogramming of 

reconstructed embryos. This would be a promising ‘non-chemical’ (nutrient-

based) alternative to using chemical epigenetic modifiers for improving SCNT 

efficiency.  

Although the effect of 1C metabolite concentrations on the epigenetic 

reprogramming of cloned embryos remains to be elucidated, the effect is likely 

to vary according to species as oocytes from different species have different 

developmental competencies. For example, results by Lu et al. (2005) reported 

that bovine oocytes directed cloned embryo development more effectively than 

buffalo oocytes when buffalo adult fibroblasts were used as donor cells. 

Likewise, the effect of 1C metabolites on cloned embryo development is likely 
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to vary according to donor cell type as donor cells have different metabolic 

demands (Rakha, 2015). Studies in mice demonstrated that where cumulus 

cells were used as nuclear donors, a higher yield of blastocysts were produced 

in Whitten’s medium (or Whitten’s medium followed by potassium simplex 

optimisation medium; KSOM) owing to its high glucose concentration relative to 

other media (Chung et al., 2002). Because normal embryos do not require 

glucose during the early cleavage stages, these results reveal unusual medium 

requirements that are indicative of altered kinetics, metabolism and physiology 

of cloned embryos. Sequential media that is tailored to respond to the changing 

requirements of reconstructed embryos may improve efficiency of epigenetic 

reprogramming following SCNT.  

Aside optimising culture media for reconstructed embryos, another approach is 

to optimise donor cell culture. A recent study showed that folic acid deprivation 

of bovine fetal fibroblast donor cells for 6 days prior to SCNT improved 

epigenetic reprogramming of cloned embryos by inducing DNA 

hypomethylation (Jozi et al., 2020). It follows that altering levels of 1C 

metabolites during donor cell culture can modulate epigenetic signatures in 

terminally differentiated somatic cell nuclei, thereby improving the efficiency of 

SCNT for agricultural and biomedical purposes.   

6.4 General conclusions and future research  

Tissue- and species-specific differences in the function of 1C metabolism render 

some cell types more sensitive to dietary and environmental perturbations of 1C 

metabolism. This thesis demonstrates that 1C metabolic pathways are tightly 

regulated within physiological methionine concentration ranges within the 

mammalian preimplantation embryo. Subtle alterations to methionine 

concentration were sufficient to trigger nutrient-mediated phenotypic and 

molecular epigenetic changes to DNA methylation in Day 8 bovine embryos with 

potential implications for long-term offspring health. Collectively, the findings 

presented herein emphasise the importance of optimal methionine status during 

the periconceptional period and ART procedures. Whilst future research 

priorities have been mentioned throughout this thesis, an elaborative summary 

is provided here.  

The detection of genes encoding BHMT isoforms in ovarian cells, oocytes and 

morulae (Chapter 3) suggests that mammalian reproductive and embryonic 
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cells harbour alternative pathways for methionine metabolism and are, 

therefore, equipped with a unique methylation machinery required for the 

establishment of a cell type-specific methylome. To elucidate the relationship 

between BHMT/2 mRNA transcription, protein translation and enzyme activity, 

a combination of assays could be employed using somatic, germ and embryonic 

cells of various stages of mammalian development.  

Protein expression could be determined by Western blot analysis. However, due 

to the high amino acid sequence homology between BHMT and BHMT2 

proteins (Li et al., 2008; Ganu et al., 2011; Appendix Table 3.1), it would be vital 

that the primary antibody recognises an epitope comprising an amino acid 

sequence unique to each BHMT isoform in order to ensure their specific binding 

and detection. Radiochemical enzyme activity assays could be used to assess 

the catalytic activity of BHMT isoforms. BHMT enzyme activity could be 

measured using the method of Garrow et al. (1996) which uses [methyl-

14C]betaine as a radiolabelled substrate. The method is based on detecting the 

transfer of [3H]methyl groups from [14C]betaine (TMG) to Hcy, thereby producing 

[3H]dimethylglycine (DMG) and [3H]methionine reaction products. As described 

by Szegedi and others (2008), BHMT2 enzyme activity could be measured 

using the same method but with [methyl-14C]-S-methylmethionine as the 

radiolabelled substrate. Using the sensitive mass spectrometry-based platforms 

developed in Chapter 2, the quantification of BHMT/2 enzyme substrates, 

betaine (TMG) and SMM, would provide a useful adjunct to corroborate the 

aforementioned transcriptomic and proteomic assays. Extending these 

analyses to non-ruminant species, such as rodents and pigs, could help to 

illuminate tissue- and species-specific differences in methionine metabolism.  

Future experiments could use these mass spectrometry-based platforms to 

investigate the effects of dietary methyl deficiency and inborn errors of 1C 

metabolism by measuring a comprehensive suite of 1C metabolites in 

reproductive cells, tissues and biofluids of various mammalian species. Such 

integrated metabolomic analyses would bring an unprecedented level of 

mechanistic insight into the nutritional biochemistry-mediated epigenetic 

modifications that take place during the periconceptional period, particularly in 

cells of the mammalian ovary and preimplantation embryo. Furthermore, as the 

suppliers of culture media do not typically disclose concentrations of 1C 

metabolites, such as FA and vitamin B12, it would be of merit to measure their 

abundance, if present, in commercial formulations. It would then be possible to 
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compare media concentrations with physiological concentrations measured in 

bovine follicular and uterine fluid.  

Once culture medium-specific concentration ranges have been established, it 

would be of value to extend the observations reported in Chapters 3 and 4 by 

investigating the effect of altering methionine in the presence of altered FA and 

B12 concentrations during bovine embryo culture. As B12 is the cofactor for 

methionine synthase (MTR); the enzyme responsible for the generation of 

methionine from Hcy, it would be interesting to ascertain whether media 

supplementation of B12 can rescue the gross phenotypic and epigenetic effects 

of methionine deficiency observed in the present study. Similarly, as B12 

deficiency reduces MTR activity, thereby causing the ‘methyl-folate trap’ 

(Chapter 2; Section 2.3.2.5), it would be interesting to investigate whether FA 

supplementation rescues the effect of a methionine and/or B12 deficiency in 

mammalian embryos. A possible experimental design is detailed in Table 6.1.  

Table 6.1 Experimental design for methyl supplementation study.  

Treatment groups (n=3)  Control group 

Methionine 
(0 μmol/L added) 

Vitamin B12 

(pmol/L) 
Folic acid 
(nmol/L) 

 Methionine 
(50 μmol/L added) 

- + -  + 
- - +  + 
- + +  + 

Concentration units based on normal blood reference ranges. Culture media 
composition deplete in 1C metabolite (-); culture media composition replete in 1C 
metabolite (+). 

Based on the observation that the high physiological concentration of 

methionine (50 μmol/L) appeared to be the best for bovine embryo development 

(Chapter 3), this concentration could be used to culture control embryos (Table 

6.1). Preliminary research would be required in order to make a judicious 

decision regarding the concentrations of B12 and FA to be added to methionine-

deficient culture media based on: i) levels measured in culture media 

formulations; ii) physiological levels measured in bovine reproductive fluids; 

and, iii) supraphysiological levels reached following dietary supplementation in 

humans (e.g. 400 µg/d FA). Gross morphological embryo assessments coupled 

with epigenomic and transcriptomic data would provide an unpecedented 

insight into the importance of methyl donor supplementation during the 

periconceptional period and ART.  
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Although strictly beyond the scope of the present study, which focused on the 

impact of maternal diet and embryo culture media composition on epigenetic 

programming of embryo development, there is compelling evidence that 

paternal diet programmes offspring health via sperm and seminal plasma-

specific pathways. In vivo dietary trials have found that feeding male mice a low 

protein diet (LPD) or a methyl-deficient diet is associated with negative 

pregnancy outcomes (e.g. congenital defects), and cardiovascular and 

metabolic dysfunction in offspring (Lambrot et al., 2013; Watkins and Sinclair, 

2014; Watkins et al., 2018). Recently, Morgan et al. (2020) reported that feeding 

a LPD supplemented with methyl donors had a significant impact on testicular 

morphology by increasing seminiferous tubule luminal area in male mice. The 

underlying mechanisms for how sub-optimal paternal diet elicits poor offspring 

development is an emerging field of research. Specifically, the effects of methyl 

supplementation on semen parameters during IVF have not been explored. 

Whilst the exposure of male gametes to the in vitro environment is short (<24h) 

relative to oocytes and embryos, the effect of altering methionine and additional 

1C metabolites on sperm physiology and epigenomics during IVF cannot be 

disregarded and warrants further investigation.  

The developmental, epigenomic and transcriptomic analyses presented in this 

thesis used pools of bovine embryos. However, considering the human-like 

genetic heterogeneity of outbred ruminant species, inter-individual and inter-

breed (i.e. ethnic) variation in 1C metabolism and tolerance to methyl deficiency 

is expected. It will be important to extend future research to include multiomics 

analyses using individual embryos in order to evaluate how SNPs within key 1C 

enzymes (Appendix Table 1.1) interact with diet to confer risk to NTDs and other 

developmental anomalies in embryos and adults. Single-cell and parental allele-

specific multiomics sequencing techniques, such as those detailed by Guo et 

al. (2017), would facilitate a thorough investigation into the effect of gene-

nutrient interactions on the epigenomic reprogramming of mammalian 

embryonic development and offspring health. In particular, single-cell 

techniques would be suitable for the analyses of genome-scale chromatin state 

and DNA methylation dynamics in ICM and TE cells immunodissected from 

individual embryos. Moreover, a parental allele-specific assessment of DNA 

methylation would enhance current understanding of the epigenetic regulation 

of imprinted genes, such as IGF2R, in distinct embryonic cell lineages.  
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This thesis demonstrated that culturing bovine preimplantation embryos to Day 

8 in low physiological methionine caused significant hypomethylation of CpGs 

located within DMR2 of the IGF2R gene. Since loss of methylation within this 

imprint control region has been associated with LOS in ruminants following ART 

procedures  (Young et al., 2001; Young et al., 2003; Section 1.7), the imprinting 

status of IGF2R remains an important line of enquiry. The IGF2R gene is not 

paternally imprinted by antisense transcript, AIRN, until ~Day 18 in bovine 

embryos. Hence, a temporal and tissue-specific multiomic analysis using 

individual postimplantation stage embryos would be useful to: i) illuminate the 

role of DMR2 methylation in IGF2R imprinting by AIRN in embryonic and 

extraembryonic lineages; and, ii) evaluate the persistent effect, if any, of 

methionine on IGF2R imprinting during protracted periods of embryo culture.  

Chapter 5 assessed the effect of donor cell type on the efficiency of 

reprogramming following SCNT by measuring DNA methylation in hepatocytes 

isolated from cloned sheep. Without positive control hepatocyte samples 

isolated from a contemporaneous group of naturally conceived sheep, it was 

not possible to ascertain whether the methylation status of clone hepatocytes 

was due to aberrant epigenetic reprogramming following SCNT or a mere 

consequence of cell type. Therefore, further investigation including control 

hepatocyte samples would help to confirm the findings of this study. Given that 

hepatocytes were isolated from healthy, aged cloned sheep, it can be assumed 

that epigenetic reprogramming was successfully achieved to permit their normal 

development into old age. In order to understand the effect of donor cell type 

used during SCNT on epigenetic reprogramming specifically during embryo 

development, future experiments could analyse the methylome of 

preimplantation embryos cloned from mammary epithelial (OP5) and fetal 

fibroblast (LFF4) donor cells, using the methylome of embryos produced by IVP 

and/or natural conception as a comparison. Future assessments of the 

embryonic methylome could use oxidative bisulphite sequencing (Booth et al., 

2013) to elucidate the complex interplay between 5mC and 5hmC modifications 

during early development.  

Advancing the hypothesis that cloned embryos have unique metabolic and 

nutritional demands and, therefore, require specialist media formulations to 

support their reconstruction and epigenetic reprogramming (discussed earlier), 

particular focus should be given to the development and optimisation of safe 

and efficacious culture media for cloned embryos. Such experiments would also 
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present an opportunity to improve culture media for downstream applications, 

such as regenerative medicine. Immunodissection of the ICM is effective in the 

derivation of ESC lines for cell replacement therapy, disease modelling and 

basic research (Bogliotti et al., 2018). Since embryo culture media composition 

affects ESC derivation efficiency (Chen et al., 2009), it would be beneficial to 

evaluate the epigenetic and transcriptomic effect of in vitro blastocyst culture 

conditions on isolated ICM cells used for stem cell culture.  

In summary, the findings of this thesis promote and support the importance of 

1C metabolism and the provision of an optimal methyl balance for reproductive 

biology in mammals. The variety of experimental approaches (biochemical, 

molecular and genetic) to study the regulation of 1C metabolism in the ruminant 

liver, ovary and preimplantation embryo highlight important species- and tissue-

specific differences in methionine metabolism. Such differences must be 

considered in order to provide an optimal nutritional environment to support 

healthy in vivo and in vitro growth and development of mammalian cells and 

embryos.
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Appendix Chapter 1 

Appendix Table 1.1 One-carbon (1C) metabolism, epigenetic regulator gene variants and developmental outcomes in humans. Adapted from Clare et 
al. (2019). 

1C metabolism gene Variant 
Risk association 

(↑ increase, ↓ decrease) 

Effect of diet  
(↑ supplementation,  

↓ restriction) 

Ethnic population  
(n) 

Reference(s) 

Methionine synthase  

 

A2756G ↑ Orofacial clefts (OR=2.195) - Polish (122 cases, 82 controls) Mostowska et al. (2006) 

↑ NTDs (OR=1.664), CCGA 
haplotype ↓ risk 

- Chinese Han (152 cases, 169 
controls) 

Cao et al. (2018) 

Methionine synthase 
reductase 

 

A66G ↑ Congenital heart disease 
(OR=1.35) 

- Mixed ethnicity (914 cases, 964 
controls) 

Cai et al. (2014) 

↓ Multiple birth defects - Chinese North (250 cases, 420 
controls) 

Zhang et al. (2014) 

Methionine 
adenosyltransferase 1A 

 

G791A ↑ Mudd’s disease (CNS 
abnormalities) 
↑ Hcy (hyperhomocysteinemia) 
↑ Met (hypermethioninemia) 

↑ B6 adverse 
↓ Met and ↑ SAM 
inconclusive 

American (32 cases, 32 controls) Chien et al. (2015); 
Pérez-Mato et al. 
(2001) 

Methionine 
adenosyltransferase 2A 

 

A1031C, 
G1067A 

↑ FTAAD, congenital bicuspid 
aortic valve defects 

- Family with autosomal dominance 
of FTAAD (n = 18) 

Guo et al. (2015) 

Glycine N-methyltransferase 

 

C1298T ↑ Hcy ↓ Folate ↑ plasma Hcy in 
TT  

Mixed/American (n = 114) Beagle et al. (2005) 

↑ Prostate cancer (OR=1.62) - Mixed ethnicity (661 cases, 656 
controls) 

Chen et al. (2014) 

MTR

MTRR

MAT1A

MAT2A

GNMT
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Appendix Table 1.1 continued      

1C metabolism gene Variant Risk association 
(↑ increase, ↓ decrease) 

Effect of diet  
(↑ supplementation,  

↓ restriction) 

Ethnic population  
(n) 

Reference(s) 

S-adenosylhomocysteine 
hydrolase 

 

 

G336A, 
A428G 

↑ Congenital myopathy, 
delayed development 

↓ Met, ↑ creatine, ↑ PC 
improves condition 

AHCY-deficient (n = 1) Barić et al. (2005) 

C145T, A257G ↑ Infant mortality, congenital 
myopathy, delayed 
development, ↑ Hcy, SAM, Met 
and creatine kinase 

- AHCY-deficient (n = 1) Vugrek et al. (2009) 

Betaine homocysteine S-
methyltransferase  

 

G742A 

 

↑ NTDs  - Caucasian American families  
(n = 304) 

Boyles et al. (2006) 

↑ Down’s syndrome (OR=4.96)  Pre-conceptional folate ↑ 
risk 

Indian (228 cases, 200 controls) Jaiswal et al. (2017) 

Choline dehydrogenase 

 

G432T ↑ Impaired spermatogenesis 
-  

Greek (200 oligospermic, 250 
controls) 

 

Lazaros et al. (2012) 

Methylene-tetrahydrofolate 
reductase 

 

 

C677T 

 

 

↓ DNA methylation in TT 
individuals  

-  
TT (105 cases), CC (187 controls)  Friso et al. (2002) 

↑ Male infertility (OR=1.39)  
-  

Mixed ethnicity (5575 cases, 5447 
controls) 

Gong et al. (2015) 

Dihydrofolate reductase 

 

19-bp del ↓ NTDs (RR=0.59)  
-  

Irish (283 cases, 256 controls) Parle-McDermott et al. 
(2007) 

↑ Pre-term delivery (OR=3.0) 
↓ Folate ↑ risk (OR=5.5) 

Mixed ethnicity (n=324) Johnson et al. (2005) 

   
 

  

AHCY

BHMT

CHDH

MTHFR

DHFR
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Appendix Table 1.1 continued  
 

  

1C metabolism gene Variant Risk association 
(↑ increase, ↓ decrease) 

Effect of diet  
(↑ supplementation,  

↓ restriction) 

Ethnic population  
(n) 

Reference(s) 

Serine 
hydroxymethyltransferase 

 

C1420T ↑ NTDs  - Indian (372 cases, 552 controls) Prasoona et al. (2017) 

Methylene-tetrahydrofolate 
dehydrogenase 

 

 

G1958A 

 

↑ NTDs  - Indian (360 cases, 540 controls) Prasoona et al. (2016) 

↑ Second trimester pregnancy 
loss 
(OR=1.64) 

- Irish (125 cases, 625 controls) Parle-McDermott et al. 
(2005) 

Thymidyate synthase 

 

6bp(del/del) ↑ Pre-term delivery, ↓ birth 
weight, fetal death, ↑ Hcy 

- Indian (209 cases, 194 controls) Tiwari et al. (2017) 

Cystathionine-ß-synthase 

 

 

 

C699T ↑ Ischemia, late-onset 
preeclampsia (OR=2.1) 

- 

 

Norwegian (99 cases, 99 controls) Koning et al. (2013) 

T833C ↑ Non-syndromic cleft lip and 
palate (OR=18.7) 

- Italian (n=134) Rubini et al. (2005) 

C4673G ↓ Congenital heart disease 
(OR=0.85) 

- Chinese (2340 cases, 2270 
controls) 

Zhao et al. (2013) 

Cystathionine-γ-lyase 

 
 

A426G ↑ Preeclampsia (OR=18.03) - 

 

Caucasian Polish (60 cases, 120 
controls) 

Mrozikiewicz et al. 

(2015) 

Phosphatidylethanolamine 
N-methyltransferase 

 

G774C 

 

↑ Impaired spermatogenesis  

 

- 

 

Greek (200 oligospermic, 250 
controls) 

 

Lazaros et al. (2012) 

 

      

SHMT1

MTHFD

TYMS

CBS

CTH

PEMT
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Appendix Table 1.1 continued     

1C metabolism gene Variant 
Risk association 

(↑ increase, ↓ decrease) 

Effect of diet  
(↑ supplementation,  

↓ restriction) 

Ethnic population  
(n) 

Reference(s) 

Phosphatidylethanolamine 
N-methyltransferase 

 

G523A 

 

↑ Idiopathic male infertility 
(OR=7.91) 

- 

 

Swedish (153 cases, 184 controls) 

 

Murphy et al. (2011) 

 

↑ NAFLD - Mixed ethnicity (28 cases, 59 
controls) 

Song et al. (2005) 

DNA methyltransferase 1  
DNMT1 

 

rs4804490 ↑ Male infertility  

 

- Chinese (833 cases, 410 controls) Tang et al. (2017) 

DNA methyltransferase 3B  
DNMT3B 

 

G579T 

 

↑ Recurrent spontaneous 
abortion  
 

- Slovenian (146 cases, 149 
controls) 

 

Barišić et al. (2017) 

R832Q, 
S828P 

 

↑ ICF syndrome   - Japanese (n=3) Shirohzu et al. (2002) 

Histone methyltransferase  
EHMT1 

C2426T ↑ Kleefstra syndrome 
(hypotonia, developmental 
delay, brachycephaly, CHD, 
macroglossia and 
prognathism) 

- Patients (n=2)  Blackburn et al. (2017) 

Reduced folate carrier 
RFC1/SLC19A1 

A80G 

 

 

↑ Autism, DNA 
hypomethylation in mothers 

- Mixed ethnicity (529 cases, 566 
controls) 

 

James et al. (2010) 

PEMT
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Appendix Table 1.1 continued     

1C metabolism gene Variant 
Risk association 

(↑ increase, ↓ decrease) 

Effect of diet  
(↑ supplementation,  

↓ restriction) 

Ethnic population  
(n) 

Reference(s) 

Folate receptor alpha 
FOLRα 

 

1816C/delC,  

 

↑ Pregnancy loss in 
heterozygotes 

 

- Estonian (439 cases, 225 
controls) 

 

Laanpere et al. (2011) 

 

G1841A 

Transcobalamin receptor 
TCblR/CD320 

 

rs2336573, 
rs9426 

↑ NTDs (RR=6.59, 6.71) - Irish (551 cases, 999 controls) Pangilinan et al. (2010) 

Gene variants reported as nucleotide base substitutions; deletions (del), amino acid variant or RefSNP (rs) ID. Abbreviations: CHD, congenital heart defects; CNS, central 
nervous system; FTAAD, familial thoracic aortic aneurysms and dissections; ICF, immunodeficiency, centromeric instability and facial anomalies; NAFLD, non-alcoholic fatty 
liver disease; NTDs, neural tube defects; OR, odds ratio; RR, relative risk dissections. One-carbon (1C) substrates: Hcy, homocysteine, SAM, S-adenosylmethionine; Met, 
methionine; PC, phosphatidylcholine.  
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Appendix Table 1.2 Epigenetic and developmental consequences of targeted 1C metabolism gene deletions (or inhibition) in animal models. 
Adapted from Clare et al. (2019). 

1C metabolism gene Function KO effect 
Epigenetic/Developmental 

consequences 
Supplementation effect Reference(s) 

Methionine synthase 
(Mtr) 

 

B12-dependent 
Hcy re-
methylation 

Demethylation 
of 5-mTHF to 
THF 

-/+ mice exhibit ~50-60% ↓ enzyme 
activity and ↑ plasma Hcy 

-/- embryos die in utero before E9.5 

 

↑ Hcy, ↓ Met and ↑ 5-mTHF, 
folate trapping perturbs 1C-
metabolism and DNA 
synthesis during early 
embryogenesis 

Folinate, methionine, 
choline, betaine, 
hypoxanthine, inositol, 
threonine during 
pregnancy does not 
rescue MTR-deficient 
phenotype  

Swanson et al. (2001) 

Methionine synthase reductase 
(Mtrr) 

 

Reductive 
reactivation of 
MTR by 
methylation of 
cob(I)alamin 
cofactor 

KO results in embryonic lethality 

MTRR deficiency adversely impacts 
reproductive outcomes and cardiac 
development in mice 

↑ Hcy, ↓ Met, ↑ 5-mTHF, 
folate trapping impairs 
growth in males, -/- dams 
have ↑ fetal resorptions, 
smaller placentae and 
embryos with myocardial 
hypoplasia and ventricular 
septal defects 

Periconceptional 
supplementation with 
folic acid may reduce 
risk  

Elmore et al. (2007) 

Deng et al. (2008) 

Methionine adenosyltransferase 
1A/2A 
(Mat1a/Mat2a) 

 

 

 

SAM 
biosynthesis 
from Met 

 

 

 

Mat2a inhibition reduces bovine 
blastocyst development 

↓ Cell proliferation and 
blastocoel formation 

Met substrate alleviated 
reduction in blastocyst 
development  

Ikeda et al. (2017) 

Mat2a KO causes developmental 

defects in zebrafish embryos 
 

↑ Pericardial oedema, 
malformed eyes, and short 
tail or no tail development 

 Guo et al. (2015) 

Mat1a KO mice are susceptible to 
acute liver injury 

 

↑ Met, ↓ SAM, metabolic 
switch to Mat2a expression 

associated with rapid liver 
growth and differentiation  

Choline-deficient diet 
induced macrovesicular 
steatosis in mutant mice 

Lu et al. (2001) 

      

MTR

MTRR

MAT1A MAT2A
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Appendix Table 1.2 continued     

1C metabolism gene Function KO effect 
Epigenetic/Developmental 

consequences 
Supplementation effect Reference(s) 

Glycine N-methyltransferase 
(Gnmt) 

 

Synthesis of Sar 
from Gly (using 
SAM as methyl 
donor) 

Regulates 
methylation via 
maintenance of 
SAM:SAH ratio 

-/- mice have exhibit aberrant 
methylation pattern in liver, chronic 
hepatitis, glycogen storage disease 
and risk of hepatocellular carcinoma  

 

↑ Met, ↑ SAM, ↑ SAM:SAH 
ratio causes global DNA 
hypermethylation, ↓ 

gluconeogenesis, 
hypoglycaemia, ↑ serum 
cholesterol  

- 

- 

- 

Luka et al. (2006) 

Liu et al. (2007) 

Liao et al. (2009) 

S-adenosylhomocysteine 
hydrolase (Ahcy)  

 

Reversible 
hydrolysis of 
SAH to 
adenosine and 
Hcy 

Ahcy KO causes embryonic lethality 

in mice  

↑ SAH inhibits DNA 
methylation reactions, 

↓ ICM proliferation and 
differentiation  

- Miller et al. (1994) 

Betaine-homocysteine S-
methyltransferase 
(Bhmt) 

 

Re-methylation 
Hcy to Met and 
DMG using 
TMG (betaine) 

Bhmt KO decreases blastocyst 
development 

-/+ mice have reduced body weight 
and ↑ susceptibility to fatty liver and 
hepatic carcinoma 

↓ 40% in ICM cell number, 
↓OCT4 and NANOG 
expression 

↑ HHcy, ↓ SAM:SAH ratio, ↓ 
75% in cellular methylation, 
↑ hepatic TMG and DMG,  

↓ Chol and PC in several 
tissues, ↑ hepatic CHDH 
and GNMT 

Blastocyst development 
and ICM number 
rescued by Met 
supplementation  

 

 

 

Lee et al. (2012) 

 

Teng et al. (2011) 

      

      

GNMT

AHCY

BHMT
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Appendix Table 1.2 continued     

1C metabolism gene Function KO effect 
Epigenetic/Developmental 

consequences 
Supplementation effect Reference(s) 

Choline dehydrogenase 
(Chdh) 

 

Oxidation of 
chol to TMG 
(betaine) 

Chdh KO male mice are infertile ↑ HHcy, ↑ Chol and PC, ↓ 
testicular TMG, 

↓ sperm motility, abnormal 
mitochondria in liver, heart, 
kidney and testes 

Sperm motility doubled 
in -/- mice with TMG 
supplementation  

 

Johnson et al. (2010)  

Methylene-tetrahydrofolate 
reductase (Mthfr) 

 

Conversion of 
5,10-CH2THF to 
5-mTHF 
(methyl donor 
for Hcy re-
methylation to 
Met) 

-/- mice have severe birth defects 
and die within 2 weeks post-partum 

 

 
 

-/- BALB/c mice have abnormal 
spermatogenesis and infertility  

↑ HHcy, ↓ SAM in tissues 
(except liver), ↑ SAH, DNA 
hypomethylation in brain 

and ovaries, developmental 
retardation, ↓ body weight, 
short or kinked tail with 
kyphosis, facial 
abnormalities  

- 

 

 

 

Post-weaning TMG 
supplementation 
improved fertility 
parameters 

Chen et al. (2001) 

 

 

 

Kelly et al. (2005) 

Dihydrofolate reductase 
(Dhfr) 

 

Reduction of 
DHF to THF 
Reduction of FA 
to DHF 

Dhfr KO impairs embryonic 
development in zebrafish 

 

↑ Congenital cardiovascular 
defects 
↓ Transcription factors in 
cardiac development   

- Sun et al. (2011) 

Serine 
hydroxymethyltransferase 
(Shmt1) 

 

Conversion of 
SER to GLY 
and THF to 
5,10-CH2THF 
(substrate for 
thymidylate 
synthesis) 

 

SHMT-deficiency causes NTDs in 
mice 

Impairs de novo 
thymidylate biosynthesis by 
reducing TYMS enzyme 
concentrations (via Pax3 

interaction) 

Mutant mice exhibit 
exencephaly in response 
to maternal folate- and 
choline-deficient diet 

Beaudin et al. (2011) 

CHDH

MTHFR

DHFR

SHMT1
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Appendix Table 1.2 continued     

1C metabolism gene Function KO effect 
Epigenetic/Developmental 

consequences 
Supplementation effect Reference(s) 

Methylene-tetrahydrofolate 
dehydrogenase 
(Mthfd1/1L) 

 

 

Production of 
10-fTHF and 
THF used for 
synthesis of 
purines 
(Mthfd1l; 
mitochondrial 
formate 
production) 

Loss of MTHFD1 synthetase 

causes embryo loss by E10.5 in 
mice, MTHFD1L-deficient mice are 
growth restricted with NTDs  

Abnormal embryo 
development, ↓ de novo 
purine synthesis, ↓ cellular 
proliferation, 
craniorachischisis, 
exencephaly and/or a wavy 
neural tube.  

 

Maternal 
supplementation with 
sodium formate partially 
rescues growth defect 
phenotype 

Momb et al. (2013) 

Christensen et al. 
(2013) 

 

 

Cystathionine-ß-synthase 
(Cbs) 

 

B6-dependent 
condensation of 
Hcy and Ser to 
Cth 

 

 

CBS-deficient female mice have 
impaired fertility, homocysteinuria 
with mild hepatopathy, 
hypercoagulation, IUGR and die 
within 5 weeks post-partum 

Irregular oestrus cycle,  
↓ embryo growth,  
↓ placental mass with 
morphological 
abnormalities, 
↓ viable embryos, ↑ Hcy, ↑ 
Met, ↑ SAH, ↑ Cth and ↓ 
Cys, enlarged and 
multinucleated hepatocytes 
with microvesicular lipid 
droplets   

Transplantation of CBS-
deficient ovaries into 
normal ovariectomised 
recipient restores fertility, 
TMG treatment lowers 
Hcy and SAH levels, 
ameliorates 
hypercoagulation and 
reduces CTH 

Guzmán et al. (2006) 

Maclean et al. (2010) 

Watanabe et al. (1995) 

Cystathionine-γ-Lyase  
(Cth) 

 

   

Catabolism of 
Cth to Cys, α-
KB and NH3  

CTH-deficient mice have ↓ 
hydrogen sulphide (H2S) production  

 

↓ vasodilation leading to 
hypertension 

Dysregulation of H2S 

metabolism impairs 
oviductal transport of 
embryos, ↑ risk of ectopic 
pregnancy  

- 

- 

Yang et al. (2008) 

Ning et al. (2014) 

      

MTHFD

CBS

CTH
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Appendix Table 1.2 continued     

1C metabolism gene Function KO effect 
Epigenetic/Developmental 

consequences 
Supplementation effect Reference(s) 

Phosphatidylethanolamine N-

methyltransferase 
(Pemt) 

 

De novo 

synthesis of chol  

Conversion of 
PE to PC in liver 

-/- mice die when deprived of chol,  

 

↑ progenitor cell mitosis in brain of -
/- mice at E17  

↑ SAM, ↑ 
Hypermethylation of 
proteins and DNA, ↓ DHA 

(C22:6; n-6) and AA 
(C24:4; n-3) PUFAs in 
membrane phospholipids, ↑ 
hepatic steatosis, ↑ Histone 
H3 phosphorylation 

Chol supplementation 
rescues some but not all 
KO phenotypes 

Walkey et al. (1997) 

Watkins et al. (2003) 

Zhu et al. (2003) 

Zhu et al. (2004) 

DNA methyltransferase 1 
(Dnmt1) 

 

Maintenance of 
DNA 
methylation in 
mammalian 
cells  

Dnmt1 KO causes embryonic 

lethality in mice  
↓ Reduction in 5mC, ↓ cell 
proliferation, 
↓ embryo growth and 
delayed development 

- Li et al. (1992)  

DNA methyltransferase 3 
(Dnmt3a/Dnmt3b/Dnmt3L) 

De novo 
methylation of 
DNA during 
mammalian 
development 

Dnmt3a/3b deletion causes 
embryonic lethality in mice 

Dnmt3L -/- male mice infertile, +/- 
females die mid-gestation 

 

De novo methylation 
blocked, DNMT3B KO 
causes hypomethylation 
of pericentromeric 
repeats. Dnmt3L -/- males 

lack germ cells, +/- females 
have abnormal imprinted 
genes 

 

- 

- 

Okano et al. (1999) 

 

Bourc’his et al. (2001) 

 

Arginine N-methyltransferase 
(Prmt) 

 

Methylation of 
arginine 
residues in 
proteins, e.g. 
histones 

Prmt KO causes post-natal lethality 
in mice due to impaired CNS 
development, -/- mutant embryos 
fail to develop beyond E6.5  

 

Post-natal growth 
retardation, reduced nuclei 
in white matter tracts, 
hypomyelination and 
hypomethylation of 
histone proteins  

- 

- 

Hashimoto et al. 
(2016) 

Pawlak et al. (2000) 

      

PEMT
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Appendix Table 1.2 continued     

1C metabolism gene Function KO effect 
Epigenetic/Developmental 

consequences 
Supplementation effect Reference(s) 

Reduced folate carrier 
(Rfc1/Slc19a1) 

Carrier-
mediated 
internalisation of 
major blood 
folates (e.g.  
5-mTHF) into 
mammalian 
cells 

RFC null embryos in utero before 

E9.5; 10% of -/- dams 
supplemented with FA gave birth to 
live pups but pups died within 12 
days 

Impaired development of 
hematopoietic organs; 
absent erythropoiesis in 
bone marrow and spleen; ↓ 
liver lymphoid in splenic 
white pulp and thymus; 
impaired renal and 
seminiferous tubule 
development 

Near normal 
development sustained 
in -/- embryos at E18.5 
when dams are 
supplemented with 1 mg 
FA daily 

 

Zhao et al. (2001) 

Folate binding protein 1/2, 
Folate receptor alpha 
(Folbp1/2, Folr1) 

 

High affinity 
internalisation 
and delivery of 
folate into cell 
cytoplasm by 
Folbp1; Folbp2 
binds folate 
poorly 

Folbp1 -/- embryos die in utero by 
E10; Folbp2 -/- embryos develop 
normally 

 

↓ Plasma folate, delayed 
embryonic development, ↓ 
number of somites, failed 
neural tube closure at E9.5, 
↑ risk of NTDs, craniofacial 
anomalies, abdominal wall 
defects and congenital 
heart defects  

 

Supplementation of 
Folbp1-deficient dams 
with folinic acid (5-fTHF) 
and 5-mTHF rescues 
most embryos from 
premature death in 
dose-dependent 
manner, irrespective of 
folate form 

Piedrahita et al. (1999) 

Spiegelstein et al. 
(2004) 

Zhu et al. (2007) 

 

 

Transcobalamin receptor 
(TCblR, CD320) 

Cellular uptake 
of 
transcobalamin-
bound Cbl (B12)   

-/- mice develop normally but exhibit 
depleted Cbl in CNS and 
neuropathologic changes 

↑ Hcy, ↑ MMA, ↓ SAM:SAH 
ratio, global DNA 
hypomethylation in brain, 

normal accumulation of Cbl 
in liver and kidney suggests 
separate Cbl uptake 
mechanisms exist in these 
tissues (i.e. Megalin)  

- 

- 

 

Lai et al. (2013) 

Arora et al. (2017) 
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Appendix Chapter 2  

Abbreviation(s): Folate cycle enzymes (green boxes): MTHFR, 5,10-
methylenetetrahydrofolate reductase; SHMT1, serine hydroxymethyltransferase. 
Methionine cycle enzymes (red boxes): MTR, methionine synthase; MTRR, methionine 
synthase reductase. Transsulphuration pathway enzymes (yellow boxes): CBS, 
cystathionine β-synthase; CTH, cystathionine γ-lyase. Propionate pathway enzyme 
(grey box): MUT, methylmalonyl-CoA mutase. Tricarboxylic acid cycle enzymes (white 
boxes): KGDH, α-ketoglutarate dehydrogenase; PDH, pyruvate dehydrogenase. 
Vitamin B1 cofactors (purple circles): B1, thiamine; TPP, thiamine pyrophosphate. 
Vitamin B2 cofactors (yellow circles): RF, riboflavin; FMN, flavin mononucleotide; FAD, 
flavin adenine dinucleotide. Vitamin B6 cofactors (blue circles): PN, pyridoxine; PM, 
pyridoxamine; PL, pyridoxal; PLP, pyridoxal 5′-phosphate; PA, 4-pyridoxic acid. Vitamin 
B12 cofactors (orange circles): CNCbl, cyanocobalamin; MeCbl, methylcobalamin; 
AdoCbl, adenosylcobalamin. White circle: Cbl, cobalamin. Substrates: Cys, cysteine; 
CH=THF, 5,10-methenyltetrahydrofolate; CH2THF, 5,10-methylenetetrahydrofolate; 
Cth, cystathionine; DHF, dihydrofolate; DMG, dimethylglycine; FA, folic acid; fTHF, 10-
formyltetrahydrofolate; Gly, glycine; Hcy, homocysteine; Met, methionine; MG, 
methylglycine; mTHF, 5-methyltetrahydrofolate; SAH, S-adenosylhomocysteine; SAM, 
S-adenosylmethionine; Ser, serine; THF, tetrahydrofolate; TMG, trimethylglycine; α-KG, 
α-ketoglutarate. Solid arrows demonstrate flux through metabolic pathways. Dotted 
arrows demonstrate interconversion and interaction of B vitamin species with metabolic 
pathways.

Appendix Figure 2.1 B vitamins, folates and 1C-related amines in one-carbon 
(1C) metabolism and propionate metabolism. Adapted from Xu et al. (2020).  
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Appendix Table 2.1 Function of B vitamin cofactors involved in 1C metabolism and related pathways. 

 

 

Cyanocobalamin (B12) 
Synthetic form of vitamin B12 that is biologically inert but converted to 
bioactive cofactors; AdoCbl and MeCbl (Farquharson and Adams, 1976; 
Martinelli et al., 2011) 

 

Pyridoxine (B6) 
Alcohol form of vitamin B6 that is commonly found in food and dietary that is readily converted 
to bioactive forms (Albersen et al., 2013) 

 

Adenosylcobalamin (B12) 
Cofactor for mitochondrial MUT enzyme that catalyses isomerisation of 
methylmalonyl-CoA to succinyl-CoA in propionate metabolism (Shane, 2008) 

 

Pyridoxamine (B6) 
Amine form of vitamin B6 that is readily transformed to PL (Sakurai et al., 1992) 

 

Methylcobalamin (B12) 
Cofactor for MTR enzyme that catalyses remethylation of Hcy to Met in 
methionine cycle (Shane, 2008) 

 

Pyridoxal (B6) 
Aldehyde form of vitamin B6 that is phosphorylated to form the bioactive cofactor, PLP 
(Albersen et al., 2013) 

 

Riboflavin (B2) 
Dietary form of vitamin B2 that serves as a precursor for formation of bioactive 
forms. RF is phosphorylated to FMN (Powers, 2003) 

 

Pyridoxal 5’-phosphate (B6) 
Cofactor for SHMT enzyme that catalyses simultaneous conversion of Ser to Gly, and THF to 
CH2THF in the folate cycle (Appaji Rao et al., 2003) 
Cofactor for CBS and CTH enzymes that catalyse the conversion of Hcy first to Cth and then to 
Cys in the transsulphuration pathway (Perry et al., 2007) 
 

 

Flavin mononucleotide (B2) 
Cofactor for MTRR enzyme that restores MTR activity for remethylation of 
Hcy to Met in methionine cycle (García-Minguillán et al., 2014)   

 

Thiamine (B1) 
Form of vitamin B1 that is rapidly phosphorylated to bioactive form, TPP (de Jong et al., 2004) 

 

Flavin adenine dinucleotide (B2) 
Cofactor for MTHFR enzyme that catalyses conversion of CH2THF to 5-
methyltetrahydrofolate 5-mTHF in the folate cycle  
Cofactor for MTRR enzyme that restores MTR activity for remethylation of 
Hcy to Met in methionine cycle (García-Minguillán et al., 2014)    

Thiamine pyrophosphate (B1) 
Cofactor for enzymes involved in oxidative phosphorylation; PDH catalyses the decarboxylation 
of pyruvate to acetyl-CoA and KGDH catalyses the conversion of α-KG to succinyl-CoA in the 
TCA cycle (Lonsdale, 2015; McLain et al., 2011) 

 

PLP

B1

TPP

CNCbl PN

AdoCbl PM

MeCbl PL

RF

FMN

FAD
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Appendix 2.1 Sheep blood plasma trace-element analysis by ICP-

MS 

Inductively coupled plasma mass spectrometry (ICP-MS) was used to measure 

trace-elements, primarily cobalt (Co), in sheep blood samples. No sample 

preparation step was required. Multi-element analysis was undertaken 

(Thermo-Fisher iCAP-Q) with a ‘Flatpole collision cell’ charged with 7% H2 in He 

gas) upstream of the analytical quadrupole to reduce polyatomic interferences. 

Samples and calibration standards were diluted (0.5 mL into 20 mL) in a diluent 

containing 0.1% ionic surfactant containing Triton X-100 and anti-foam-B 

(Sigma Aldrich), plus 2% methanol (MeOH) and 1% nitric acid (HNO3; Trace 

analysis grade, Fisher Scientific, 1 mL/min). Internal standards were scandium 

(Sc; 50 μg/L), germanium (Ge; 20 μg/L), rhodium (Rh; 10 μg/L) and iridium (Ir; 

5 μg/L). Samples were introduced via a covered autosampler (Cetac ASX-520) 

through a concentric glass venturi nebuliser (Thermo-Fisher Scientific; 1 

mL/min). Calibration standards ranged from 0 to 100 μg/L. Sample processing 

was conducted using Qtegra software (Thermo-Fisher Scientific).  

Appendix 2.2 Sheep liver amino acid analysis by HPLC 

Primary amino acids were quantified in sheep liver by high performance liquid 

chromatography (HPLC) with online derivitisation, based on the method of 

Henderson et al. (2000) with the following modifications. Briefly, 150 mg frozen 

liver were extracted with 150 µL 80% MeOH by homogenisation for 2 min. After 

centrifugation for 15 min at 14,500 xg, 120 µL supernatant and 3 µL internal 

standard, norvaline (NVA, 40 mmol/L), was transferred to a 2.5 mL screw-

capped glass autosampler vial for HPLC analysis.  

The method used an Agilent 1100 HPLC equipped with a binary solvent delivery 

system and gradient controller. Chromatographic separation was performed on 

a ZORBAX Eclipse-AAA column (4.6 x 150 mm, 3.5 µm) protected by a guard 

column and maintained at 40°C. The flow rate was set at 1.75 mL/min. The 

injection program was as follows: 

1. Draw 2.5 µL from vial 1 (borate buffer, 0.5 M, pH 8.0) 

2. Draw 0.5 µL from sample 

3. Mix 3 µL “in air”, max speed, 2x 

4. Wait 0.5 min 
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5. Draw 0 µL from vial 2 (needle wash using water in uncapped vial) 

6. Draw 0.5 µL from vial 3 (10 mg/mL OPA + 20 mg/mL MPA, in ACN) 

7. Mix 3.5 µL “in air”, max speed, 6x 

8. Draw 0 µL from vial 2 (needle wash using water in uncapped vial) 

9. Draw 0.5 µL from vial 4 (ACN) 

10. Mix 4 µL “in air”, max speed, 6x 

11. Draw 0 µL from vial 6 (needle wash using ACN in uncapped vial) 

12. Draw 16 µL from vial 5 (water) 

13. Mix 10 µL “in air”, max speed, 2x 

14. Inject 10 µL of sample  

Mobile phases were composed of Na2HPO4 (40 mmol/L, pH 7.8) for eluent A 

and ACN: MeOH: water (45:45:10, w/w/w) for eluent B. The total run time was 

30 min. Gradient elution was carried out by the following program: 

Mobile phase gradients for analysis of liver amino acids. 

Time (min) Eluent A (%) Eluent B (%) 

0 100 0 
2 100 0 

24 56 44 
25 0 100 
26 0 100 
27 100 0 
30 100 0 

A fluorometer was used to monitor the elution of amino acids from the column 

(excitation wavelength=340 nm, emission wavelength=450 nm). Limits of 

quantification (LOQ) and inter-assay CV% was determined for all amino acids 

measured. 

Limits of quantification and inter-assay CV% for amino acids. 

Amino Acid LOQ (nmol/g) CV (%) 

Aspartate (Asp) 31.3 14.7 
Glutamate (Glu) 1250 3.9 
Asparagine (Asn) 31.3 2.5 
Serine (Ser) 31.3 5.5 
Glutamine (Gln) 15.6 5.1 
Histidine (His) 15.6 5.1 
Glycine (Gly) 1250 6.1 
Threonine (Thr) 15.6 5.7 
Citrulline (Cit) 31.25 1.9 
Tyrosine (Tyr) 15.6 4.8 
Cystine (Cys) 62.5 18.8 
Valine (Val) 15.6 6.6 
Methionione (Met) 15.6 7.2 
Tryptophan (Trp) 15.6 6.7 
Phenylalanine (Phe) 15.6 4.7 
Isoleucine (Ile) 31.3 2.7 
Leucine (Leu) 31.3 2.1 
Lysine (Lys) 31.3 3.2 

Methionine coloured in red and relevant 1C-related amino acids coloured in purple.  
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Appendix 2.3 Sheep liver polyamine analysis by HPLC 

Primary polyamines; putrescine (Put), spermidine (Spd) and spermidine (Spm), 

were quantified in sheep liver by HPLC based on the methods of Sabri et al. 

(1989) and Magnes et al. (2014). Briefly, 50 mg frozen liver were extracted with 

500 µL cold distilled water and 40 µL perchloric acid (4M) by homogenisation 

for 2 min. After cooling on ice for 10 min, the homogenate was centrifuged for 

15 min at 14,500 xg and 400 µL supernatant was transferred to an Eppendorf 

tube. The pH of the supernatant was adjusted to 9.0 by the addition of 28 µL 

potassium hydroxide (KOH, 4M). The sample was vortexed for 30 s and 

centrifuged for 10 min at 14,500 xg before 20 µL were transferred to a new 

Eppendorf tube for derivatisation.  

Twelve microliters of borate buffer (0.2 M) and 4 µL 1,6-diaminohexane (DAH, 

100 µmol/L) were added to the 20 µL sample. After brief vortexing, 40 µL 9-

fluorenylmethyl chloroformate (FMOC, 0.01 M in acetone) was added. The 

sample was vortexed for 1 min and left for 10 min at room temperature to allow 

derivitisation to proceed. After the addition of 48 µL glycine reagent (0.04 M 

glycine in 0.2 M sodium borate, pH 9.0), the sample was vortexed for 30 s and 

left at room temperature for a further 2 min. Finally, 40 µL dilution buffer (0.015 

M NaOAc in ACN) was added, vortexed for 10 s and 100 µL were transferred 

to a glass autosampler vial containing 400 µL dilution buffer for HPLC analysis.   

Using the Agilent 1100 HPLC (Appendix 2.2), 10 µL sample was injected onto 

the Zorbax C18 HPLC column (250 x 4.6 mm, 5 µm) protected by a guard 

column and maintained at 40°C. The flow rate was set at 1.2 mL/min. Mobile 

phases were composed of Na2HPO4 (40 mmol/L, pH 7.8) for eluent A and ACN: 

MeOH: water (45:45:10, w/w/w) for eluent B. The total run time was 30 min. 

Gradient elution was carried out by the following program:  

Mobile phase gradients for analysis of liver polyamines. 

Time (min) Eluent A (%) Eluent B (%) 

0 50 50 
5 50 50 

28 0 100 
28.5 0 100 
29 50 50 
30 50 50 

 

A fluorometer was used to monitor the elution of polyamines from the column 

(excitation wavelength = 264, emission wavelength = 310).  The LOD was 0.625 
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nmol/g for all three polyamines and the CV% was 2.08, 3.09 and 3.24 for Put, 

Spd and Spm QC samples, respectively.  

Appendix 2.4 Liver propionate metabolites by GC-MS 

Methylmalonic acid (MMA) and succinic acid (SA) concentrations were 

quantified in sheep liver by gas chromatography-mass spectrometry (GC-MS) 

based on the method of Kanakkaparaparambil et al. (2009) with the following 

modifications. Briefly, 50 mg frozen liver were extracted with 250 µL 80% MeOH 

by homogenisation for 2 min. Samples were cooled on ice for 10 min. After 

centrifugation for 15 min at 14,500 xg, 200 µL supernatant and 4 µL internal 

standard (1 mmol/L 4-chlorobutyric acid in 1 mmol/L HCl) were transferred to a 

2.5 mL screw-capped glass autosampler vial. To this, 250 µL 12% boron 

trifluoride-methanol (BF3-MeOH) were added and the sample was vortexed for 

1 min and heated for 15 min at 95°C in a heating block. After cooling, 250 µL 

distilled water and 250 µL dichloromethane (CH2Cl2) were added to the vial, 

vortexed for 30 s and centrifuged for 10 min at 14,500 xg to separate the layers. 

The lower CH2Cl2 layer was transferred to a screw capped glass auto-sampler 

vial with insert for GC-MS analysis. The GC-MS method used was identical to 

the method described in Section 2.2.1.3.3. The LOD was 0.75 nmol/g for both 

MMA and SA and CV% was 8.37 and 10.98 for MMA and SA, respectively.  

Propionoic acid (PPA) concentrations were quantified by GC-MS based on the 

method of Pouteau et al. (2001). Briefly, 150 mg frozen liver were extracted with 

750 µL 5-sulfosalicylic acid (SSA, 0.04 mg/mL) by homogenisation for 2 min. 

Samples were cooled on ice for 2 min. After centrifugation for 15 min at 14,500 

xg, 200 µL supernatant was added to 20 µL internal standard, 2-methylbutyric 

acid (MBA, 400 µmol/L), 3.5 µL HCl (37%) and 1 mL diethylether. The sample 

mixture was vortexed for 2 min and centrifuged for 10 min at 14,500 xg to 

separate the layers. From the upper layer, 600 µL were transferred to a screw 

capped glass vial containing 3.5 µL 1-(tert-butyldimethylsilyl)imidazole 

(TBDMS, 97%). The sample was vortexed for 2 min and heated for 30 min at 

60°C. After cooling, the sample was analysed by GC-MS. 

The GC-MS method used a DB-5MS column (J&W Scientific Agilent 

technology, 30 m x 0.25 mm; 0.25 µm film thickness). The injection volume was 

5 μL for SCAN and SIM mode, both using splitless mode. The injection port and 

MS selective detector interference temperatures were 260oC and 250oC, 
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respectively. The carrier gas (He) was set at a constant flow rate of 1.3 mL/min. 

The chromatographic conditions were 40oC for 1 min, 70oC min-1 until 60oC, 

15oC min-1 until 110oC, and a final increase of 70C min-1 until 250oC. The MS 

operated in electron impact ionisation mode with the ionisation energy of 70 eV. 

SCAN mode measured at m/z: 30-300. SIM ions were set at 131 for PPA and 

159 for MBA. Liver PPA concentrations were quantified by the method of 

standard addition using a calibration range from 19.5 nmol/g to 5 μmol/g and 

plotting the ratio of peak area of analyte (PPA) to that of the internal standard 

(MBA). The LOD was 19.5 nmol/g and the CV% was 10.4, 6.3 and 6.5 for low, 

medium and high QCs, respectively. The inter-assay CV% was 4.7%.  
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Appendix Table 2.2 Total concentration ranges of 1C metabolites and related 
compounds in animal tissues.  

Total concentration range (per g of tissue wet weight) reported in present study in red.  
*Abattoir derived (Ab) sheep liver; ** methyl deficient (MD) sheep liver. 

 Concentration Reference(s) 

 
Vitamin B12 

 

Liver 
(pmol/g) 

Muscle 
(pmol/g) 

Blood 
(pmol/L) 

 

Sheep 
(total) 

569-766 
*79-3027 
**64-734 

0.6-7.0 164-2,757 Indyk et al. (2002); Ortigues-
Marty et al. (2005); Sinclair et al. 
(2007); Mitchell et al. (2007); 
Williams et al. (2007); Hassan et 
al. (2012) 
 

Cow 342-1,266 3-8 70-102 Ortigues-Marty et al. (2005); 
Williams et al. (2007); Hassan et 
al. (2012) 
 

Deer 428-1,024 20-21 - Tremain-Boon et al. (2002); 
Hassan et al. (2012) 
 

Pig 149-183 3-4 50-127 Matte et al. (2010); Hassan et al. 
(2012); Guay et al. (2002) 
 

Rat 50-100 - 3,000-7,180 Fukuwatari et al. (2008); Shibata 
et al. (2013) 

Chicken 132-133 2-3 - Hassan et al. (2012) 
 

Vitamin B9  

(Folates) 

 

    

Sheep 
(total) 

5,000-28,076 
*10,355-211,847 
**186,25-118,290 

44 4,300-6,900 Smith and Osborne-White 
(1973); Kleppa and Stuen (2003); 
Williams (2007) 

Cow 6312 22-261 24,000-6,1000 Williams (2007); Graulet et al. 
(2007); Müller (1993) 

Deer - - - - 
Pig 2,300,000 22-261 30,000-52,000 Müller (1993); Stangl et al. 

(2000); Halsted et al. (2002) 
Rat ∫243,000-277,000 79,000-86,000 71,000-136,000 Crivello et al. (2010) 

Chicken 10,720,000 101,000 54,300,000 Müller (1993);  McCann et al. 
(1994)  

 
Vitamin B6 

 

    

Sheep 
(free forms) 

28,937 
*181-5,228 
**175-1,250 

5,371-43,678 - Williams et al. (2007); Hassan et 
al. (2012) 

Cow 40,402 8,190-28,390 - Williams et al. (2007); Hassan et 
al. (2012) 

Deer 28,937 10,374 - Hassan et al. (2012) 
Pig 34,942 12,558 - Hassan et al. (2012) 
Rat 20,000-48,900 - 1.0-2.1 Fukuwatari et al. (2008); Shibata 

et al. (2013) 
Chicken 43,668 20,747 - Hassan et al. (2012) 

 
Vitamin B2 

 

(nmol/g) (nmol/g) (pmol/L) 
 

Sheep 
(Riboflavin) 

74-93 
*5-97 

**0.1-1.1 

4-7 - Fukuwatari et al. (2008); Shibata 
et al. (2013); Williams et al. 
(2007); Hassan et al. (2012) 

Cow 74-128 3-6 - Williams et al. (2007); Hassan et 
al. (2012) 

Deer 69-70 6-7 - Hassan et al. (2012) 
Pig 75-76 3-4 - Hassan et al. (2012) 
Rat 70-100 - 0.169 Fukuwatari et al. (2008); Shibata 

et al. (2013) 
Chicken 90-91 4-5 - Hassan et al. (2012) 

 
Vitamin B1 

 
 
 

  
 

Sheep 
(Thiamine) 

9-15 
*0.3-12.5 

**0.09-1.71 

3-6 - Williams et al. (2007); Hassan et 
al. (2012) 

Cow 8-12 1-4 - Williams et al. (2007); Hassan et 
al. (2012) 

Deer 12-13 3-4 - Hassan et al. (2012) 
Pig 16-17 15-16 - Hassan et al. (2012) 
Rat 30-40 - 0.3-0.4 Hassan et al. (2012) 

Chicken 23-24 5-6 - Hassan et al. (2012) 
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Appendix Chapter 3  

Appendix Table 3.2 A summary of betaine homocysteine S-methyltransferase (BHMT) enzyme isoforms and their methyl donor substrates. 

Isoform Betaine-homocysteine S-methyltransferase (BHMT; EC 2.1.1.5) Betaine-homocysteine S-methyltransferase 2 (BHMT2; EC 2.1.1.10) 

Reaction 
Uses betaine/trimethylglycine (TMG) as methyl donor substrate to remethylate Hcy to 
methionine, generating dimethylglycine (DMG) by-product (Ganu et al., 2015). 

Uses S-methylmethionine (SMM) as a methyl donor substrate to remethylate Hcy to generate 
two molecules of methionine (Mládková et al., 2012).  

Inhibition 
Dimethylglycine (DMG) is a strong inhibitor (Szegedi et al., 2008). SAM is a weak inhibitor; methionine is a stronger inhibitor of BHMT2 than BHMT (Szegedi et 

al., 2008). 

Species Sea urchins, amphibians, reptiles, birds and mammals (Ganu et al., 2015). Mammals (all monotreme, marsupial and placental species examined; Ganu et al., 2015). 

Gene 
Human BHMT gene maps to chromosome 5q13.1-5q15, spans ~20 kb, consists of 8 exons 
and 7 introns (Li et al., 2008). 

BHMT2 gene is adjacently located on chromosome 5 ~22.3 kb upstream of BHMT due to 
tandem gene duplication event (Li et al., 2008) 

Homology 
73-78% amino acid sequence homology (Li et al., 2008; Ganu et al., 2011). Crystal structures reveal mammalian BHMT proteins are highly conserved, e.g. Human and porcine BHMT are 84% 
identical at nucleotide level and 94% identical at amino acid level (Pajares and Pérez-Sala, 2006). 

Protein Structure 
 

406-7 amino acids (45 kDa; Chadwick et al., 2000; Szegedi et al., 2008). Forms a dimer of 
dimers (tetramer of monomer units; Ganu et al., 2015). Zn2+ atom linked to 3 essential Cys 
residues (217, 299, 300). First 318 residues of ORF encode a (β/α)8 barrel that contains Cys 
residues of catalytic site and Gln159 invariant residue for Hcy binding (Ganu et al., 2013). 
Residues 319-406/7 encode oligomerisation domain of C-terminus including dimerization 
arm, hook, flexible linker and C terminal α-helix (Ganu et al., 2015). 

Monomeric protein comprising 373 amino acids (40 kDa; Li et al., 2008; Szegedi et al., 2008). 
Lacks 34 amino acids that encode the oligomerisation domain, therefore, BHMT2 does not 
oligomerise. Both isoforms may oligomerise into a tetramer of BHMT-BHMT2 dimers (Ganu et 
al., 2015). Heterodimerisation may partially stabilise BHMT2, thereby preserving its activity and 
preventing its rapid degradation following expression (Mládková et al., 2012; Szegedi et al., 
2008). 

Tissue distribution 

High abundance in liver and kidney, pancreas (Ganu et al., 2015; Pajares and Pérez-Sala, 
2006), eye lens, cochlea, brain, skeletal and cardiac muscle (Pérez-Miguelsanz et al., 2017). 
BHMT expression in mouse oocyte promotes ICM development and DNA methylation (Anas 
et al., 2008; Lee et al., 2012; Zhang et al., 2015). BHMT expressed in human ESCs (Steele 
et al., 2005). Contradictory findings report detection of BHMT mRNA in bovine embryos of all 
developmental stages, except for 8-cell stage (Ikeda et al., 2010), and complete absence of 
transcript in bovine ovary, oocyte and embryo (Kwong et al., 2010). Conventionally 
understood to be cytoplasmic but nuclear subcellular distribution of BHMT has been recently 
discovered (Pérez-Miguelsanz et al., 2017). 

BHMT2 mRNA tissue distribution patterns thought to reflect those of BHMT (Ganu et al., 2015; 
Chadwick et al., 2000). Less information on tissue specific BHMT2 activity. Determining 
whether BHMT2 is expressed in compensation for lack of BHMT, particularly in reproductive 
tissues, is critical to enhance current understanding of how 1C/Met metabolism behaves in 
these cell types. BHMT2 expression has been reported in human oocyte (Benkhalifa et al., 
2008; Benkhalifa et al., 2010). Low expression of BHMT isoforms in tissues other than liver 
and kidney could be due to CpG island methylation of their promoter region (Ganu et al., 
2011).  

Other function(s) 
BHMT as a ‘moonlighting protein’: 1) osmotic support/maintains tonicity via betaine concentrations (Ganu et al., 2013); 2) structural protein; 3) Scaffold for enzyme function (Pérez-Miguelsanz 
et al., 2017); 4) Eye lens as ψ-crystallin (Vansantha et al., 1998). 

Substrate Betaine (N,N,N-trimethylglycine/TMG) S-methylmethionine (SMM), S-methylmethionine Sulphonium Choride, ‘Vitamin U’ 

Source 
Wheat, germ/bran, spinach, shellfish, sugarbeet. Mitochondrial oxidation of choline 
(Hogeveen et al., 2013). 

Yeast and criciferous plants (Ganu et al., 2015). Cannot be synthesised by mammals as they 
lack methyltransferase (MMT) enzyme (Bourgis et al., 1999; Kovatscheva and Popova, 1977) 
but is bioavailable in the animal diets (Augspurger et al., 2005). 

Specificity 
BHMT can use SMM in vitro at low affinity Km/Kcat 5-fold lower than that for betaine 
(Szegedi et al., 2008). 

BHMT2 cannot use TMG/betaine (lacks 9 amino acids within N-terminus that confer specificity 
to BHMT; Ganu et al., 2015). 

Kinetics  Porcine liver BHMT Km for betaine = 0.023 mmol/L (Garrow, 2006). Km for SMM = 0.94 mmol/L and similar turnover (Kcat) value to BHMT (Szegedi et al., 2008). 

Function  
Osmolyte (Burg and Ferraris, 2008) SMM is a precursor of the osmolyte, dimethylsufoniopropionate (Rouillon et al., 1999). 
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Appendix 3.1 Bovine COC grade and morphological description 

 

 

Cumulus oocyte complex 
(COC) grade 

Morphological description 

Adapted from source: Goodhand et al. (1999) 

1 Excellent/Good 

 

>4 layers of compact, light or 
transparent cumulus with a 
clear, even cytoplasm. 

2 Fair 

 

Less compact, <4 layers 
cumulus and/or cytoplasm 
generally homogenous but 
with coarser appearance. 

3 Poor 

 

<4 layers cumulus and/or 
cytoplasm of irregular 
appearance with dark areas. 

4 
Denuded/ 

Degenerate 

 

Completely denuded or 
strongly exapanded 
degenerate cumulus with 
dark spots. 
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Appendix 3.2 In vitro embryo production (IVP) media  

Stock components for in vitro bovine embryo production media 

All stock components dissolved in tissue grade culture (TCG) water, sterile 

filtered and stored at 4°C or -20°C. 

Component MWt. Mass (g) Volume (mL) Conc. Storage 

CaCl2 147.02 0.58808 20 200 mM 4°C 

KCl 74.55 0.5964 50 160 mM 4°C 

MgCl2.6H2O 203.30 1.10165 50 100 mM 4°C 

NaCl 58.44 6.72 50 2.3 M 4°C 

NaHCO3 84.01 2.1 100 250 mM 4°C 

NaH2PO4.H2O 137.98 0.2346 50 34 mM 4°C 

Na lactate - - - 60% syrup 4°C 

HEPES 249.30 12.465 50 1 M 4°C 

Na pyruvate 110.00 0.044 20 20 mM -20°C 

L-Glutamine 146.15 0.14615 10 100 mM -20°C 

KH2PO4 136.09 1.3609 50 200 mM 4°C 

MgSO4.7H2O 246.47 2.4647 50 200 mM 4°C 

D(+)Glucose 180.20 0.3604 10 200 mM 4°C 

Na2EDTA.2H2O 372.24 0.372 10 100 mM 4°C 

Trisodium citrate 294.10 2.95 50 200 mM 4°C 

Myoinositol 180.16 2.5 50 278 mM 4°C 

Heparin - 0.05 5 10 mg/mL -20°C 

Hypotaurine+ 
Epinephrine 

- 0.005 10 0.5 mg/mL -20°C 

Caffeine 194.19 0.485 50 50 mM 4°C 
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Search and collection medium (50 mL working solution)  

47.5 mL TCM199 (HEPES), 2.5 mL FCS (5% v/v), 200 µL glutamine (100 mM), 

500 µL penicillin/streptomycin. pH 7.3-7.4. Osmolarity: 290-300 mOsm. Filtered 

and stored at 4°C for up to 1 week. Warmed to 37°C 1 h before use. 

Maturation medium (10 mL working solution) 

9 mL TCM199, 1 mL FCS (10% v/v), 100 µL glutamine (100 mM), 100 µL Na 

Pyruvate (20 mM), 100 µL penicillin/streptomycin, 40 µL Pluset (LH/FSH stock, 

5 IU/mL). pH 7.3-7.4, Osmolarity: 290-300 mOsm. Prepared day before use. 

Filtered and equilibrated in 5% CO2 in air overnight.  

Tyrode albumin lactate pyruvate (TALP) base medium (50 mL stock solution) 

40 mL TCG water, 5 mL NaHCO3 (250 mM), 2.17 mL NaCl (2.3 M), 550 µL 

MgCl2 (100 mM), 500 µL CaCl2 (200 mM), 500 µL NaH2PO4 (34 mM), 160 µL 

KCl (1 M), 152 µL Na lactate (60% syrup). Store in fridge for up to 1 week.   

TALP oocyte wash medium (10 mL working solution) 

10 mL TALP base, 30 mg BSA fatty acid free (FAF), 100 µL Na pyruvate (20 

mM), 250 µL HEPES (1M), 100 µL penicillin/streptomycin. pH 7.3. Osmolarity: 

275-285 mOsm. Filtered and stored at 4°C for up to 1 week. Warmed to 37°C 1 

h before use. 

TALP capacitation medium (10 mL working solution) 

10 mL TALP base, 60 mg BSA FAF, 52 µL Na pyruvate (20 mM), 100 µL HEPES 

(1M), 100 µL penicillin/streptomycin. pH 7.4. Osmolarity:  295-305 mOsm. 

Filtered and stored at 4°C for up to 1 week. Warmed to 37°C 1 h before use. 

TALP fertilisation medium (10 mL working solution) 

10 mL TALP base, 60 mg BSA FAF, 100 µL Na pyruvate (20 mM), 100 µL 

penicillin/streptomycin, 400 µL caffeine (50 mM), 10 µL heparin (10 mg/mL), 10 

µL hypotaurine+epinephrine (0.5 mg/mL). pH 7.4. Osmolarity:  290-300 mOsm. 

Filtered and stored at 4°C for up to 1 week. Pre-equilibrated in 5% CO2 in air 

overnight. 

Synthetic oviductal fluid (SOF) base medium (50 mL stock solution) 

46 mL TCG water, 2.38 mL NaCl (2.3 M), 600 µL CaCl2 (200 mM), 360 µL KCl 

(1M), 175 µL MgSO4 (200 mM), 100 µL trisodium citrate (200 mM), 100 µL 
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phenol red (0.5% v/v), 50 µL glucose (200 mM), 38 µL Na lactate (60% syrup). 

Store in fridge for up to 1 week.   

SOF HEPES holding medium (10 mL working solution) 

10 mL SOF base, 30 mg BSA FAF, 150 µL NaHCO3 (250 mM), 100 µL BME 

amino acids [50X], 50 µL MEM amino acids [100X], 100 µL Na pyruvate (20 

mM), 100 µL glutamine (100 mM), 250 µL HEPES (1M), 100 µL 

penicillin/streptomycin. pH 7.4. Osmolarity:  270-290 mOsm. Filtered and stored 

at 4°C for up to 1 week. Warmed to 37°C 1 h before use. 

SOF culture medium (10 mL working solution) 

10 mL SOF base, 30 mg BSA FAF, 1 mL NaHCO3 (250 mM), 400 µL BME 

amino acids [50X], 100 µL MEM amino acids [100X], 100 µL Na pyruvate (20 

mM), 100 µL glutamine (100 mM), 100 µL penicillin/streptomycin. pH 7.4. 

Osmolarity:  270-290 mOsm. Filtered and stored at 4°C for up to 1 week. Pre-

equilibrated in 39oC, 5% CO2/5% O2 overnight.  
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Appendix 3.3 Bovine embryo stage and morphological description 

Adapted from Bó and Mapletoft (2013) 

 

Embryo  Stage code 
 

Morphological description 
 

 

1 1-cell unfertilized ovum. Dead or degenerate.  

 

2 2- to 12-cell embryo. Dead or degenerate.  

 

3 

Early morula containing at least 16 cells. 
Individual blastomeres difficult to discern from 
one another. Cellular mass of the embryo 
occupies most of the perivitelline space. 

 

4 

Compact morula. Individual blastomeres have 
coalesced forming a compact mass. The 
embryo mass occupies 60-70% of the 
perivitelline space. 

 

5 

Early blastocyst. Embryo has formed a 
blastocele and gives the appearance of a signet 
ring. The embryo mass occupies 70-80% of 
perivitelline space. Quality assessment may 
prove challenging as it is difficult to differentiate 
between inner cell mass from trophectoderm 
cells. 
 

 

6 

Mid blastocyst. Pronounced differentiation of 
the trophoblast layer and of the darker and 
compact inner cell mass. The blastocele is well-
defined and the embryo occupies most of the 
perivitelline space. Visual differentiation of inner 
cell mass and trophectoderm is possible. 
 

 

7 

Late expanded blastocyst. Overall diameter of 
the embryo dramatically increases. Zona 
pellucida thins to ~one-third of its original 
thickness. 

 

8 

Hatched blastocyst. Embryos are hatching or 
have completely shed zona pellucida. Hatched 
blastocysts may be spherical with a prominent 
blastocele (signet ring appearance) or may be 
collapsed. 

 

9 

Expanded hatched blastocyst. Identical in 
appearance to hatched stage 8 blastocyst but is 
significantly larger in diameter.  
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Appendix 3.4 Sperm preparation by swim-up method 

For each IVF cycle, one straw containing 250 µL frozen bull semen was rapidly 

thawed at 37°C in a water bath. Straw contents were released into a pre-

warmed, sterile 1.5 mL Eppendorf tube and immediately layered under 1 mL of 

pre-warmed capacitation media in a 7 mL universal container. The container 

was transferred to a CO2 incubator for 1 h to allow spermatozoa to swim up to 

the top of the capacitation media. Following incubation, the supernatant layer 

containing motile sperm was carefully transferred to a sterile pre-warmed 1.5 

mL Eppendorf tube, leaving dead sperm within the diluent layer at the bottom. 

The motile sperm fraction was centrifuged for 20 min at 300 xg. Following 

centrifugation, the supernatant was carefully removed and the sperm pellet was 

resuspended in ~70 µL capacitation medium. To count sperm using a 

haemocytometer, 10 µL sperm suspension was added to 90 µL water (1:10 

dilution). A final concentration of 1x106 spermatazoa/mL was added to each 50 

µL fertilisation drop containing matured COCs.  
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Appendix 3.5 BHMT and BHMT2 multiple sequence alignment 

BHMT and BHMT2 multiple sequence alignment (Clustal W2) 

 

Red: Exon-Exon junction; Yellow: Forward Primers; Green; Reverse Primers.  

 

CLUSTAL O(1.2.4) multiple sequence alignment (bovine BHMT isoforms) 

 

BHMT2      CTGGAAACTGCTTTTAGGAAAAATAAAAAGAAGGGCCTTTTAGAACATCTGGATAGTGGG 

BHMT       ATGGCACCGGCTGGGGGCAAAAATGTCAAGAAGGGCATCCTAGAACGGCTAAACTCTGGA 

            *** * * ***    * ******   ********* *  ******  **  *   ***  

BHMT2      GAGGTTGTGGTTGGAGATGGCAGCTTCCTCCTAACTCTGGAGAAGAGGGGCTACGTGAAG 

BHMT       GAGGTCATCATCGGAGACGGAGGGTTTGTCTTTGCGCTGGAGAAGAGGGGCTACGTGAAG 

           *****  *  * ***** **  * **  ** *  * ************************ 

BHMT2      GCCGGGCTCTGGACTCCAGAAGCCGTAGTAGAGCATCCAAACGCAGGGATGATTAATGGC 

BHMT       GCAGGGCCCTGGACCCCAGAAGCTGCTGTGGAACACCCAGAAGCAGTTCGC------CAA 

           ** **** ****** ******** *  ** ** ** *** * ****               

BHMT2      TCTCACATGGAATTCTTGAGGGTGGGATCAGATGTCATGCAGACTTTCACTTTTTCTGCC 

BHMT       CTTCATCGAGAGTTCCTCAGAGCTGGCTCGAATGTCATGCAGACCTTCACCTTCTATGCC 

             ***    ** *** * ** *  ** **  ************* ***** ** * **** 

BHMT2      AGTGAGAACAATATGGAAAGCCTGTGGGAAG---------------------------CT 

BHMT       AGTGAAGACAAGCTGGAGAACAGGGGGAACTATGTTGCAGAGAAAATATCCGGGCAGAAA 

           *****  ****  **** * *  * ** *                                

BHMT2      GTAAACACCACTGCCTGTGACCTCGCCAGAGAAGTAGCCAACAAAGGGGATGCTTTGGTA 

BHMT       GTCAATGAAGCCGCTTGTGACATTGCCCGGCAAGTGGCTGATGAAGGAGATGCTTTGGTA 

           ** **     * ** ****** * *** *  **** **  *  **** ************ 

BHMT2      GCAGGGGGGATCTGCCGGACATCGTTGTACGCACACCACAAGGATGAAGTTAGAATTAAA 

BHMT       GCAGGGGGTGTGAGCCAGACACCTTCGTACCTTAGCTGCAAGAGCGAAACTGAAGTCAAA 

           ********  *  *** **** * * ****     *  ****   ***  *  * * *** 

BHMT2      AAGCTTTTTCGACTACAGCTAGAGATTTTTGCCAGGAAAAATGTAGATTTCTTGATTGCA 

BHMT       AAAGTCTTTCAGCAACAGTTAGAGGTCTTCGTAAAGAAGAACGTGGACTTCTTGATCGCA 

           **  * ****  * **** ***** * ** *  * *** ** ** ** ******** *** 

BHMT2      GAGTATTTTGAACACGCTG------------------TAGAAGTCTTAAAAGAATCTGGA 

BHMT       GAGTATTTTGAACATGTTGAAGAGGCTGTATGGGCAGTTGAAGCCTTGAAAGCATCAGGG 

           ************** * **                  * **** *** **** *** **  

BHMT2      GAGCCTGTGGCAGCCACTATGTGTATCGGCCCAGAGGGAGACATGCATGGTGTAACACCT 

BHMT       AAACCAGTGGCGGCAACTATGTGCATCGGCCCAGAGGGAGACTTGCACAGCGTGACCCCT 

            * ** ***** ** ******** ****************** ****  * ** ** *** 

BHMT2      GGAGAATGTGCTGTGAAGCTGGTGAAGGCAGGGGCCTCAGTTGTTGGTGTGAACTGCCGA 

BHMT       GGCGAGTGTGCAGTGCGCCTGGTTAAAGCAGGAGCTTCCATCGTGGGGGTAAACTGCCAT 

           ** ** ***** ***   ***** ** ***** ** **  * ** ** ** *******   

BHMT2      TTTGGGCCCTGGACCAGCCTGAAGACAATGAGCCTCATGAAGGAAGCCCGACAGGCTGCA 

BHMT       TTTGACCCCACAATTAGCTTACAGACAGTGAAGCTCATGAAAGAAGGCTTGGAGGCTGCC 

           ****  ***   *  *** *  ***** ***  ******** **** *    *******  

BHMT2      GAGCTGAAAGCGCCCTTGATGGTGTGGTCCCTGGGGTTCCACATGCCCGACTGTGGCAAA 

BHMT       GGACTGAAAGCCCACCTCATGAGCCAGCCCTTGGCCTACCACACTCCTGACTGCGGCAAG 

           *  ******** * * * ***     * ** ***  * *****  ** ***** *****  

BHMT2      GGAGGGTTTCTGGATCTCCCTGAATATCCCTTTGTGCTGGAGCCCAGAGTTGCAACCAGA 

BHMT       CAGGGGTTTATTGACCTGCCAGAATTCCCCTTTGGACTGGAACCCAGAGTTGCAACCAGA 

              ****** * ** ** ** ****  *******  ***** ****************** 

BHMT2      TGGGATATTCAAAAGAACGCCAGAGAAGCCTACAACCTGGGGGTCAGGTACATAGGCGGG 

BHMT       TGGGATATTCAAAAGTATGCCAGAGAGGCCTACAACCTGGGGGTCAGGTACATAGGTGGG 

           *************** * ******** ***************************** *** 

BHMT2      TGCTGTGGCTTTGAGCCCTATCACATCAGAGCGATTGCAGAGGAGCTGGCCCCAGAGAAG 

BHMT       TGCTGTGGATTTGAACCCTACCACATCAGGGCAATTGCAGAGGAGCTGGCTCCGGAGAGG 

           ******** ***** ***** ******** ** ***************** ** **** * 

BHMT2      GGATTTTTGTCACCAGCTTCAGAAAAACATGGCAGCTGGGGAAGTGGTCTCAATATGCAC 

BHMT       GGATTTTTGCCACTGGCTTCAGAAAAACATGGCAGCTGGGGAAGTGGTTTGGATATGCAC 

           ********* ***  ********************************* *  ******** 

BHMT2      ACCAAACCCTGGATTAGAGCCAGACACAGGGCTAGAAGGGAGTATTGGGAGAATCTGCGG 

BHMT       ACCAAACCCTGGATTAGAGCCAGGGCCAGGAAGGA------ATACTGGGAGAATCTTCAG 

           ***********************   ****            ** *********** * * 

BHMT2      CTGGCTTCTGGCAGACCTTGT---CCTTCATTGTCAAAGCCAGATGCCTAA--------- 

BHMT       ATCGCCTCGGGCAGGCCGTACAACCCTTCCATGTCAAAGCCGGACGCCTGGGGAGTGACC 

            * ** ** ***** ** *     *****  ********** ** ****            

BHMT2      ------------------------------------------------------------ 

BHMT       AAAGGAACAGCCGAGCTTATGCAGCAGAAGGAAGCCACAACGGAGCAGCAGCTGAGAGAG 

                                                              

BHMT2      ------------------------------------ 



University of Nottingham  Appendices  

29 

 

Appendix 3.6 Minus reverse transcription (-RT) for ß-Actin (ACTB) 

 

Appendix 3.7 Amplicon purification for sequencing  

Pre-sequencing DNA purification was achieved using Zymo-Spin™ DNA 

purification kit. Briefly, cDNA fragments were excised from agarose gel using a 

razor blade and transferred to a 1.5 mL microcentrifuge tube. Gel samples were 

weighed and 3 volumes of Agarose Dissolving Buffer (ADB) were added to each 

gel slice. Samples were incubated at 55C for 10 min until gel slices were 

completely dissolved. The melted agarose solution was transferred to a Zymo-

Spin™ column in a collection tube and after centrifugation for 75 s at 10-16,000 

xg, the flow-through was discarded. The column was washed twice by addition 

of 200 µL DNA Wash Buffer and centrifugation for 45 s, discarding the flow-

through each time. The column was placed into a 1.5 mL tube, 13 µL DNA 

elution buffer (Buffer EB, Tris-Cl, pH 8.5; Qiagen Ltd.) was added directly to the 

column matrix and centrifuged for 75 s to elute the cDNA. The concentration of 

excised cDNA was measured using Nanodrop spectrophotometry and cDNA 

was diluted to 10 ng/µL. Primers were diluted to 3.2 pmol/µL. PCR products 

were sequenced by Source Bioscience (Nottingham, UK). 
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BHMT/2 Amplicon sequencing (Source Biosciences, Nottingham, UK) 

 

Bovine BHMT forward primer sequence and NCBI Blast output. 

 

Bovine BHMT2 forward primer sequence and NCBI Blast output. 
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Appendix 3.8 Custom-made IVP formulations and methionine stock 

solutions 

Methionine-free maturation medium (10 mL working solution) 

9 mL Methionine-free TCM199, 1 mL FCS (10% v/v), 100 µL Na Pyruvate (20 

mM), 100 µL Penicillin/Streptomycin (P/S), 40 µL Pluset (LH/FSH stock, 5 

IU/mL). pH 7.3-7.4, Osmolarity: 290-300 mOsm. Prepared day before use. 

Filtered and equilibrated in 5% CO2 in air overnight. 

Methionine-free Basal Eagle’s Medium (BME) [50X]  

In-house formulation based on commercial BME. To be added to modified 

Hepes-buffered synthetic oviductal fluid (SOF) holding media and SOF culture 

media.  

Amino Acid Component 
B 6766 BME [50X] 

MWt. Mass (g) 

BME 
[50X] 
conc. 

(mmol/L) 

IVC media 
conc. 

(µmol/L) 

L-Arginine monochloride 210.66 1.05 5 200 

L-Cystine 240.30 0.6 2.5 100 

L-Histidine 155.15 0.4 2.6 100 

L-Isoleucine 131.18 1.3 9.9 400 

L-Leucine 131.17 1.3 9.9 400 

L-Lysine monohydrochloride 182.65 1.849 10.1 405 

L-Phenylalanine 165.19 0.825 5.0 200 

L-Threonine 119.12 1.2 10.1 400 

L-Tryptophan 204.23 0.2 1.0 40 

L-Tyrosine 181.19 0.9 5.0 200 

L-Valine 117.15 1.175 10.0 400 

L-Methionine* 149.21 0.375 2.5 100 

*Typical methionine concentration in B 6766 BME [50X] formulation. Custom-made 
BME was formulated to exclude methionine. 
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Methionine stock solutions  

Stock A (50 mmol/L): add 26.81 mL water to 0.2 g methionine  

Stock B (5 mmol/L): add 2 mL Stock A to 18 mL water 

Stock C (1 mmol/L): add 0.4 mL of Stock A to 19.6 mL water  

 

Custom-made IVP media with added methionine (2.5 mL) 

To make 500 µmol/L IVP formulation: add 25 µL Stock A to 2.475 mL 

methionine-free media 

To make 50 µmol/L IVP formulation: add 25 µL Stock B to 2.475 mL methionine-

free media 

To make 10 µmol/L IVP formulation: add 25 µL Stock C to 2.475 mL methionine-

free media 

To make 0 µmol/L IVP formulation: 2.5 mL methionine-free media only 
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Appendix Chapter 4 

Appendix 4.1 Calibration standard curves for qPCR 

GATA3 validation experiment 
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Appendix 4.2 Reference gene selection using geNorm  

Reference gene selection using geNorm: Determination of the optimal number of reference genes 

 

geNorm analysis was initiated on 3 samples (inner cell mass, trophectoderm and blastocysts) using 8 candidate reference genes. Optimal reference target 
selection: The optimal reference target in this experimental situation is 3 (geNorm V<0.15) when comparing a normalisation factor based on 3 or 4 most stable 
targets.  
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Reference gene selection using geNorm: Average expression stability of reference genes  

 

geNorm analysis was initiated on 3 samples (inner cell mass, trophectoderm and blastocysts) using 8 candidate reference genes. Reference target stability: 
High reference target stability (average geNorm M≤0.5)
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Appendix 4.3 Stock and working solutions for RRBS analysis  

gDNA Purification: 

Protease (20 mg/mL) stock solution  

Soak 20 mg lyophilised protease in 1 mL glycerol (50% v/v). Dissolve at 4oC for 

30 min with occasional mixing. Aliquots of 200 μL stored at -20oC for 6 months.  

EDTA (50 mmol/L) stock solution  

Add 10 μL EDTA (0.5 M) to 90 μL nuclease-free PCR water. 

Triton X-100 (10% v/v) stock solution  

Add 10 μL Triton X-100 to 90 μL nuclease-free PCR water. 

Lysis buffer working solution  

 

 

 

 

 

Msp1 digest: 

Unmethylated λ-DNA (8 pg/μL) stock solution 

Add 5 μL λ-DNA (551 ng/μL) to 495 μL nuclease-free PCR water to make 5.51 

ng/μL (Stock A). Add 5 μL Stock A to 29.4 μL of nuclease-free PCR water (Stock 

B). 

Msp1 digest working solution  

 

 

 

 

 

 

 

Lysis buffer component 
Volume 

(1 reaction, μL) 

Final 
concentratio

n 

Tris-HCl (1 M) 0.1 20 mmol/L 

EDTA (50 mmol/L) 0.1 2 mmol/L 

KCl (1 M) 0.1 20 mmol/L 
Triton X-100 (10% v/v) 0.15 0.3% 
Protease (20 mg/mL) 0.25 1 mg/mL 
Nuclease-free PCR water  3.2  - 

Msp1 digest component 
Volume 

(1 reaction, μL) 

Final 
concentratio

n 

10 U/μL Msp1 0.9 9 U 

Tango buffer (10X) 1.8 1X 

Unmethylated λ-DNA (8 pg/μL, Stock B) 1 8 pg 
Nuclease-free PCR water  9.3 - 
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End-repair/dA tailing: 

End-repair dNTP stock solution  

Add 100 μL 10 mmol/L dATP, 10 μL 10 mmol/L dGTP and 10 μL dCTP to 880 

μL PCR water. Aliquots of 200 μL stored at -20oC for 6 months.  

End-repair/dA tailing master mix (working solution) 

 

Adaptor ligation:  

Ligation mix working solution   

 

 

 

 

tRNA (10 ng/μL) stock solution  

Add 10 mg tRNA to 1 mL nuclease-free PCR and leave at room temperature for 

10 min to dissolve. Aliquots of 200 μL stored at -80oC for 6 months. 

Zymo DNA clean and concentrator working solution  

 

 

 

End-repair/dA tailing mix component 
Volume 

(1 reaction, μL) 
Final 

concentration 

5U/μL Klenow fragment exo- 1 5 U 

Tango buffer (10X) 0.2 1X 

End-repair dNTP mix 0.8 dATP 40 μmol/L  
 dGTP 4 μmol/L 
dCTP 4 μmol/L 

Ligation mix component 
Volume 

(1 reaction, μL) 

Diluted methylated adapter (20-fold, NEB) 1 

Blund end/TA ligase mastermix (NEB) 2 

Tango buffer (10X) 0.5 

Nuclease-free PCR water 1.5 

Zymo DNA clean and concentrator mix 
component  

Volume 
(1 reaction, μL) 

Binding buffer 139 

tRNA (10 ng/μL) 1 

DNA (sample) 28 
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Library Preparation (PCR): 

KAPA HiFi uracil + mix working solution  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

KAPA HiFi uracil + mix component 
Volume 

(1 reaction, μL) 

KAPA HiFi uracil + mix 25 

Universal primer stock 2 

Index primer stock 2 

Bisulphite converted DNA  10 

Nuclease-free PCR water 11 
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Appendix 4.4 Differentially methylated genes in bovine ICM and TE 

Genes with clusters of differentially methylated sites (DMS) in bovine ICM 
following in vitro culture in altered methionine concentration  

Genes with clusters of DMS (ICM, n=179) Cluster count DMS count 

MAD1L1 Mitotic Arrest Deficient 1 Like 1  19 222 

RCC2 Regulator of Chromosome Condensation 2  15 182 

TBC1D22A Tbc1 Domain Family Member 22A  12 77 

DBH Dopamine Beta-Hydroxylase  9 131 

MRPS25 Mitochondrial Ribosomal Protein S25  7 37 

MST1 Macrophage Stimulating 1  6 36 

TAFA5 Tafa Chemokine Like Family Member 5  6 127 

PAXX Paxx Non-Homologous End Joining Factor  6 34 

NUP210 Nucleoporin 210  5 85 

MICALL2 Mical Like 2  5 38 

PRKAR1B Protein Kinase Camp-Dependent Type I Regulatory Subunit Beta  5 56 

PPP2R5B Protein Phosphatase 2 Regulatory Subunit B'Beta  5 38 

COMT Catechol-O-Methyltransferase  5 39 

ZADH2 Zinc Binding Alcohol Dehydrogenase Domain Containing 2  5 26 

TSPO Translocator Protein  5 82 

MOB2 Mob Kinase Activator 2  4 58 

MAMDC4 Mam Domain Containing 4  4 26 

SPATA7 Spermatogenesis Associated 7  4 25 

SELENOO Selenoprotein O  4 44 

PIPOX Pipecolic Acid and Sarcosine Oxidase  4 32 

LYRM4 Lyr Motif Containing 4  4 73 

TOLLIP Toll Interacting Protein  4 70 

LPCAT1 Lysophosphatidylcholine Acyltransferase 1  4 58 

DPYSL4 Dihydropyrimidinase Like 4  4 31 

PLCL2 Phospholipase C Like 2  4 92 

CFD Complement Factor D  4 17 

TSSK1B Testis Specific Serine Kinase 1B  4 28 

PANK4 Pantothenate Kinase 4  4 44 

BAP1 Brca1 Associated Protein 1  3 11 

SORCS3 Sortilin Related Vps10 Domain Containing Receptor 3  3 98 

MAPK8IP3 Mitogen-Activated Protein Kinase 8 Interacting Protein 3  3 32 

OSBP2 Oxysterol Binding Protein 2  3 39 

PPP6R1 Protein Phosphatase 6 Regulatory Subunit 1  3 21 

SIVA1 Siva1 Apoptosis Inducing Factor  3 21 

NUBP2 Nucleotide Binding Protein 2  3 16 

SLC25A47 Solute Carrier Family 25 Member 47  3 15 

TPRA1 Transmembrane Protein Adipocyte Associated 1  3 39 

NELFA Negative Elongation Factor Complex Member A  3 50 

COMP Cartilage Oligomeric Matrix Protein  3 38 

AMH Anti-Mullerian Hormone  3 12 

ATG4B Autophagy Related 4B Cysteine Peptidase  3 34 

IGF1R Insulin Like Growth Factor 1 Receptor  3 52 

C21H14orf180 Chromosome 21 C14Orf180 Homolog  3 24 

ERF Ets2 Repressor Factor  3 11 

GTF3C4 General Transcription Factor Iiic Subunit 4  3 21 

MUL1 Mitochondrial E3 Ubiquitin Protein Ligase 1  3 10 

TMEM206 Transmembrane Protein 206  3 22 

FKRP Fukutin Related Protein  3 28 

TRIM11 Tripartite Motif Containing 11  3 42 

BMP2K Bmp2 Inducible Kinase  2 13 

ASPG Asparaginase  2 29 

EVPL Envoplakin  2 20 

CTU2 Cytosolic Thiouridylase Subunit 2  2 28 

PI4KB Phosphatidylinositol 4-Kinase Beta  2 8 

COA8 Cytochrome C Oxidase Assembly Factor 8  2 11 

C17H4orf45 Chromosome 17 C4Orf45 Homolog  2 9 

DTNBP1 Dystrobrevin Binding Protein 1  2 23 

IL21R Interleukin 21 Receptor  2 15 

GATA2 Gata Binding Protein 2  2 14 

ACTN3 Actinin Alpha 3  2 10 

PAFAH1B3 Platelet Activating Factor Acetylhydrolase 1B Catalytic Subunit 3  2 22 

MED10 Mediator Complex Subunit 10  2 24 

DNAJC30 Dnaj Heat Shock Protein Family (Hsp40) Member C30  2 6 

VASN Vasorin  2 23 

VPS26B Vps26, Retromer Complex Component B  2 13 
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 Genes with clusters of DMS continued (ICM, n=179)  Cluster count DMS count 

CRELD2 Cysteine Rich with Egf Like Domains 2  2 17 

MFAP4 Microfibril Associated Protein 4  2 13 

NNAT Neuronatin  2 8 

PACSIN1 Protein Kinase C and Casein Kinase Substrate In Neurons 1  2 18 

REEP6 Receptor Accessory Protein 6  2 10 

RABL6 Rab, Member Ras Oncogene Family Like 6  2 20 

SULT2B1 Sulfotransferase Family 2B Member 1  2 6 

PLCG1 Phospholipase C Gamma 1  2 24 

LENG1 Leukocyte Receptor Cluster Member 1  2 16 

CLBA1 Clathrin Binding Box of Aftiphilin Containing 1  2 26 

DGCR8 Dgcr8 Microprocessor Complex Subunit  2 18 

WNT7A Wnt Family Member 7A  2 64 

GPX4 Glutathione Peroxidase 4  2 10 

WWOX Ww Domain Containing Oxidoreductase  2 57 

TWIST2 Twist Family Bhlh Transcription Factor 2  2 31 

SLC1A7 Solute Carrier Family 1 Member 7  2 19 

CELSR3 Cadherin Egf Lag Seven-Pass G-Type Receptor 3  2 20 

CAPN7 Calpain 7  2 28 

CCND1 Cyclin D1  2 32 

IMPA1 Inositol Monophosphatase 1  2 15 

C14H8orf33 Chromosome 14 C8Orf33 Homolog  2 12 

NXN Nucleoredoxin  2 9 

PWWP2B Pwwp Domain Containing 2B  2 17 

SRSF4 Serine and Arginine Rich Splicing Factor 4  2 16 

CHTF18 Chromosome Transmission Fidelity Factor 18  2 25 

ARHGEF12 Rho Guanine Nucleotide Exchange Factor 12  1 5 

TCIRG1 T Cell Immune Regulator 1, Atpase H+ Transporting V0 Subunit A3  1 16 

CAPN2 Calpain 2  1 13 

MARK4 Microtubule Affinity Regulating Kinase 4  1 9 

SLC36A4 Solute Carrier Family 36 Member 4  1 8 

VPS51 Vps51 Subunit of Garp Complex  1 9 

CNGA3 Cyclic Nucleotide Gated Channel Subunit Alpha 3  1 6 

UNC5D Unc-5 Netrin Receptor D  1 12 

ZSWIM7 Zinc Finger Swim-Type Containing 7  1 18 

CRB1 Crumbs Cell Polarity Complex Component 1  1 17 

ASMTL Acetylserotonin O-Methyltransferase Like  1 13 

GTF2A1L General Transcription Factor Iia Subunit 1 Like  1 8 

DUSP7 Dual Specificity Phosphatase 7  1 8 

PSMD6 Proteasome 26S Subunit, Non-Atpase 6  1 12 

TMCO3 Transmembrane and Coiled-Coil Domains 3  1 21 

SLC27A4 Solute Carrier Family 27 Member 4  1 10 

GRIN2B Glutamate Ionotropic Receptor Nmda Type Subunit 2B  1 13 

PIN1 Peptidylprolyl Cis/Trans Isomerase, Nima-Interacting 1  1 10 

AGO2 Argonaute Risc Catalytic Component 2  1 25 

POR Cytochrome P450 Oxidoreductase  1 18 

NOS3 Nitric Oxide Synthase 3  1 20 

SNRNP25 Small Nuclear Ribonucleoprotein U11/U12 Subunit 25  1 18 

TBL3 Transducin Beta Like 3  1 11 

PIK3R4 Phosphoinositide-3-Kinase Regulatory Subunit 4  1 11 

KIF17 Kinesin Family Member 17  1 22 

URB1 Urb1 Ribosome Biogenesis 1 Homolog (S. Cerevisiae)  1 21 

DDHD2 Ddhd Domain Containing 2  1 8 

LNX2 Ligand of Numb-Protein X 2  1 15 

CPLX1 Complexin 1  1 11 

ADAMTS2 Adam Metallopeptidase with Thrombospondin Type 1 Motif 2  1 27 

MAPK8IP2 Mitogen-Activated Protein Kinase 8 Interacting Protein 2  1 19 

LRPAP1 Ldl Receptor Related Protein Associated Protein 1  1 20 

STIP1 Stress Induced Phosphoprotein 1  1 8 

IL17A Interleukin 17A  1 10 

SLC9A3 Solute Carrier Family 9 Member A3  1 17 

TUBG2 Tubulin Gamma 2  1 5 

NCAPH2 Non-Smc Condensin Ii Complex Subunit H2  1 15 

NBAS Neuroblastoma Amplified Sequence  1 20 

IGF2R Insulin Like Growth Factor 2 Receptor  1 25 

PMPCA Peptidase, Mitochondrial Processing Alpha Subunit  1 48 

RADIL Rap Associating ith Dil Domain  1 25 

EFHC1 Ef-Hand Domain Containing 1  1 9 

ACADSB Acyl-Coa Dehydrogenase Short/Branched Chain  1 5 

USP12 Ubiquitin Specific Peptidase 12  1 11 

ADARB2 Adenosine Deaminase Rna Specific B2 (Inactive)  1 21 

MBP Myelin Basic Protein  1 18 

ITGBL1 Integrin Subunit Beta Like 1  1 5 

IPO4 Importin 4  1 9 

STT3B Stt3 Oligosaccharyltransferase Complex Catalytic Subunit B  1 24 
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 Genes with clusters of DMS continued (ICM, n=179)  Cluster count DMS count 

TTC7A Tetratricopeptide Repeat Domain 7A  1 13 

KDM8 Lysine Demethylase 8  1 6 

GNAT2 G Protein Subunit Alpha Transducin 2  1 7 

LONP1 Lon Peptidase 1, Mitochondrial  1 8 

YDJC Ydjc Chitooligosaccharide Deacetylase Homolog  1 14 

ACTL7A Actin Like 7A  1 7 

LAMP1 Lysosomal Associated Membrane Protein 1  1 19 

SPACA7 Sperm Acrosome Associated 7  1 38 

MAP1LC3B Microtubule Associated Protein 1 Light Chain 3 Beta  1 11 

ANXA4 Annexin A4  1 6 

TEX29 Testis Expressed 29  1 26 

MCM7 Minichromosome Maintenance Complex Component 7  1 5 

NLRP5 Nlr Family Pyrin Domain Containing 5  1 14 

ERRFI1 Erbb Receptor Feedback Inhibitor 1  1 6 

ATPAF2 Atp Synthase Mitochondrial F1 Complex Assembly Factor 2  1 20 

LRRC61 Leucine Rich Repeat Containing 61  1 5 

EFCC1 Ef-Hand and Coiled-Coil Domain Containing 1  1 11 

ASB1 Ankyrin Repeat and Socs Box Containing 1  1 10 

CLCN1 Chloride Voltage-Gated Channel 1  1 5 

ARHGDIG Rho Gdp Dissociation Inhibitor Gamma  1 15 

ANKRD13B Ankyrin Repeat Domain 13B  1 16 

TMEM184A Transmembrane Protein 184A  1 10 

PSMC5 Proteasome 26S Subunit, Atpase 5  1 5 

CLPTM1 Clptm1 Regulator of Gaba Type A Receptor Forward Trafficking  1 10 

TRMT61A Trna Methyltransferase 61A  1 6 

TADA2B Transcriptional Adaptor 2B  1 12 

CASKIN2 Cask Interacting Protein 2  1 38 

OVOL3 Ovo Like Zinc Finger 3  1 15 

RPN1 Ribophorin I  1 16 

JAZF1 Jazf Zinc Finger 1  1 15 

DFFA Dna Fragmentation Factor Subunit Alpha  1 16 

AMN Amnion Associated Transmembrane Protein  1 33 

ASAP3 Arfgap With Sh3 Domain, Ankyrin Repeat and Ph Domain 3  1 10 

PSKH1 Protein Serine Kinase H1  1 18 

ABL1 Abl Proto-Oncogene 1, Non-Receptor Tyrosine Kinase  1 19 

GPATCH3 G-Patch Domain Containing 3  1 7 

IGLON5 Iglon Family Member 5  1 18 

SAMM50 Samm50 Sorting and Assembly Machinery Component  1 10 

CHGA Chromogranin A  1 18 

DGKD Diacylglycerol Kinase Delta  1 41 
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Genes with clusters of differentially methylated sites (DMS) in bovine TE 
following in vitro culture in altered methionine concentration  

Genes with clusters of DMS (TE, n=267) Cluster count DMS count 

MAD1L1 Mitotic Arrest Deficient 1 Like 1  18 217 

RCC2 Regulator of Chromosome Condensation 2  15 222 

COMT Catechol-O-Methyltransferase  14 73 

TBC1D22A Tbc1 Domain Family Member 22A  13 82 

SORCS3 Sortilin Related Vps10 Domain Containing Receptor 3  12 154 

DBH Dopamine Beta-Hydroxylase  11 146 

TSPO Translocator Protein  10 130 

VAC14 Vac14 Component of Pikfyve Complex  9 79 

NUP210 Nucleoporin 210  9 113 

PANK4 Pantothenate Kinase 4  8 54 

LPCAT1 Lysophosphatidylcholine Acyltransferase 1  8 76 

TAFA5 Tafa Chemokine Like Family Member 5  7 124 

PMPCA Peptidase, Mitochondrial Processing Alpha Subunit  7 73 

AGXT Alanine--Glyoxylate And Serine--Pyruvate Aminotransferase  7 54 

DGKD Diacylglycerol Kinase Delta  7 65 

TOLLIP Toll Interacting Protein  7 83 

MST1 Macrophage Stimulating 1  6 41 

PLCL2 Phospholipase C Like 2  5 118 

LYRM4 Lyr Motif Containing 4  5 77 

PRKAR1B Protein Kinase Camp-Dependent Type I Regulatory Subunit Beta  5 81 

NPAS1 Neuronal Pas Domain Protein 1  5 21 

OSBP2 Oxysterol Binding Protein 2  5 50 

MOB2 Mob Kinase Activator 2  5 71 

CRELD2 Cysteine Rich with Egf Like Domains 2  5 27 

MAPK8IP2 Mitogen-Activated Protein Kinase 8 Interacting Protein 2  5 43 

PIPOX Pipecolic Acid and Sarcosine Oxidase  5 45 

RADIL Rap Associating with Dil Domain  4 44 

WWOX Ww Domain Containing Oxidoreductase  4 84 

NELFA Negative Elongation Factor Complex Member A  4 54 

TPRA1 Transmembrane Protein Adipocyte Associated 1  4 49 

DTNBP1 Dystrobrevin Binding Protein 1  4 44 

TMEM204 Transmembrane Protein 204  4 38 

RPP40 Ribonuclease P/Mrp Subunit P40  4 52 

PLCXD1 Phosphatidylinositol-Specific Phospholipase C, X Domain Containing 1  4 76 

PAXX Paxx Non-Homologous End Joining Factor  4 35 

TWIST2 Twist Family Bhlh Transcription Factor 2  4 54 

SELENOO Selenoprotein O  4 51 

TMEM129 Transmembrane Protein 129  4 37 

ZNF784 Zinc Finger Protein 784  4 28 

LRPAP1 Ldl Receptor Related Protein Associated Protein 1  3 38 

MED10 Mediator Complex Subunit 10  3 30 

YDJC Ydjc Chitooligosaccharide Deacetylase Homolog  3 21 

ADCK1 Aarf Domain Containing Kinase 1  3 26 

IGF1R Insulin Like Growth Factor 1 Receptor  3 61 

ING5 Inhibitor of Growth Family Member 5  3 25 

RNASEH1 Ribonuclease H1  3 19 

RABL6 Rab, Member Ras Oncogene Family Like 6  3 25 

VPS26B Vps26, Retromer Complex Component B  3 24 

LAMP1 Lysosomal Associated Membrane Protein 1  3 26 

RECQL4 Recq Like Helicase 4  3 15 

FERMT3 Fermitin Family Member 3  3 17 

AMH Anti-Mullerian Hormone  3 11 

ANKRD13B Ankyrin Repeat Domain 13B  3 22 

SPACA7 Sperm Acrosome Associated 7  3 41 

SEPTIN2 Septin 2  3 25 

PKP1 Plakophilin 1  3 37 

CCND1 Cyclin D1  3 30 

C9H6orf120 Chromosome 9 C6Orf120 Homolog  3 34 

FKRP Fukutin Related Protein  3 20 

IFT43 Intraflagellar Transport 43  3 19 

DPYSL4 Dihydropyrimidinase Like 4  3 46 

SLC25A47 Solute Carrier Family 25 Member 47  3 25 

PWWP2B Pwwp Domain Containing 2B  3 7 

ANKH Ankh Inorganic Pyrophosphate Transport Regulator  3 59 

IRX4 Iroquois Homeobox 4  3 16 

TCIRG1 T Cell Immune Regulator 1, Atpase H+ Transporting V0 Subunit A3  3 28 

IGF2R Insulin Like Growth Factor 2 Receptor  3 51 

MAPK1 Mitogen-Activated Protein Kinase 1  3 41 

TSSK1B Testis Specific Serine Kinase 1B  3 27 
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 Genes with clusters of DMS continued (TE, n=267)  Cluster count DMS count 

ABRAXAS2 Abraxas 2, Brisc Complex Subunit  2 15 

ULK3 Unc-51 Like Kinase 3  2 12 

MYADML2 Myeloid Associated Differentiation Marker Like 2  2 11 

NSUN5 Nop2/Sun Rna Methyltransferase 5  2 13 

GTF3C4 General Transcription Factor Iiic Subunit 4  2 19 

PSMC4 Proteasome 26S Subunit, Atpase 4  2 19 

ACTL7A Actin Like 7A  2 9 

P2RY11 Purinergic Receptor P2Y11  2 19 

TEX29 Testis Expressed 29  2 27 

SUSD2 Sushi Domain Containing 2  2 19 

AP3D1 Adaptor Related Protein Complex 3 Subunit Delta 1  2 9 

CAPN7 Calpain 7  2 24 

LRRC47 Leucine Rich Repeat Containing 47  2 10 

DHRS11 Dehydrogenase/Reductase 11  2 7 

CPLX1 Complexin 1  2 27 

LENG1 Leukocyte Receptor Cluster Member 1  2 20 

ERF Ets2 Repressor Factor  2 10 

MMAB Metabolism of Cobalamin Associated B  2 17 

ERMARD Er Membrane Associated Rna Degradation  2 31 

SNRNP25 Small Nuclear Ribonucleoprotein U11/U12 Subunit 25  2 26 

MARK4 Microtubule Affinity Regulating Kinase 4  2 10 

TAF6L Tata-Box Binding Protein Associated Factor 6 Like  2 11 

EVPL Envoplakin  2 21 

WNT7A Wnt Family Member 7A  2 69 

PTBP1 Polypyrimidine Tract Binding Protein 1  2 10 

COL13A1 Collagen Type Xiii Alpha 1 Chain  2 20 

MRPL41 Mitochondrial Ribosomal Protein L41  2 18 

PTK7 Protein Tyrosine Kinase 7 (Inactive)  2 19 

CCNF Cyclin F  2 10 

SARM1 Sterile Alpha and Tir Motif Containing 1  2 11 

SART1 Spliceosome Associated Factor 1, Recruiter Of U4/U6.U5 Tri-Snrnp  2 17 

VASN Vasorin  2 28 

AGO2 Argonaute Risc Catalytic Component 2  2 32 

IFITM3 Interferon Induced Transmembrane Protein 3  2 14 

PPP2R5B Protein Phosphatase 2 Regulatory Subunit B'Beta  2 33 

TOMM6 Translocase of Outer Mitochondrial Membrane 6  2 13 

TUBB6 Tubulin Beta 6 Class V  2 14 

MAP1LC3B Microtubule Associated Protein 1 Light Chain 3 Beta  2 12 

CASKIN2 Cask Interacting Protein 2  2 53 

ORM1 Orosomucoid 1  2 18 

TXNDC5 Thioredoxin Domain Containing 5  2 35 

ATP5F1E Atp Synthase F1 Subunit Epsilon  2 9 

WDR45B Wd Repeat Domain 45B  2 11 

DGCR8 Dgcr8 Microprocessor Complex Subunit  2 26 

RPN1 Ribophorin I  2 19 

COMP Cartilage Oligomeric Matrix Protein  2 37 

PPP6R1 Protein Phosphatase 6 Regulatory Subunit 1  2 18 

MICALL2 Mical Like 2  2 31 

TRIM67 Tripartite Motif Containing 67  2 14 

MYDGF Myeloid Derived Growth Factor  2 11 

HEBP2 Heme Binding Protein 2  2 19 

CCDC70 Coiled-Coil Domain Containing 70  2 18 

EPHA2 Eph Receptor A2  2 21 

SLC1A7 Solute Carrier Family 1 Member 7  2 16 

TRIM11 Tripartite Motif Containing 11  2 37 

ERRFI1 Erbb Receptor Feedback Inhibitor 1  2 12 

MYO10 Myosin X  2 24 

PLCG1 Phospholipase C Gamma 1  2 39 

TMEM184A Transmembrane Protein 184A  2 21 

YARS Tyrosyl-Trna Synthetase  2 10 

ZADH2 Zinc Binding Alcohol Dehydrogenase Domain Containing 2  2 21 

CITED4 Cbp/P300 Interacting Transactivator With Glu/Asp Rich Carboxy-Terminal Domain 4  1 15 

ALKBH4 Alkb Homolog 4, Lysine Demethylase  1 11 

LRRC61 Leucine Rich Repeat Containing 61  1 8 

ASPG Asparaginase  1 21 

LNX2 Ligand of Numb-Protein X 2  1 16 

DFFA Dna Fragmentation Factor Subunit Alpha  1 19 

ANTXR1 Antxr Cell Adhesion Molecule 1  1 10 

GUCY2D Guanylate Cyclase 2D, Retinal  1 6 

DISP2 Dispatched Rnd Transporter Family Member 2  1 10 

EFCC1 Ef-Hand and Coiled-Coil Domain Containing 1  1 17 

GGA3 Golgi Associated, Gamma Adaptin Ear Containing, Arf Binding Protein 3  1 9 

SELENOV Selenoprotein V  1 6 

PTK2 Protein Tyrosine Kinase 2  1 32 
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 Genes with clusters of DMS continued (TE, n=267)  Cluster count DMS count 

POLR2L Rna Polymerase Ii Subunit L  1 17 

C17H4orf45 Chromosome 17 C4Orf45 Homolog  1 16 

PKIG Camp-Dependent Protein Kinase Inhibitor Gamma  1 7 

UNC13B Unc-13 Homolog B  1 10 

COG4 Component of Oligomeric Golgi Complex 4  1 26 

WNT6 Wnt Family Member 6  1 6 

ASMTL Acetylserotonin O-Methyltransferase Like  1 13 

ABL1 Abl Proto-Oncogene 1, Non-Receptor Tyrosine Kinase  1 16 

GNA12 G Protein Subunit Alpha 12  1 35 

SLC30A3 Solute Carrier Family 30 Member 3  1 15 

JPH3 Junctophilin 3  1 22 

MAPK8IP3 Mitogen-Activated Protein Kinase 8 Interacting Protein 3  1 37 

ZNF703 Zinc Finger Protein 703  1 10 

RMI2 Recq Mediated Genome Instability 2  1 23 

BOK Bcl2 Family Apoptosis Regulator Bok  1 11 

TADA2B Transcriptional Adaptor 2B  1 20 

IMPA1 Inositol Monophosphatase 1  1 10 

KLF10 Kruppel Like Factor 10  1 6 

PNMT Phenylethanolamine N-Methyltransferase  1 7 

CDC16 Cell Division Cycle 16  1 5 

RXRA Retinoid X Receptor Alpha  1 14 

NAT10 N-Acetyltransferase 10  1 20 

SNX30 Sorting Nexin Family Member 30  1 7 

OLFM1 Olfactomedin 1  1 26 

RBPJL Recombination Signal Binding Protein for Immunoglobulin Kappa J Region Like  1 5 

FOXN4 Forkhead Box N4  1 21 

SLX4IP Slx4 Interacting Protein  1 21 

SYCE1 Synaptonemal Complex Central Element Protein 1  1 14 

GNG3 G Protein Subunit Gamma 3  1 6 

HABP2 Hyaluronan Binding Protein 2  1 10 

SERP2 Stress Associated Endoplasmic Reticulum Protein Family Member 2  1 12 

BTBD17 Btb Domain Containing 17  1 24 

SLC39A13 Solute Carrier Family 39 Member 13  1 16 

KLHL36 Kelch Like Family Member 36  1 6 

ACTN3 Actinin Alpha 3  1 14 

CES2 Carboxylesterase 2  1 5 

NFKBIB Nfkb Inhibitor Beta  1 14 

CRHR1 Corticotropin Releasing Hormone Receptor 1  1 5 

PPP1R37 Protein Phosphatase 1 Regulatory Subunit 37  1 20 

C14H8orf33 Chromosome 14 C8Orf33 Homolog  1 7 

SEPTIN5 Septin 5  1 14 

CRIP2 Cysteine Rich Protein 2  1 7 

ASB1 Ankyrin Repeat and Socs Box Containing 1  1 12 

BMP2K Bmp2 Inducible Kinase  1 7 

C11H2orf49 Chromosome 11 C2Orf49 Homolog  1 7 

ASIP Agouti Signaling Protein  1 6 

EXT2 Exostosin Glycosyltransferase 2  1 15 

TMEM248 Transmembrane Protein 248  1 6 

CUX2 Cut Like Homeobox 2  1 15 

TIMM13 Translocase of Inner Mitochondrial Membrane 13  1 6 

CLPTM1L Clptm1 Like  1 18 

DMP1 Dentin Matrix Acidic Phosphoprotein 1  1 5 

MGC137055 Uncharacterized Protein Mgc137055  1 6 

ATXN10 Ataxin 10  1 18 

PMEPA1 Prostate Transmembrane Protein, Androgen Induced 1  1 11 

IGSF3 Immunoglobulin Superfamily Member 3  1 9 

SYT10 Synaptotagmin 10  1 5 

TAGLN Transgelin  1 6 

AKAP2 Paralemmin 2  1 8 

MFAP4 Microfibril Associated Protein 4  1 11 

ARAF A-Raf Proto-Oncogene, Serine/Threonine Kinase  1 9 

IPO4 Importin 4  1 9 

GPX4 Glutathione Peroxidase 4  1 11 

AMFR Autocrine Motility Factor Receptor  1 14 

DHRS7B Dehydrogenase/Reductase 7B  1 10 

PACSIN1 Protein Kinase C and Casein Kinase Substrate in Neurons 1  1 37 

TBC1D17 Tbc1 Domain Family Member 17  1 11 

PRKACA Protein Kinase Camp-Activated Catalytic Subunit Alpha  1 8 

EXOSC6 Exosome Component 6  1 12 

CEBPD Ccaat Enhancer Binding Protein Delta  1 7 

RUFY4 Run and Fyve Domain Containing 4  1 24 

CXCR5 C-X-C Motif Chemokine Receptor 5  1 11 

COA8 Cytochrome C Oxidase Assembly Factor 8  1 11 

GATA2 Gata Binding Protein 2  1 17 
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 Genes with clusters of DMS continued (TE, n=267)  Cluster count DMS count 

NKD1 Nkd Inhibitor of Wnt Signaling Pathway 1  1 15 

CD3EAP Cd3E Molecule Associated Protein  1 10 

EAF1 Ell Associated Factor 1  1 12 

CCZ1 Ccz1 Homolog, Vacuolar Protein Trafficking and Biogenesis Associated  1 8 

CHRNA4 Cholinergic Receptor Nicotinic Alpha 4 Subunit  1 14 

NOS3 Nitric Oxide Synthase 3  1 21 

PABPC4 Poly(A) Binding Protein Cytoplasmic 4  1 11 

MRPS25 Mitochondrial Ribosomal Protein S25  1 25 

DCAF7 Ddb1 And Cul4 Associated Factor 7  1 7 

INTS9 Integrator Complex Subunit 9  1 21 

KAT5 Lysine Acetyltransferase 5  1 1 

OVOL1 Ovo Like Transcriptional Repressor 1  1 10 

CTU2 Cytosolic Thiouridylase Subunit 2  1 30 

PPP5C Protein Phosphatase 5 Catalytic Subunit  1 19 

PIN1 Peptidylprolyl Cis/Trans Isomerase, Nima-Interacting 1  1 8 

PAFAH1B3 Platelet Activating Factor Acetylhydrolase 1B Catalytic Subunit 3  1 20 

HS1BP3 Hcls1 Binding Protein 3  1 16 

CCDC3 Coiled-Coil Domain Containing 3  1 7 

PYGB Glycogen Phosphorylase B  1 14 

TMEM151A Transmembrane Protein 151A  1 14 

SAMM50 Samm50 Sorting and Assembly Machinery Component  1 13 

GRIN2C Glutamate Ionotropic Receptor Nmda Type Subunit 2C  1 19 

RPRD1B Regulation of Nuclear Pre-Mrna Domain Containing 1B  1 8 

RPA2 Replication Protein A2  1 5 

ATG4B Autophagy Related 4B Cysteine Peptidase  1 29 

TMEM206 Transmembrane Protein 206  1 13 

CELSR3 Cadherin Egf Lag Seven-Pass G-Type Receptor 3  1 15 

ARHGDIG Rho Gdp Dissociation Inhibitor Gamma  1 1 

CABP4 Calcium Binding Protein 4  1 8 

PARD6B Par-6 Family Cell Polarity Regulator Beta  1 22 

FARP1 Ferm, Arh/Rhogef And Pleckstrin Domain Protein 1  1 49 

MAMDC4 Mam Domain Containing 4  1 22 

TBL3 Transducin Beta Like 3  1 12 

EPHA10 Eph Receptor A10  1 9 

SLC9A3 Solute Carrier Family 9 Member A3  1 25 

NDUFS8 Nadh: Ubiquinone Oxidoreductase Core Subunit S8  1 6 

PRLH Prolactin Releasing Hormone  1 12 

RAB26 Rab26, Member Ras Oncogene Family  1 19 

GRIN2B Glutamate Ionotropic Receptor Nmda Type Subunit 2B  1 13 

CHPF2 Chondroitin Polymerizing Factor 2  1 9 

AMN Amnion Associated Transmembrane Protein  1 43 

GALNTL5 Polypeptide N-Acetylgalactosaminyltransferase Like 5  1 46 

ARHGEF17 Rho Guanine Nucleotide Exchange Factor 17  1 9 

SERPIND1 Serpin Family D Member 1  1 18 

TENM3 Teneurin Transmembrane Protein 3  1 18 

RHOF Ras Homolog Family Member F, Filopodia Associated  1 7 

NLRP5 Nlr Family Pyrin Domain Containing 5  1 19 

NDUFA4L2 Ndufa4 Mitochondrial Complex Associated Like 2  1 27 

BLOC1S3 Biogenesis of Lysosomal Organelles Complex 1 Subunit 3  1 6 

TPPP Tubulin Polymerization Promoting Protein  1 21 
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Appendix 4.5 GO terms enriched in bovine ICM and TE 

Biological Process GO terms enriched in bovine ICM   

Biological Process GO (ICM, n=67) FDR (q-value) 

GO:0046328 Regulation of Jnk Cascade 0.00017 

GO:0097435 Supramolecular Fiber Organization 0.00043 

GO:0048015 Phosphatidylinositol-Mediated Signaling 0.00056 

GO:0043588 Skin Development 0.00204 

GO:0016236 Macroautophagy 0.00233 

GO:0007041 Lysosomal Transport 0.00252 

GO:0090141 Positive Regulation of Mitochondrial Fission 0.00252 

GO:0032959 Inositol Trisphosphate Biosynthetic Process 0.00377 

GO:0050908 Detection of Light Stimulus Involved in Visual Perception 0.00377 

GO:0007254 Jnk Cascade 0.00426 

GO:0007257 Activation of Jun Kinase Activity 0.00500 

GO:0018279 Protein N-Linked Glycosylation Via Asparagine 0.00500 

GO:0001932 Regulation of Protein Phosphorylation 0.00500 

GO:0010634 Positive Regulation of Epithelial Cell Migration 0.00500 

GO:0006914 Autophagy 0.00601 

GO:0048286 Lung Alveolus Development 0.00601 

GO:0046854 Phosphatidylinositol Phosphorylation 0.00601 

GO:0050821 Protein Stabilization 0.00601 

GO:0120163 Negative Regulation of Cold-Induced Thermogenesis 0.00791 

GO:0006986 Response to Unfolded Protein 0.00885 

GO:0008542 Visual Learning 0.00885 

GO:0032456 Endocytic Recycling 0.00885 

GO:0050804 Modulation of Chemical Synaptic Transmission 0.00944 

GO:0006936 Muscle Contraction 0.00972 

GO:0007052 Mitotic Spindle Organization 0.01036 

GO:0032465 Regulation of Cytokinesis 0.01036 

GO:0060173 Limb Development 0.01036 

GO:0060349 Bone Morphogenesis 0.01036 

GO:0031648 Protein Destabilization 0.01394 

GO:0043410 Positive Regulation Of Mapk Cascade 0.01545 

GO:0006898 Receptor-Mediated Endocytosis 0.01590 

GO:0030199 Collagen Fibril Organization 0.01590 

GO:0016310 Phosphorylation 0.01679 

GO:0007613 Memory 0.01679 

GO:0043666 Regulation of Phosphoprotein Phosphatase Activity 0.01679 

GO:0030097 Hemopoiesis 0.01776 

GO:0030512 Negative Regulation of Transforming Growth Factor Beta Receptor Signaling Pathway 0.01776 

GO:0060041 Retina Development in Camera-Type Eye 0.01995 

GO:0030855 Epithelial Cell Differentiation 0.02077 

GO:0016485 Protein Processing 0.02196 

GO:0048812 Neuron Projection Morphogenesis 0.02196 

GO:0051209 Release of Sequestered Calcium Ion into Cytosol 0.02196 

GO:0045766 Positive Regulation of Angiogenesis 0.02206 

GO:0030030 Cell Projection Organization 0.02261 

GO:0051216 Cartilage Development 0.02493 

GO:0060079 Excitatory Postsynaptic Potential 0.02892 

GO:0007266 Rho Protein Signal Transduction 0.02989 

GO:0031647 Regulation of Protein Stability 0.02989 

GO:0001503 Ossification 0.03200 

GO:0007626 Locomotory Behavior 0.03302 

GO:0090502 Rna Phosphodiester Bond Hydrolysis, Endonucleolytic 0.03302 

GO:0016042 Lipid Catabolic Process 0.03302 

GO:0009791 Post-Embryonic Development 0.03422 

GO:0050790 Regulation of Catalytic Activity 0.03536 

GO:0019722 Calcium-Mediated Signaling 0.03671 

GO:0042147 Retrograde Transport, Endosome to Golgi 0.03671 

GO:0008033 Trna Processing 0.03959 

GO:0030163 Protein Catabolic Process 0.03959 

GO:0032508 Dna Duplex Unwinding 0.04089 

GO:0090630 Activation of Gtpase Activity 0.04264 

GO:0010468 Regulation of Gene Expression 0.04327 

GO:0008104 Protein Localization 0.04387 

GO:0007420 Brain Development 0.04492 

GO:0006508 Proteolysis 0.04564 

GO:0001666 Response to Hypoxia 0.04654 

GO:0006821 Chloride Transport 0.04654 

GO:0006812 Cation Transport 0.04984 
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Cellular Component GO terms enriched in bovine ICM  

Cellular Component GO (ICM, n=28) FDR (q-value) 

GO:0044754 Autolysosome 0.000041 

GO:0030667 Secretory Granule Membrane 0.000257 

GO:0005829 Cytosol 0.000891 

GO:0005838 Proteasome Regulatory Particle 0.001495 

GO:0022624 Proteasome Accessory Complex 0.004420 

GO:0012506 Vesicle Membrane 0.004759 

GO:0005815 Microtubule Organizing Center 0.006897 

GO:0070062 Extracellular Exosome 0.007543 

GO:0005770 Late Endosome 0.008864 

GO:0031526 Brush Border Membrane 0.010992 

GO:0045171 Intercellular Bridge 0.012532 

GO:0030659 Cytoplasmic Vesicle Membrane 0.013846 

GO:0030139 Endocytic Vesicle 0.014871 

GO:1904115 Axon Cytoplasm 0.014871 

GO:0005930 Axoneme 0.015040 

GO:0001917 Photoreceptor Inner Segment 0.016150 

GO:0062023 Collagen-Containing Extracellular Matrix 0.017891 

GO:0005902 Microvillus 0.020115 

GO:0045335 Phagocytic Vesicle 0.025913 

GO:0098685 Schaffer Collateral - Ca1 Synapse 0.025913 

GO:0001726 Ruffle 0.030742 

GO:0031901 Early Endosome Membrane 0.031968 

GO:0030424 Axon 0.035881 

GO:0005777 Peroxisome 0.039584 

GO:0005635 Nuclear Envelope 0.043227 

GO:0045177 Apical Part Of Cell 0.045588 

GO:0000502 Proteasome Complex 0.046953 

GO:0072686 Mitotic Spindle 0.046953 

 

Molecular Function GO terms enriched in bovine ICM   

Molecular Function GO (ICM, n=26) FDR (q-value) 

GO:0005078 Map-Kinase Scaffold Activity 0.00024 

GO:0003958 Nadph-Hemoprotein Reductase Activity 0.00046 

GO:0008171 O-Methyltransferase Activity 0.00071 

GO:0031434 Mitogen-Activated Protein Kinase Kinase Binding 0.00071 

GO:0004579 Dolichyl-Diphosphooligosaccharide-Protein Glycotransferase Activity 0.00096 

GO:0010181 Fmn Binding 0.00208 

GO:0004198 Calcium-Dependent Cysteine-Type Endopeptidase Activity 0.00303 

GO:0004435 Phosphatidylinositol Phospholipase C Activity 0.00303 

GO:0008234 Cysteine-Type Peptidase Activity 0.00326 

GO:0015485 Cholesterol Binding 0.00326 

GO:0015299 Solute: Proton Antiporter Activity 0.00463 

GO:0004175 Endopeptidase Activity 0.00517 

GO:0005520 Insulin-Like Growth Factor Binding 0.00577 

GO:0003725 Double-Stranded Rna Binding 0.00768 

GO:0019894 Kinesin Binding 0.00882 

GO:0050661 Nadp Binding 0.00948 

GO:0048365 Rac Gtpase Binding 0.01020 

GO:0008201 Heparin Binding 0.01098 

GO:0003727 Single-Stranded Rna Binding 0.01103 

GO:0050660 Flavin Adenine Dinucleotide Binding 0.01206 

GO:0008233 Peptidase Activity 0.01864 

GO:0030165 Pdz Domain Binding 0.02254 

GO:0016301 Kinase Activity 0.02915 

GO:0001664 G Protein-Coupled Receptor Binding 0.03597 

GO:0016787 Hydrolase Activity 0.04172 

GO:0008081 Phosphoric Diester Hydrolase Activity 0.04324 
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KEGG GO terms enriched in bovine ICM  

KEGG Pathway (ICM, n=30) GOI FDR (q-value) 

bta04070 Phosphatidylinositol signalling 4 0.0348 

bta05205 Proteoglycans in cancer 6 0.0348 

bta00350 Tyrosine metabolism 2 0.0349 

bta00562 Inositol phosphate metabolism 3 0.0349 

bta04110 Cell cycle 4 0.0349 

bta04136 Autophagy - other 2 0.0349 

bta04721 Synaptic vesicle cycle 3 0.0349 

bta05214 Glioma 3 0.0349 

bta04140 Autophagy - animal 4 0.0351 

bta00513 Various types of N-glycan bios 2 0.0361 

bta03050 Proteasome 2 0.0361 

bta04216 Ferroptosis 2 0.0361 

bta04390 Hippo signaling pathway 4 0.0361 

bta00510 N-Glycan biosynthesis 2 0.0421 

bta00565 Ether lipid metabolism 2 0.0421 

bta04933 AGE-RAGE signaling pathway in 3 0.0421 

bta04066 HIF-1 signaling pathway 3 0.0449 

bta04360 Axon guidance 4 0.0449 

bta04370 VEGF signaling pathway 2 0.0449 

bta04659 Th17 cell differentiation 3 0.0449 

bta00140 Steroid hormone biosynthesis 2 0.0457 

bta01100 Metabolic pathways 17 0.0457 

bta04114 Oocyte meiosis 3 0.0457 

bta04142 Lysosome 3 0.0457 

bta04152 AMPK signaling pathway 3 0.0457 

bta04510 Focal adhesion 4 0.0457 

bta04722 Neurotrophin signaling pathway 3 0.0457 

bta05223 Non-small cell lung cancer 2 0.0457 

bta04728 Dopaminergic synapse 3 0.0467 

bta05321 Inflammatory bowel disease (IB 2 0.0467 
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Biological Process GO terms enriched in bovine TE  

Biological Process GO (TE, n=87) FDR (q-value) 

GO:0097553 Calcium Ion Transmembrane Import into Cytosol 0.000069 

GO:0046328 Regulation of Jnk Cascade 0.000714 

GO:0048490 Anterograde Synaptic Vesicle Transport 0.001308 

GO:0033598 Mammary Gland Epithelial Cell Proliferation 0.002119 

GO:0033601 Positive Regulation of Mammary Gland Epithelial Cell Proliferation 0.002119 

GO:0042711 Maternal Behavior 0.002119 

GO:0035640 Exploration Behavior 0.002255 

GO:0008089 Anterograde Axonal Transport 0.002446 

GO:0019722 Calcium-Mediated Signaling 0.002472 

GO:0010762 Regulation of Fibroblast Migration 0.002869 

GO:0014059 Regulation of Dopamine Secretion 0.005088 

GO:0032434 Regulation of Proteasomal Ubiquitin-Dependent Protein Catabolic Process 0.005306 

GO:2000463 Positive Regulation of Excitatory Postsynaptic Potential 0.005306 

GO:0060079 Excitatory Postsynaptic Potential 0.007047 

GO:0042113 B Cell Activation 0.007193 

GO:0060291 Long-Term Synaptic Potentiation 0.007193 

GO:0035249 Synaptic Transmission, Glutamatergic 0.007495 

GO:0090502 Rna Phosphodiester Bond Hydrolysis, Endonucleolytic 0.007676 

GO:0030500 Regulation of Bone Mineralization 0.007857 

GO:0032959 Inositol Trisphosphate Biosynthetic Process 0.007857 

GO:0071333 Cellular Response to Glucose Stimulus 0.007857 

GO:0061640 Cytoskeleton-Dependent Cytokinesis 0.009465 

GO:0070527 Platelet Aggregation 0.009465 

GO:0048015 Phosphatidylinositol-Mediated Signaling 0.009634 

GO:0006360 Transcription by Rna Polymerase I 0.009634 

GO:0007254 Jnk Cascade 0.009634 

GO:0007566 Embryo Implantation 0.009634 

GO:0035094 Response to Nicotine 0.009634 

GO:0060425 Lung Morphogenesis 0.009634 

GO:0090630 Activation of Gtpase Activity 0.010983 

GO:0007585 Respiratory Gaseous Exchange by Respiratory System 0.011160 

GO:0043627 Response to Estrogen 0.011160 

GO:0007613 Memory 0.011693 

GO:0016573 Histone Acetylation 0.011813 

GO:0030512 Negative Regulation of Transforming Growth Factor Beta Receptor Signaling Pathway 0.011813 

GO:0030316 Osteoclast Differentiation 0.011813 

GO:0035019 Somatic Stem Cell Population Maintenance 0.011813 

GO:0035235 Ionotropic Glutamate Receptor Signaling Pathway 0.012635 

GO:0043001 Golgi To Plasma Membrane Protein Transport 0.012635 

GO:0001932 Regulation of Protein Phosphorylation 0.014141 

GO:0048286 Lung Alveolus Development 0.014426 

GO:0071310 Cellular Response to Organic Substance 0.014426 

GO:0051209 Release of Sequestered Calcium Ion into Cytosol 0.014633 

GO:0018108 Peptidyl-Tyrosine Phosphorylation 0.014778 

GO:0043410 Positive Regulation of Mapk Cascade 0.014940 

GO:0009749 Response to Glucose 0.016839 

GO:0017157 Regulation of Exocytosis 0.016839 

GO:0050890 Cognition 0.017679 

GO:0000045 Autophagosome Assembly 0.019002 

GO:0030282 Bone Mineralization 0.019614 

GO:0120163 Negative Regulation of Cold-Induced Thermogenesis 0.019614 

GO:0010628 Positive Regulation of Gene Expression 0.020741 

GO:0007266 Rho Protein Signal Transduction 0.020741 

GO:0007612 Learning 0.020741 

GO:0000422 Autophagy of Mitochondrion 0.022415 

GO:0006986 Response to Unfolded Protein 0.022415 

GO:0042177 Negative Regulation of Protein Catabolic Process 0.022415 

GO:0043588 Skin Development 0.022415 

GO:0001503 Ossification 0.023104 

GO:0045766 Positive Regulation of Angiogenesis 0.023335 

GO:0016236 Macroautophagy 0.024114 

GO:0048013 Ephrin Receptor Signaling Pathway 0.024114 

GO:0016310 Phosphorylation 0.025626 

GO:0007173 Epidermal Growth Factor Receptor Signaling Pathway 0.025709 

GO:0060173 Limb Development 0.025709 

GO:0060349 Bone Morphogenesis 0.025709 

GO:0050804 Modulation of Chemical Synaptic Transmission 0.028875 

GO:0007043 Cell-Cell Junction Assembly 0.029565 

GO:0034446 Substrate Adhesion-Dependent Cell Spreading 0.029565 

GO:2000300 Regulation of Synaptic Vesicle Exocytosis 0.031472 

GO:0035556 Intracellular Signal Transduction 0.032589 

GO:0008544 Epidermis Development 0.033407 

GO:0048856 Anatomical Structure Development 0.035231 

GO:0050885 Neuromuscular Process Controlling Balance 0.035231 

GO:0030968 Endoplasmic Reticulum Unfolded Protein Response 0.037458 
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Biological Process GO continued (TE, n=87)  FDR (q-value) 

GO:0042060 Wound Healing 0.037458 

GO:0006898 Receptor-Mediated Endocytosis 0.038790 

GO:0008630 Intrinsic Apoptotic Signaling Pathway in Response to Dna Damage 0.038790 

GO:0031532 Actin Cytoskeleton Reorganization 0.038790 

GO:0043666 Regulation of Phosphoprotein Phosphatase Activity 0.041338 

GO:0048666 Neuron Development 0.041338 

GO:0090501 Rna Phosphodiester Bond Hydrolysis 0.041338 

GO:0009267 Cellular Response to Starvation 0.043233 

GO:0006979 Response to Oxidative Stress 0.044099 

GO:0010976 Positive Regulation of Neuron Projection Development 0.048129 

GO:0060041 Retina Development in Camera-Type Eye 0.048129 

 

Cellular Component GO terms enriched in bovine TE   

Cellular Component GO (TE, n=29) FDR (q-value) 

GO:0030667 Secretory Granule Membrane 0.000052 

GO:0044754 Autolysosome 0.000151 

GO:1904115 Axon Cytoplasm 0.004027 

GO:0005952 Camp-Dependent Protein Kinase Complex 0.004027 

GO:0043195 Terminal Bouton 0.004138 

GO:0017146 Nmda Selective Glutamate Receptor Complex 0.004138 

GO:0005736 Rna Polymerase I Complex 0.011818 

GO:0005940 Septin Ring 0.011818 

GO:0031083 Bloc-1 Complex 0.011818 

GO:0031105 Septin Complex 0.011818 

GO:0000159 Protein Phosphatase Type 2A Complex 0.012503 

GO:0030496 Midbody 0.012720 

GO:0031514 Motile Cilium 0.016495 

GO:0080008 Cul4-Ring E3 Ubiquitin Ligase Complex 0.018130 

GO:0010008 Endosome Membrane 0.018130 

GO:0031901 Early Endosome Membrane 0.026043 

GO:0070062 Extracellular Exosome 0.026768 

GO:0005938 Cell Cortex 0.027347 

GO:0098839 Postsynaptic Density Membrane 0.028391 

GO:0031526 Brush Border Membrane 0.029588 

GO:0030672 Synaptic Vesicle Membrane 0.033627 

GO:0045171 Intercellular Bridge 0.033757 

GO:0005770 Late Endosome 0.033757 

GO:0098978 Glutamatergic Synapse 0.039119 

GO:0005856 Cytoskeleton 0.039261 

GO:0030139 Endocytic Vesicle 0.039722 

GO:0005623 Cell 0.039722 

GO:0005834 Heterotrimeric G-Protein Complex 0.043310 

GO:0030659 Cytoplasmic Vesicle Membrane 0.043501 
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Molecular Function GO terms enriched in bovine TE  

Molecular Function (TE, n=28) FDR (q-value) 

GO:0022849 Glutamate-Gated Calcium Ion Channel Activity 0.000075 

GO:0005078 Map-Kinase Scaffold Activity 0.000696 

GO:0004972 Nmda Glutamate Receptor Activity 0.001317 

GO:0008171 O-Methyltransferase Activity 0.002084 

GO:0031434 Mitogen-Activated Protein Kinase Kinase Binding 0.002084 

GO:0005005 Transmembrane-Ephrin Receptor Activity 0.003686 

GO:0001054 Rna Polymerase I Activity 0.007726 

GO:0005003 Ephrin Receptor Activity 0.007726 

GO:0004435 Phosphatidylinositol Phospholipase C Activity 0.008366 

GO:0004970 Ionotropic Glutamate Receptor Activity 0.010041 

GO:0004402 Histone Acetyltransferase Activity 0.010637 

GO:0030165 Pdz Domain Binding 0.017129 

GO:0005520 Insulin-Like Growth Factor Binding 0.017501 

GO:0008066 Glutamate Receptor Activity 0.017501 

GO:0015276 Ligand-Gated Ion Channel Activity 0.018367 

GO:0032266 Phosphatidylinositol-3-Phosphate Binding 0.023008 

GO:0019894 Kinesin Binding 0.027568 

GO:0004714 Transmembrane Receptor Protein Tyrosine Kinase Activity 0.027881 

GO:0000993 Rna Polymerase Ii Complex Binding 0.029888 

GO:0048365 Rac Gtpase Binding 0.029888 

GO:0017048 Rho Gtpase Binding 0.034467 

GO:0008081 Phosphoric Diester Hydrolase Activity 0.035140 

GO:0005109 Frizzled Binding 0.039200 

GO:0004672 Protein Kinase Activity 0.039200 

GO:1904315 Transmitter-Gated Ion Channel Activity  0.040853 

GO:0016301 Kinase Activity 0.041234 

GO:0004713 Protein Tyrosine Kinase Activity 0.044652 

GO:0015485 Cholesterol Binding 0.047796 

 

KEGG GO terms enriched in bovine TE  

KEGG Pathway continued (TE, n=96)  GOI FDR (q-value) 

bta05205 Proteoglycans in cancer 10 0.001044 

bta04914 Progesterone-mediated oocyte maturation 6 0.00167 

bta04730 Long-term depression 5 0.00167 

bta01522 Endocrine resistance 6 0.001811 

bta04720 Long-term potentiation 5 0.001862 

bta05223 Non-small cell lung cancer 5 0.001862 

bta04724 Glutamatergic synapse 6 0.002932 

bta05214 Glioma 5 0.002932 

bta04114 Oocyte meiosis 6 0.003363 

bta04012 ErbB signaling pathway 5 0.003363 

bta04370 VEGF signaling pathway 4 0.004547 

bta04010 MAPK signaling pathway 9 0.006456 

bta04014 Ras signaling pathway 8 0.006456 

bta05166 HTLV-I infection 8 0.006456 

bta04713 Circadian entrainment 5 0.006456 

bta04916 Melanogenesis 5 0.006456 

bta00350 Tyrosine metabolism 3 0.006456 

bta05033 Nicotine addiction 3 0.006456 

bta05216 Thyroid cancer 3 0.006456 

bta05224 Breast cancer 6 0.006634 

bta05218 Melanoma 4 0.006727 

bta05219 Bladder cancer 3 0.006727 

bta05200 Pathways in cancer 13 0.007228 

bta05220 Chronic myeloid leukemia 4 0.007761 

bta04151 PI3K-Akt signaling pathway 10 0.007835 

bta04919 Thyroid hormone signaling pathway 5 0.007835 

bta04721 Synaptic vesicle cycle 4 0.007835 

bta01521 EGFR tyrosine kinase inhibitor resistance 4 0.007909 

bta04722 Neurotrophin signaling pathway 5 0.008258 

bta05030 Cocaine addiction 3 0.008258 

bta04142 Lysosome 5 0.008336 

bta04360 Axon guidance 6 0.011247 

bta04728 Dopaminergic synapse 5 0.011247 

bta05010 Alzheimer's disease 6 0.011267 

bta04910 Insulin signaling pathway 5 0.012792 
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 KEGG Pathway continued (TE, n=96)  GOI FDR (q-value) 

bta04062 Chemokine signaling pathway 6 0.013289 

bta04140 Autophagy - animal 5 0.013289 

bta04371 Apelin signaling pathway 5 0.013289 

bta04658 Th1 and Th2 cell differentiation 4 0.013289 

bta05215 Prostate cancer 4 0.013289 

bta05213 Endometrial cancer 3 0.013289 

bta01100 Metabolic pathways 25 0.01572 

bta04933 AGE-RAGE signaling pathway in diabetic complications 4 0.01572 

bta05012 Parkinson's disease 5 0.015987 

bta04390 Hippo signaling pathway 5 0.016067 

bta04723 Retrograde endocannabinoid signaling 5 0.016067 

bta05020 Prion diseases 2 0.016067 

bta04066 HIF-1 signaling pathway 4 0.017916 

bta05221 Acute myeloid leukemia 3 0.017916 

bta05031 Amphetamine addiction 3 0.018347 

bta04015 Rap1 signaling pathway 6 0.018877 

bta04310 Wnt signaling pathway 5 0.018877 

bta04659 Th17 cell differentiation 4 0.018877 

bta04725 Cholinergic synapse 4 0.018877 

bta03030 DNA replication 2 0.018877 

bta04726 Serotonergic synapse 4 0.019673 

bta04071 Sphingolipid signaling pathway 4 0.022283 

bta04611 Platelet activation 4 0.022298 

bta05212 Pancreatic cancer 3 0.022298 

bta05034 Alcoholism 6 0.023158 

bta04110 Cell cycle 4 0.023158 

bta03008 Ribosome biogenesis in eukaryotes 3 0.027602 

bta04976 Bile secretion 3 0.027602 

bta00260 Glycine, serine and threonine metabolism 2 0.027602 

bta05203 Viral carcinogenesis 6 0.027993 

bta04068 FoxO signaling pathway 4 0.027993 

bta04270 Vascular smooth muscle contraction 4 0.028613 

bta04216 Ferroptosis 2 0.028613 

bta05210 Colorectal cancer 3 0.032587 

bta04550 Signaling pathways regulating pluripotency of stem cells 4 0.032913 

bta04540 Gap junction 3 0.032913 

bta00190 Oxidative phosphorylation 4 0.033271 

bta04962 Vasopressin-regulated water reabsorption 2 0.033674 

bta04510 Focal adhesion 5 0.034402 

bta05016 Huntington's disease 5 0.034402 

bta04666 Fc gamma R-mediated phagocytosis 3 0.034402 

bta05222 Small cell lung cancer 3 0.034723 

bta04340 Hedgehog signaling pathway 2 0.034723 

bta05014 Amyotrophic lateral sclerosis (ALS) 2 0.034723 

bta03015 mRNA surveillance pathway 3 0.03514 

bta00565 Ether lipid metabolism 2 0.035272 

bta03460 Fanconi anemia pathway 2 0.035272 

bta04072 Phospholipase D signaling pathway 4 0.036981 

bta04921 Oxytocin signaling pathway 4 0.036981 

bta04070 Phosphatidylinositol signaling system 3 0.036981 

bta05231 Choline metabolism in cancer 3 0.036981 

bta04913 Ovarian steroidogenesis 2 0.036981 

bta04150 mTOR signaling pathway 4 0.038497 

bta04660 T cell receptor signaling pathway 3 0.044967 

bta03013 RNA transport 4 0.046089 

bta05160 Hepatitis C 4 0.046089 

bta04213 Longevity regulating pathway - multiple species 2 0.047228 

bta05217 Basal cell carcinoma 2 0.048274 

bta04024 cAMP signaling pathway 5 0.048962 

bta04080 Neuroactive ligand-receptor interaction 7 0.049791 

bta04145 Phagosome 4 0.049791 



University of Nottingham  Appendices  

53 

 

Appendix 4.6 IGF2R and AIRN primer test by RT-PCR 

 

Lanes 1 and 12: 50 bp marker. 2: no product. 3: IGF2R bovine ovary DNA. 4: IGF2R 
bovine ovary DNA RC. 5. IGF2R bovine liver cDNA. 6: IGF2R bovine liver cDNA RC. 7: 
AIRN bovine ovary DNA. 8: AIRN bovine ovary DNA RC. 9: AIRN bovine liver cDNA. 
10: AIRN bovine liver cDNA RC. 11: no product.  

No IGF2R transcript detected in bovine ovary DNA as primers were designed 

to be exon spanning and, therefore, detect cDNA only. AIRN is a long non-

coding RNA (lncRNA) antisense transcript transcribed from genomic DNA and, 

therefore, is detected in bovine ovary DNA and liver cDNA sample. 
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Appendix 4.7 IGF2R/AIRN amplicon sequencing 

Source Biosciences, Nottingham, UK 

 

Bovine AIRN forward primer sequence and NCBI Blast output. 

 

Bovine AIRN reverse primer sequence and NCBI Blast output.
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Bovine IGF2R forward primer sequence and NCBI Blast output. 

 

Bovine IGF2R reverse primer sequence and NCBI Blast output. 
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Appendix 4.8 Calibration standard curves for qPCR (liver) 

IGF2R/AIRN transcript expression conducted using bovine liver 

 

Slope (R2) for AIRN primers low in bovine liver (0.619) but suitable in blastocyst 

(0.941; Appendix 4.9). This could be a combination of effects associated with 

primer design, inaccurate sample/reagent pipetting or analysis of the standard 

curve.  
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Appendix 4.9 Calibration standard curves for qPCR (blastocysts) 

AIRN transcript expression conducted using bovine blastocysts 

 

Amplification efficiency for IGF2R primers low in bovine blastocysts (78.2%) but 

suitable in liver (96.8%; Appendix 4.8). This could be a combination of effects 

associated with primer design, inaccurate sample/reagent pipetting and the low 

abundance of starting material (mRNA transcript) extracted from bovine 

blastocysts compared with a high abundance extracted from liver. 
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Appendix 4.10 Position and methylation (%) of each DMS within 

IGF2R intron 2 DMR.  

Cluster 1 contains 13 DMS highlighted in yellow. Cluster 2 contains 11 DMS highlighted 
in green. 

 

 

 

 

 

96221369 32.31 13.18 19.13 decreased 

96221371 41.76 7.97 33.79 decreased 

96221375 34.25 8.94 25.30 decreased 

96221396 32.40 8.14 24.26 decreased 

96221409 29.19 4.87 24.32 decreased 

96221472 34.83 26.47 8.35 decreased 

96221474 44.17 30.79 13.38 decreased 

96221483 41.42 25.75 15.68 decreased 

96221503 36.25 25.23 11.02 decreased 

96221507 30.79 21.25 9.55 decreased 

96221588 41.26 24.91 16.35 decreased 

96221634 11.71 36.87 -25.16 increased 

96222398 47.78 30.64 17.15 decreased 

96222400 44.53 24.95 19.58 decreased 

96223037 50.07 23.74 26.33 decreased 

96223047 52.44 29.86 22.58 decreased 

96223103 41.34 16.48 24.87 decreased 

96223131 42.96 25.00 17.96 decreased 

96223135 40.43 23.75 16.68 decreased 

96223137 42.01 25.00 17.01 decreased 

96223156 34.39 14.58 19.81 decreased 

96223184 41.95 22.92 19.03 decreased 

96223199 42.50 23.89 18.61 decreased 

 

MethStart Av.TE.50 Av.TE.10 Av.meth.diff Av.meth% 

96200198 38.97 11.83 27.13 decreased 

96200522 34.15 12.37 21.78 decreased 

96200525 50.72 28.11 22.60 decreased 

96211024 67.11 45.01 22.11 decreased 

96221369 32.31 13.18 19.13 decreased 

96221371 41.76 7.97 33.79 decreased 

96221375 34.25 8.94 25.30 decreased 

96221396 32.40 8.14 24.26 decreased 

96221409 29.19 4.87 24.32 decreased 

96221472 34.83 26.47 8.35 decreased 

96221474 44.17 30.79 13.38 decreased 

96221483 41.42 25.75 15.68 decreased 

96221503 36.25 25.23 11.02 decreased 

96221507 30.79 21.25 9.55 decreased 

96221588 41.26 24.91 16.35 decreased 

96221634 11.71 36.87 -25.16 increased 

96222398 47.78 30.64 17.15 decreased 

96222400 44.53 24.95 19.58 decreased 

96223037 50.07 23.74 26.33 decreased 

96223047 52.44 29.86 22.58 decreased 

96223103 41.34 16.48 24.87 decreased 

96223131 42.96 25.00 17.96 decreased 

96223135 40.43 23.75 16.68 decreased 

96223137 42.01 25.00 17.01 decreased 

96223156 34.39 14.58 19.81 decreased 

96223184 41.95 22.92 19.03 decreased 

96223199 42.50 23.89 18.61 decreased 

96233345 46.25 24.40 21.85 decreased 

96233809 75.81 53.38 22.43 decreased 

96238131 73.25 44.72 28.53 decreased 

96242476 45.30 19.43 25.87 decreased 

96242515 42.05 20.73 21.32 decreased 

96248850 59.01 26.69 32.32 decreased 

96248873 51.62 19.13 32.48 decreased 

96251161 94.05 68.04 26.01 decreased 

96251201 86.15 62.87 23.28 decreased 

96251231 59.00 41.00 18.01 decreased 

96253330 66.58 37.83 28.75 decreased 

96256141 76.63 50.17 26.46 decreased 

96260721 25.51 6.71 18.80 decreased 

96273595 68.32 29.25 39.08 decreased 

96278230 66.62 40.22 26.40 decreased 

96281615 46.01 69.29 -23.28 increased 

96281837 67.20 25.38 41.82 decreased 

96283473 20.97 43.97 -23.00 increased 

96285820 46.81 24.71 22.11 decreased 

96285851 34.87 9.54 25.32 decreased 
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Appendix 4.11 ClustalW2 multiple sequence alignment: IGF2R nucleotide sequence homology (%) between species.  

 

Source(s): Ensembl Genome Browser (https://www.ensembl.org); ClustalW2 1.2.4, EMBL-EBI (https://www.ebi.ac.uk/Tools/msa/clustalw2/). 
Abbreviation(s): aa, amino acids, bp, base pairs Chr, chromosome; DMR2, differentially methylated region 2; DMS, differentially methylated 
site (cytosine). Nucleotide sequence percentage similarity with cattle (%). 

Species Reference genome 
IGF2R location 

(Chr: bases) 

Protein-
coding 

transcripts 

Transcripts 
(bp) 

Protein 
(aa) 

IGF2R 
identity 

% 

Intron 
2 
% 

DMR2 
cluster region 

% 

DMR2 
cluster 1 

% 

 
DMR2 

cluster 2 
% 
 

 

DMS 
cluster 1 

% 

DMS 
cluster 2 

% 

Bos taurus ARS-UCD1.2 
9:  
96197493-96300017 

1/1 9058 2499 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

Ovis aries Oar_v3.1 
8:  
82874886-82959397 

1/1 7389 2463 91.9 45.8 0.0 0.0 0.0 0.0 0.0 

Sus scrofa Hampshire_pig_v1 
LUXS01016444.1: 
25529918-26587436 

3/3 

9008 2488 

68.6 
 

74.0 89.4 87.1 88.0 75.0 90.9 

8846 2434 

8837 2431 

803 - 
- 245 

Homo sapiens 
 

GRCh38.p13 
6:  
159969099- 160113507 

2/6 
 

14044 2491 

60.3 
52.3 

 
49.5 51.8 47.3 50.0 81.8 

762 185 

597 - 
- 
- 
- 

6468 

2755 

355 

Mus musculus GRCm38.p6 
17:  
12682406-12769664 

1/3 

8887 2483 

49.7 45.1 0.0 0.0 0.0 0.0 0.0 803 - 

245 - 

Rattus rattus Rnor_6.0 
1:  
48176106-48264477 

1/1 8787 2481 49.7 44.4 39.1 33.1 44.5 33.3 63.6 

% Identity key  
100  
90-100  
80-90  
70-80  
60-70  
50-60  
40-50  
30-40  

https://www.ensembl.org/
https://www.ebi.ac.uk/Tools/msa/clustalw2/
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Appendix 4.12 Multiple sequence alignment of IGF2R DMR2 clusters 

Multiple sequence alignment of IGF2R - DMR2 cluster 1 

(ClustalW2 1.2.4, EMBL-EBI; https://www.ebi.ac.uk/Tools/msa/clustalw2/) 

 

First cluster of DMS in DMR2 of IGF2R intron 2 that were differentially methylated within 
the trophectoderm (TE) of bovine embryos cultured in low physiological methionine 
concentration (50 v 10 µmol/L). 

Start of DMR2 cluster 1 in grey. DMS cluster 1 region nucleotide sequence in red. 
Hypomethylated cytosine residues in bovine sequence in blue. Hypermethylated 
cytosine residue in bovine sequence in purple c. Cytosine residues conserved between 
species in green. Nucleotide numbers refer to location on chromosomes.  

 

CLUSTAL O(1.2.4) multiple sequence alignment 

                                                                             

mouseintron2      ------------------------------------------------------------ 1903 

ratintron2        TCTTATAGATCCCAGGACTACCGGCCAACCCAGAGATGGCACCCACAAAGGGCTAGGCCC 5875 

sheepintron2      ------------------------------------------------------------ 1546 

humanintron2      TGCGGTAGGCAGGAGGGCTGCCTGTGAAGTCAGGATCACCAGGCTTTGTGGCTTCAAGGA 13002 

cowintron2        CAGGCTGGGCCCCGTGGCCGCCGGCGGAGGCGCGGTCGCCAGGCCGAGCAGCCTCAGCGA 4864 

pigintron2        AGCGCTGGACCCCGAGGCCGCGGGCGGAGTGGCGATCGCCAGGCCTGGCAGCCTCAGCGA 4232                                                                             

 

mouseintron2      ------------------------------------------------------------ 1903 

ratintron2        TTCCCCGTTGATCACTAATTGAG----AAAATGCCTTATAGC----TGGATTTCATGGAG 5927 

sheepintron2      ------------------------------------------------------------ 1546 

humanintron2      GGCCAAATCACCATGGGCTTGCTTGGGCTTGGAGGTGCGACCTGGTGGGCCTGCAGAATG 13062 

cowintron2        GGTCGGGTTGCGAGCT---CGGCCGGGCTCGGCCGCGAGCGC--CGAGGGCGGCAGGCGA 4919 

pigintron2        GACCGAGTTGCGAGCT---CGGCCGGGCTCGGCCGCGGACGC--CGAGGGTGGCAGGCGA 4287                                                                               

 

mouseintron2      ------------------------------------------------------------ 1903 

ratintron2        GTGTTTCCTCAATTGAGA---CTCCTCCTTCTCTAGTGATTCTAGCTTGTGTCTAGGTGA 5984 

sheepintron2      ------------------------------------------------------------ 1546 

humanintron2      CGACTTGGTGGCCTGACTGAGCAGCACGTGAGGGCCTGGTGCAGCCTGGCATGGTGGTAC 13122 

cowintron2        GGCCCGGCCGGCC--------TGGCACGCGGCCTGGTCGGGCGGACTCTGGTGAGCGCGG 4971 

pigintron2        GGCCGGGCAGGCC--------CGGATCGCGGCCTGGTCGGACGGGCTCTGGTGAGCGCGG 4339 

                                                                               

mouseintron2      ------------------------------------------------------------ 1903 

ratintron2        CACAAAACCAGCCAGTATAACAGGGGAA-G-TGGAAACAATGTCCTGATTGATTTACCAG 6042 

sheepintron2      ------------------------------------------------------------ 1546 

humanintron2      CCTT-GAG-AGCGTGGCCTAGAGGGCTCCGAGGTGCAGCCTGGCCAGTGTGGTCTGGAGG 13180 

cowintron2        CCGA-GCG-CGCAGGGTCTGCAGGACCC---GGCGTGGCCTGGCCGGCGGCGCGTGGCTG 5026 

pigintron2        CCTG-GTG-CGCAGGGTCTGCAGGACCC---GGCGCGGCCTGGCCGGGAGAGCGTGGCCG 4394 

                                                                               

mouseintron2      ------------------------------------------------------------ 1903 

ratintron2        GGTTTTTGGACCGGGTGCTAGGA-----------ACTACTAGGCTCTTAGTGACT----G 6087 

sheepintron2      ------------------------------------------------------------ 1546 

humanintron2      GGTCTGGCAAGCGCTATCTGGAGCACTCAGAGGTGTGGCCTGTTTTTCCG---------- 13230 

cowintron2        GGGCTGGCGGGCGCGGGCGAGCGCTGCCGGACGGGCGCCCTGGCGCGCAGGGTCGAGAGG 5086 

pigintron2        GGTCGGGCGGGCACGGGCGAGTGCGGCCGG---GCGGGCCTGGCGCGCAGGGTCTGGAGG 4451 

                                                                               

mouseintron2      ------------------------------------------------------------ 1903 

ratintron2        AGAATAGGAGTGTTGTGATGAGAACTGGTGGGTTGTTAAAAGAGCT-GGTGTAGTATTCT 6146 

sheepintron2      ------------------------------------------------------------ 1546 

humanintron2      ----------GGTGGGTCTAGTGAGTGTAGCTTGGAGTGCTG-------GGTGGTGTGGC 13273 

cowintron2        ACCCGGCGCGGCCCGGGCTGCAGAGCGTGGCTGGGTCTGACGGGCTCGGGCGAGCGTGGC 5146 

pigintron2        ACCCGGCGCGGCCTGGACTGTGGAGCGTGGCCTGGTCTGGCGGGCGCGGGCGAGCATGGC 4511 

https://www.ebi.ac.uk/Tools/msa/clustalw2/
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Multiple sequence alignment (ClustalW2 1.2.4) - DMR2 cluster 2 

(ClustalW2 1.2.4, EMBL-EBI; https://www.ebi.ac.uk/Tools/msa/clustalw2/) 

 

Second cluster of DMS in DMR2 of IGF2R intron 2 that were differentially methylated 
within the trophectoderm (TE) of bovine embryos cultured in low physiological 
methionine concentration (50 v 10 µmol/L).  

DMS cluster 2 region nucleotide sequence in red. Hypomethylated cytosine residues in 
bovine sequence in blue. Cytosine residues conserved between species in green. 
Nucleotide numbers refer to location on chromosomes.

                                                                               

mouseintron2      ------------------------------------------------------------ 1903 

ratintron2        CCTGCCCTTCTTTTCTGCAACGCGGCACTTTTGAGCG--CGCCCCTCCT--GCAACGCGA 6799 

sheepintron2      ------------------------------------------------------------ 1546 

humanintron2      --GGAGCTTGGGGTCTGCAGTGCTGGGAGGCCGAGGCCTGGCATGTTGGGGACAG----- 14003 

cowintron2        --GGAGACCGTGATCTGGAGGGCCTGGAGCGCACGGTCTGGCGCGGTCCGGAGGACCCGG 5882 

pigintron2        --GGAGACCGTGGTCTGGAGGACCTGGCGCGTGCGGCCTGGCGCGGTCCGGAGGACCCGG 5247 

                                                                               

mouseintron2      ------------------------------------------------------------ 1903 

ratintron2        TACTTTTGAGTGCGCCCCTTCTGCAACGCGCGGTCCTGATCATAGAACCCTTCGAATCCT 6859 

sheepintron2      ------------------------------------------------------------ 1546 

humanintron2      ----GTCTTGGGAGCTGACTGG----GGGCCTGGCGTGGTGGCGGCAGCCCGCAGTCCCT 14055 

cowintron2        CGCGATCTGGTGGGCCCGGTGAGCG-CGAGCTGGTCTGGTGGGCCCAGCGCGCGCGGCCT 5941 

pigintron2        CGCGATCTGGCGGGCCCGGCGAGCG-CGGACTGGTCTGGCGGGCCCAGCGAGCGCGGCCT 5306                                                                              

 

mouseintron2      ------------------------------------------------------------ 1903 

ratintron2        CCCTTT---GTGCAGCTTTGTACCCCTTAGGATAA----CTCGGAAACCT----CT---G 6905 

sheepintron2      ------------------------------------------------------------ 1546 

humanintron2      GCCT---------GGCC---------CTTGTCTGG------------------------- 14072 

cowintron2        GGTCTGGTGGACCCGGCCTGGAGAGCGTGGTCTGGAGGACCCGGCGCGCGCGGTCTGGCG 6001 

pigintron2        GGTCTGGCTGACCCGGCTTGGAGAGCGTGGTCTGGAGGACCTGGCGCGCGCGGTCTGACG 5366 

                                                                               

mouseintron2      ------------------------------------------------------------ 1903 

ratintron2        AACCTTCCCTTCTCCTCCCCTCCCCTCCCCTCCCCTCCCCTCCGCACTCAACCACCGGAA 6965 

sheepintron2      ------------------------------------------------------------ 1546 

humanintron2      --GAGGCCGCGGTTCTCTGCGGCC------TCTCGCCGGTGTCGCCCTTGGCCACTGGGC 14124 

cowintron2        GGCCTGGCGCGGTCCGGTTGGC-------------------------------------- 6023 

pigintron2        GGCCTGGCGCGGTCCGGCGGGCCC------A--GCGCGCGGTCCGGCGGGCCCAGCGCGC 5418 

                                                                               

mouseintron2      ------------------------------------------------------------ 1903 

ratintron2        TCACGCTAAAATCCTCCGAACCCTCGGGCAGCGCGGCATCCTGGCTCGCGCAGTGCCGCT 7025 

sheepintron2      ------------------------------------------------------------ 1546 

humanintron2      TGCGAGGAA--GCCGGCGAGGAGT--GGG-----------TGTGCGCCCCGCCCGGCTCT 14169 

cowintron2        ----------------------------------------CGAGCGCGCGGTCTGGAGGA 6043 

pigintron2        GGTCTGGAGGACCCAGCGCGCGGTCTGGCGGGC-------CCAGCGCGCGGTCTGGTGGA 5471 

                                                                               

mouseintron2      ------------------------------------------------------------ 1903 

ratintron2        GGAATCGCGCGCTAAAATTCTCCGAACCCTTGAGCAGCGCGGCACCCTGGCTCACAGTGC 7085 

sheepintron2      ------------------------------------------------------------ 1546 

humanintron2      ACCGGCGAGGGATGCAGTGGCCG--CCAGCGTGGCCGTGCGGC---------------TG 14212 

cowintron2        CCCAGCGCGGTCTGGCGGACCCG--GCCTG--GAGAGCGCGGT---------------CT 6084 

pigintron2        CCCAGCGCGGTCTGGCGGACCCG--GCCTG--GGGAGCGCGGT---------------CT 5512 

                                                                               

mouseintron2      ------------------------------------------------------------ 1903 

ratintron2        CGCGGAACCTTCTGAACCCTCCGAACCCTCCCTTCTTGTAGCTTTGCACCCTCAGGATAG 7145 

sheepintron2      ------------------------------------------------------------ 1546 

humanintron2      GGTCACTCCCTT-CCCGCTTCCAGGGCC-----TT-----TTTCTGCCTCCTTTT----- 14256 

cowintron2        GGAGGACCCGGC-GCGGCCTGGCGGGCCTGGGCGG-----ACGCGGCCTGGTCTGGCGGG 6138 

pigintron2        GGAGGACCCGGC-GCGGCCTGGCGGGCCTGGGCGA-----GCGCGGCCTGGTCTGGCGGG 5566 

                                                                               

mouseintron2      ------------------------------------------------------------ 1903 

ratintron2        CTCGGAACCCTCTAAACGTTCTCTTCCCCTCCCCTCTTG-----------CCACACGGCA 7194 

sheepintron2      ------------------------------------------------------------ 1546 

humanintron2      ------------------------------CAGGACGTGACCCGCACATTATGAGGGACC 14286 

cowintron2        CCCTGCCGGG--AGACCGCGGTCTGGCCGGCACGGCGCGCGCAGCCCGGTCTGGAGGACC 6196 

pigintron2        CCCGGCCGGG--AGACCGCGGTCTGGCGGGCCTGGCGCGCGCAGCCTGGTCTGGAGGACC 5624 

https://www.ebi.ac.uk/Tools/msa/clustalw2/
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DMR2 cluster 2 – multiple sequence alignment continued 

(ClustalW2 1.2.4, EMBL-EBI; https://www.ebi.ac.uk/Tools/msa/clustalw2/) 

 

Second cluster of DMS in DMR2 of IGF2R intron 2 that were differentially methylated 
within the trophectoderm (TE) of bovine embryos cultured in low physiological 
methionine concentration (50 v 10 µmol/L).  

End of DMR2 cluster 2 in grey. DMS cluster 2 region nucleotide sequence in red. 
Hypomethylated cytosine residues in bovine sequence in blue. Cytosine residues 
conserved between species in green. Nucleotide numbers refer to location on 
chromosomes.  

 

 

mouseintron2      ------------------------------------------------------------ 1903 

ratintron2        CAACCAGAATCACAGCACAACAGGAATCACATTAAAAATCCTCCGAA-----CCTTTGGG 7249 

sheepintron2      ------------------------------------------------------------ 1546 

humanintron2      CGTAGGGGCTCTTGACACAGAGG-GGTCACCCTATGTGTGAACAGGTTACGAGGTTGGGG 14345 

cowintron2        CGGCCTGGAGAGCGCGGCCTGGAGGACCCGGCGCGGTCTGGTCTGCTGG---GGCCCCGC 6253 

pigintron2        CGGCCGGGAGAGCGCGGCCTGGAGGACCCGGCGCGGTCTGGTCTGGTGG---GGCCCCGC 5681 

                                                                               

mouseintron2      ------------------------------------------------------------ 1903 

ratintron2        CAGCGGCACCCTGGCTCGCGCAGT--------------------GCCGCGG--------- 7280 

sheepintron2      ------------------------------------------------------------ 1546 

humanintron2      GCTTGGCTTCTGAACTTGCCAGGAAACACCGCATCCCTTTTCCTGCAGCGGCCGCC-CCC 14404 

cowintron2        CAGTGTGGTCTGGTCTGGCGCGCCCGGCCTGGAGAGCGTGGTCTGGCGGGCCCGGCGCGC 6313 

pigintron2        CAGTGCGGTCTGGTCTGGCGGACCCGGCCTGGAGAGCGTGGTCTGGCGGGCCCGGCGCGC 5741 

                                                                               

mouseintron2      ------------------------------------------------------------ 1903 

ratintron2        ---------AATCCTCAGAAATCCCGCTTGCCCGCA--------AACACGGATTGTGCAG 7323 

sheepintron2      ------------------------------------------------------------ 1546 

humanintron2      --CATCCCCCACCCGCCCCATT-----------------CTCTCCCCTCCCCAACTGCAG 14445 

cowintron2        GGTCTGGAGGACCCGGCGCGATCTGGCGGGCCCGGCGAGCGCGGCCCAGCCCATTTGGCG 6373 

pigintron2        GGTCTGGAGGACCCGGCGCGGTCTGGCGGGCCCGGCGAGCGCGGCCCAGCCCATTTGGCG 5801 

                                                                               

mouseintron2      ------------------------------------------------------------ 1903 

ratintron2        AAATCCTCCGGACCCCGGTT-------------------CCCCCACAGTAGCGTGGTGCA 7364 

sheepintron2      ------------------------------------------------------------ 1546 

humanintron2      CCTTCCGCGCCTCCTTGGCCCCTCGAGCCTCCCTGGGTCCCCTGCACCTCCCCATGTCCC 14505 

cowintron2        CCGTCCTCGGGAGCTGG----------------------CCGTGGGCCTGGCGTGCTGGC 6411 

pigintron2        CCGTCCTCGGGAGCTGG----------------------CCGTGGGCCTGGCGTGCTGGC 5839 

                                                                               

mouseintron2      ------------------------------------------------------------ 1903 

ratintron2        GCCCGGAGTAGAACCCCCTCCCCCCTTTCGCAGCGTGGCACACTCGTGCTGTGGATCGCC 7424 

sheepintron2      ------------------------------------------------------------ 1546 

humanintron2      CCACGACTCCTAGGCCTCTCGCGCTTCC-----CCAGGACCCCGCGCA----TCCT---- 14552 

cowintron2        CGCCGCCCCGCAGTCCTCGCCCGGCCTTCGT-CCGGGGAGGACGGCCA----GGCT---- 6462 

pigintron2        CGCCGCCCCGCAGTCCTCGCCCGGCTCTGGT-CCGGGGAGGACGGCCA----GGCT---- 5890 

                                                                               

mouseintron2      ------------------------------------------------------------ 1903 

ratintron2        AGTAACCCTCTGGAGCCTTACCCTTGCGTATAGCAGGCAGGCGCGCAGGACCCTCCCCTC 7484 

sheepintron2      ------------------------------------------------------------ 1546 

humanintron2      ---GGGCCTCTTGCGCCTCCCCGGTCCTCAGCGCCTCCTCGGCCGCCGTGCCTCCCCGCA 14609 

cowintron2        ---GGCCGGGGTGCC--GCGGGAGTCCGCCGCGGGGGCGCTGCCGCGGTGCACCGCGGCC 6517 

pigintron2        ---GGCCGGTTGCCG--CGGTT--GTCTGCCGCGGTTCACTGCCGCGGTGCACTGCGGCC 5943 

                                                                               

mouseintron2      ------------------------------------------------------------ 1903 

ratintron2        CCTTCTCCTCTTGCTGACGCGGCA-----TGGCGGCTGCGCGGCTCTTGACCGGCCCTCG 7539 

sheepintron2      ------------------------------------------------------------ 1546 

humanintron2      CCTTTT---GCGCCTCATGGGGCTCCCGGTGCCTTCTGCCCGCCGCCTCGCCGCGCCCC- 14665 

cowintron2        TCTTGCCGAGTGCCGGGGTGGGCAATCGGTCCTGGCCAGTAGGCGGAGGAGCGGGCTGC- 6576 

pigintron2        TGTCCCCGAGTGCCCGAGTCGGCAGCCGGTCCCGGCCGCCAGGTGGAGCGGGCAG-AGG- 6001 

                                                                               

mouseintron2      ------------------------------------------------------------ 1903 

ratintron2        TGTAGTTTGGAACCCTCGTGAGCTGCGGGGCAACCGAGTGCTGAGTCCTCATGCAGCTCG 7599 

sheepintron2      ------------------------------------------------------------ 1546 

humanintron2      ------TCGCCT-CCTCATGCCCCTCCGCGCCC------CATACCTCCCCACCCC----T 14708 

cowintron2        ------AGGCAGGCTGGACGGGCGAGCGGGCGCGGTGCCGATGGGGCCTGACGCTGAGGG 6630 

pigintron2        ------AAGAAGGCAAGATGGACAGGCAGGCGCGATGCCGATGGGGCCTGACGCTTAGGG 6055 

                                                                               

mouseintron2      ------------------------------------------------------------ 1903 

ratintron2        GAAACCTTCACCC------TGGCGCTGAACCTCACGCGGGGGAGCCTTTG---------C 7644 

sheepintron2      ------------------------------------------------------------ 1546 

humanintron2      GTGCCTCTCTGCCTATCCCCTGTACCACCCGGCATCCTCCGTGCCCCATGCG-------C 14761 

cowintron2        ACGCCGCTGTCCCCAGCGCCGCGGCCGCGGAGCTCG-GCCGGTCCGTCTCGGCTCAAGGC 6689 

pigintron2        ATGCCGCGGCCCCGCTCCGCGGCGG--CAGAGGTCGGCCGGATCCCTCTCGGCCCGTGGC 6113 

https://www.ebi.ac.uk/Tools/msa/clustalw2/
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Appendix Chapter 5 

Appendix 5.1 Working solutions and methodology for RRBS  

Msp1 digest: 

Msp1 digest working solution  

 

 

 

 

 

 

 

The digestion mixture was incubated at 37oC for 2 h before the addition of 10 

μL Msp1 enzyme digest mix 2. The contents were vortexed and centrifuged 

briefly before the addition of 10 μL Msp1 enzyme and incubation at 37oC for 14 

h. After the addition of 10 μL Msp1 enzyme digest mix 2 the contents were 

vortexed, centrifuged and incubated at 37oC again for 4 h (total 20 h). Samples 

were incubated at 80oC for 20 min to inactivate Msp1 before another brief 

centrifugation and storage on ice. The digestion product was purified using 

Quaquick PCR kit (Qiagen 28104). 

End-repair: 

End-repair master mix (working solution) 

 

 

 

 

 

End-repair reaction mix was incubated at 20oC for 30 min. The product was 

purified using Qiaquick PCR kit. The sample was eluted in 37 μL EB buffer. 

Msp1 digest component 
Volume 

(1 reaction, μL) 

Msp1 (NEB R0106T) 4 
Smart cut buffer 4 
Unmethylated λ-DNA (37.5 μg) 1  

(14.7x diluted DNA) 
Nuclease-free PCR water  12 
DNA sample (5 μg) 20 

Msp1 digest mix 2 
Volume 

(1 reaction, μL) 

Msp1 (NEB R0106T) 1 

Smart cut buffer 1 

DNA sample (5 μg) 8 

End-repair mix component 
Volume 

(1 reaction, μL) 

Large Klenow fragment  1 
T4 ligase buffer + ATP 10 
End-repair dNTP mix (10 mM each) 4 
T4 DNA Polymerase 5 
T4 PNK 5 
Purified Msp1 cut DNA 28 
Nuclease-free PCR water  47 
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 dA-tailing: 

dA-taling master mix (working solution) 

 

 

 

dA-tailing reaction mix was incubated at 37oC for 30 min followed by a hold at 

4oC. The product was purified using Qiagen MinElute PCR kit and the sample 

was eluted in 12 μL EB buffer.  

Adaptor ligation:  

Ligation mix working solution   

 

 

 

Methylated adapter ligation mix was incubated at 20oC for 20 min and 3 μL 

USER™ (Uracil-Specific Excision Reagent enzyme) was added before 

incubation at 37oC for 15 min. The product was purified using Qiagen MinElute 

PCR kit and the sample was eluted in 12 μL EB buffer. 

Methylated adaptor ligation product purification  

Next, 3 μL loading dye (6X, promega cat no. G1881) was added to 10 μL the 

purified methylated adaptor ligated product and concentrated using a SpeedVac 

Vacuum Concentrator at the low heat setting for 10 min to remove residual 

ethanol. Four microliters of water were added to concentrated samples and they 

were run on 2% agarose gel containing GelGreen Nucleic acid gel stain 

(10,000X). Product bands of 200-400 bp in length were excised from the gel to 

isolate adaptor ligated DNA (this fragment length equates to 80-280 bp plus 124 

bp methylated adaptor). The DNA was extracted using Qiagen MinElute gel 

extraction kit and the sample was eluted in 14 μL EB buffer.

dA-tailing mix component 
Volume 

(1 reaction, μL) 

DNA sample 32 
NEB2 buffer  5 
dATP (1 mM) 10 
Klenow fragment exo-  3 

Ligation mix component 
Volume 

(1 reaction, μL) 

DNA sample  10 

Methylated adapter (NEB, 15 μM) 2.5 

Blunt/TA ligase master mix (2X, NEB) 12.5 
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Bisulphite conversion:  

Bisulphite conversion of DNA was achieved using the EZ DNA methylation Kit 

(Zymo) according to the manufacturer’s protocol. The sample was incubated 

with M-dilution buffer mix at 37oC for 15 min. Then, 100 μL CT Conversion 

Reagent was added.  

M-dilution buffer mix working solution   

 

 

 

The DNA sample contents were mixed and centrifuged prior to bisulphite 

conversion. The bisulphite conversion protocol took approximately 20 h and the 

conditions were as follows: 95oC for 30 s, followed by 19 cycles of 60 min at 

50°C and a final hold at 4oC. All steps were performed in a PCR thermocycler. 

Bisulphite converted DNA was purified according to the manufacturer’s protocol 

and samples were eluted in a final volume of 20 μL.  

RRBS Library Preparation:   

Library preparation mix working solution   

 

 

 

 

 

The purified DNA was subjected to amplification by PCR using the RRBS 

Library Preparation master mix. The amplification conditions were as follows: 

95oC for 5 min, followed by 12 cycles of 95°C for 15 s, 61°C for 30 s, and 72°C 

for 7 min with a final hold at 4oC. PCR products were purified using the MiniElute 

PCR kit (Qiagen) and DNA was eluted in 12 μL nuclease-free PCR water. The 

speed-vac was used for 5 min (low heat) to remove residual ethanol. Water was 

added to each sample to make the final volume to 10 μL. DNA samples were 

transferred to Deep Seq (The University of Nottingham) for bisulphite 

sequencing analysis.  

M-dilution buffer mix component 
Volume 

(1 reaction, μL) 

DNA sample  4 

M-dilution buffer 5 

Nuclease-free PCR water  41 

Library preparation mix component 
Volume 

(1 reaction, μL) 

Pfu Turbo Buffer  2.5 

dNTP (Turbo) 0.6 

Universal primer stock (NEB) 0.75 

Pfu Turbo enzyme 0.5 

Bisulphite converted DNA sample 1 

Nuclease-free PCR water  18.9 
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Appendix 5.2 GO terms enriched in DvOP5 and LvLFF4  

 Biological Process GO terms enriched in DvOP5 

Biological Process GO (DvOP5, n=186) FDR (q-value) 

GO:0010544 Negative Regulation Of Platelet Activation 0.00000 
GO:0045199 Maintenance Of Epithelial Cell Apical/Basal Polarity 0.00000 
GO:0046533 Negative Regulation Of Photoreceptor Cell Differentiation 0.00000 
GO:0010172 Embryonic Body Morphogenesis 0.00000 
GO:0021544 Subpallium Development 0.00000 
GO:0034653 Retinoic Acid Catabolic Process 0.00000 
GO:0071376 Cellular Response To Corticotropin-Releasing Hormone Stimulus 0.00000 
GO:0007442 Hindgut Morphogenesis 0.00000 
GO:0021543 Pallium Development 0.00000 
GO:0021914 Regulation Of Smoothened Signaling Pathway In Ventral Spinal Cord Patterning 0.00000 
GO:0034334 Adherens Junction Maintenance 0.00000 
GO:0060708 Spongiotrophoblast Differentiation 0.00000 
GO:0061314 Notch Signaling Involved In Heart Development 0.00000 
GO:0072034 Renal Vesicle Induction 0.00000 
GO:0072049 Comma-Shaped Body Morphogenesis 0.00000 
GO:0072050 S-Shaped Body Morphogenesis 0.00000 
GO:0072162 Metanephric Mesenchymal Cell Differentiation 0.00000 
GO:1903936 Cellular Response To Sodium Arsenite 0.00000 
GO:0002790 Peptide Secretion 0.00000 
GO:0003357 Noradrenergic Neuron Differentiation 0.00000 
GO:0003401 Axis Elongation 0.00000 
GO:0006222 Ump Biosynthetic Process 0.00000 
GO:0006572 Tyrosine Catabolic Process 0.00000 
GO:0006657 Cdp-Choline Pathway 0.00000 
GO:0007501 Mesodermal Cell Fate Specification 0.00000 
GO:0010512 Negative Regulation Of Phosphatidylinositol Biosynthetic Process 0.00000 
GO:0010957 Negative Regulation Of Vitamin D Biosynthetic Process 0.00000 
GO:0014015 Positive Regulation Of Gliogenesis 0.00000 
GO:0015697 Quaternary Ammonium Group Transport 0.00000 
GO:0015746 Citrate Transport 0.00000 
GO:0016577 Histone Demethylation 0.00000 
GO:0021526 Medial Motor Column Neuron Differentiation 0.00000 
GO:0021559 Trigeminal Nerve Development 0.00000 
GO:0021568 Rhombomere 2 Development 0.00000 
GO:0021681 Cerebellar Granular Layer Development 0.00000 
GO:0021782 Glial Cell Development 0.00000 
GO:0021891 Olfactory Bulb Interneuron Development 0.00000 
GO:0021893 Cerebral Cortex Gabaergic Interneuron Fate Commitment 0.00000 
GO:0021913 Transcription From RNAIi Promoter In Spinal Cord Interneuron Specification 0.00000 
GO:0021937 Cerebellar Purkinje Cell In Regulation Of Granule Cell Precursor Cell Proliferation 0.00000 
GO:0021986 Habenula Development 0.00000 
GO:0030431 Sleep 0.00000 
GO:0030852 Regulation Of Granulocyte Differentiation 0.00000 
GO:0031103 Axon Regeneration 0.00000 
GO:0032286 Central Nervous System Myelin Maintenance 0.00000 
GO:0032401 Establishment Of Melanosome Localization 0.00000 
GO:0032770 Positive Regulation Of Monooxygenase Activity 0.00000 
GO:0032823 Regulation Of Natural Killer Cell Differentiation 0.00000 
GO:0032912 Negative Regulation Of Transforming Growth Factor Beta2 Production 0.00000 
GO:0033058 Directional Locomotion 0.00000 
GO:0033082 Regulation Of Extrathymic T Cell Differentiation 0.00000 
GO:0034124 Regulation Of Myd88-Dependent Toll-Like Receptor Signaling Pathway 0.00000 
GO:0035295 Tube Development 0.00000 
GO:0042136 Neurotransmitter Biosynthetic Process 0.00000 
GO:0042942 D-Serine Transport 0.00000 
GO:0043370 Regulation Of Cd4-Positive, Alpha-Beta T Cell Differentiation 0.00000 
GO:0045586 Regulation Of Gamma-Delta T Cell Differentiation 0.00000 
GO:0045608 Negative Regulation Of Inner Ear Auditory Receptor Cell Differentiation 0.00000 
GO:0045659 Negative Regulation Of Neutrophil Differentiation 0.00000 
GO:0046885 Regulation Of Hormone Biosynthetic Process 0.00000 
GO:0048385 Regulation Of Retinoic Acid Receptor Signaling Pathway 0.00000 
GO:0048563 Post-Embryonic Animal Organ Morphogenesis 0.00000 
GO:0048871 Multicellular Organismal Homeostasis 0.00000 
GO:0050954 Sensory Perception Of Mechanical Stimulus 0.00000 
GO:0051136 Regulation Of Nk T Cell Differentiation 0.00000 
GO:0060026 Convergent Extension 0.00000 
GO:0060067 Cervix Development 0.00000 
GO:0060083 Smooth Muscle Contraction Involved In Micturition 0.00000 
GO:0060221 Retinal Rod Cell Differentiation 0.00000 
GO:0060302 Negative Regulation Of Cytokine Activity 0.00000 
GO:0060434 Bronchus Morphogenesis 0.00000 
GO:0060675 Ureteric Bud Morphogenesis 0.00000 
GO:0060775 Planar Cell Polarity Pathway Involved In Gastrula Mediolateral Intercalation 0.00000 
GO:0061771 Response To Caloric Restriction 0.00000 
GO:0071657 Positive Regulation Of Granulocyte Colony-Stimulating Factor Production 0.00000 
GO:0072011 Glomerular Endothelium Development 0.00000 
GO:0072086 Specification Of Loop Of Henle Identity 0.00000 
GO:0072108 Mesenchymal To Epithelial Transition In Metanephros Morphogenesis 0.00000 
GO:0072190 Ureter Urothelium Development 0.00000 
GO:0072289 Metanephric Nephron Tubule Formation 0.00000 
GO:0072674 Multinuclear Osteoclast Differentiation 0.00000 
GO:0090076 Relaxation Of Skeletal Muscle 0.00000 
GO:0090218 Positive Regulation Of Lipid Kinase Activity 0.00000 
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Biological Process GO continued (DvOP5, n=186) FDR (q-value) 

GO:0097340 Inhibition Of Cysteine-Type Endopeptidase Activity 0.00000 
GO:0097535 Lymphoid Lineage Cell Migration Into Thymus 0.00000 
GO:0099039 Sphingolipid Translocation 0.00000 
GO:1900625 Positive Regulation Of Monocyte Aggregation 0.00000 
GO:1901382 Regulation Of Chorionic Trophoblast Cell Proliferation 0.00000 
GO:1901991 Negative Regulation Of Mitotic Cell Cycle Phase Transition 0.00000 
GO:1902871 Positive Regulation Of Amacrine Cell Differentiation 0.00000 
GO:1902963 Metalloendopeptidase Activity In Amyloid Precursor Protein Catabolic Process 0.00000 
GO:1903539 Protein Localization To Postsynaptic Membrane 0.00000 
GO:1904956 Regulation Of Midbrain Dopaminergic Neuron Differentiation 0.00000 
GO:1905167 Positive Regulation Of Lysosomal Protein Catabolic Process 0.00000 
GO:1905521 Regulation Of Macrophage Migration 0.00000 
GO:1990927 Calcium Ion Regulated Lysosome Exocytosis 0.00000 
GO:2000041 Negative Regulation Of Planar Cell Polarity Pathway Involved In Axis Elongation 0.00000 
GO:2000392 Regulation Of Lamellipodium Morphogenesis 0.00000 
GO:2000563 Positive Regulation Of Cd4-Positive, Alpha-Beta T Cell Proliferation 0.00000 
GO:2000675 Negative Regulation Of Type B Pancreatic Cell Apoptotic Process 0.00000 
GO:2000981 Negative Regulation Of Inner Ear Receptor Cell Differentiation 0.00000 
GO:0001656 Metanephros Development 0.00012 
GO:0021796 Cerebral Cortex Regionalization 0.00139 
GO:0051246 Regulation Of Protein Metabolic Process 0.00139 
GO:0072197 Ureter Morphogenesis 0.00139 
GO:0009952 Anterior/Posterior Pattern Specification 0.00191 
GO:0042474 Middle Ear Morphogenesis 0.00426 
GO:0035019 Somatic Stem Cell Population Maintenance 0.00561 
GO:0018101 Protein Citrullination 0.00561 
GO:0032808 Lacrimal Gland Development 0.00561 
GO:0070848 Response To Growth Factor 0.00561 
GO:0090084 Negative Regulation Of Inclusion Body Assembly 0.00561 
GO:1900748 Positive Regulation Of Vascular Endothelial Growth Factor Signaling Pathway 0.00561 
GO:2001046 Positive Regulation Of Integrin-Mediated Signaling Pathway 0.00561 
GO:0042472 Inner Ear Morphogenesis 0.00595 
GO:0048546 Digestive Tract Morphogenesis 0.00647 
GO:0048557 Embryonic Digestive Tract Morphogenesis 0.00647 
GO:0048665 Neuron Fate Specification 0.00647 
GO:0048856 Anatomical Structure Development 0.00647 
GO:0006536 Glutamate Metabolic Process 0.00751 
GO:0021520 Spinal Cord Motor Neuron Cell Fate Specification 0.00751 
GO:0032330 Regulation Of Chondrocyte Differentiation 0.00751 
GO:0060707 Trophoblast Giant Cell Differentiation 0.01514 
GO:0090190 Positive Regulation Of Branching Involved In Ureteric Bud Morphogenesis 0.01514 
GO:0048646 Anatomical Structure Formation Involved In Morphogenesis 0.01644 
GO:0035987 Endodermal Cell Differentiation 0.01726 
GO:0001709 Cell Fate Determination 0.01925 
GO:0090179 Planar Cell Polarity Pathway Involved In Neural Tube Closure 0.01925 
GO:0097320 Plasma Membrane Tubulation 0.01925 
GO:0021983 Pituitary Gland Development 0.02056 
GO:0030879 Mammary Gland Development 0.02056 
GO:0060037 Pharyngeal System Development 0.02160 
GO:0001839 Neural Plate Morphogenesis 0.02160 
GO:0003170 Heart Valve Development 0.02160 
GO:0008595 Anterior/Posterior Axis Specification, Embryo 0.02160 
GO:0010518 Positive Regulation Of Phospholipase Activity 0.02160 
GO:0014905 Myoblast Fusion Involved In Skeletal Muscle Regeneration 0.02160 
GO:0014910 Regulation Of Smooth Muscle Cell Migration 0.02160 
GO:0021555 Midbrain-Hindbrain Boundary Morphogenesis 0.02160 
GO:0021615 Glossopharyngeal Nerve Morphogenesis 0.02160 
GO:0030050 Vesicle Transport Along Actin Filament 0.02160 
GO:0030323 Respiratory Tube Development 0.02160 
GO:0030858 Positive Regulation Of Epithelial Cell Differentiation 0.02160 
GO:0038170 Somatostatin Signaling Pathway 0.02160 
GO:0043374 Cd8-Positive, Alpha-Beta T Cell Differentiation 0.02160 
GO:0045061 Thymic T Cell Selection 0.02160 
GO:0046546 Development Of Primary Male Sexual Characteristics 0.02160 
GO:0048341 Paraxial Mesoderm Formation 0.02160 
GO:0048570 Notochord Morphogenesis 0.02160 
GO:0060033 Anatomical Structure Regression 0.02160 
GO:0060363 Cranial Suture Morphogenesis 0.02160 
GO:0060676 Ureteric Bud Formation 0.02160 
GO:0061138 Morphogenesis Of A Branching Epithelium 0.02160 
GO:0061309 Cardiac Neural Crest Cell Development Involved In Outflow Tract Morphogenesis 0.02160 
GO:0061312 Bmp Signaling Pathway Involved In Heart Development 0.02160 
GO:0071709 Membrane Assembly 0.02160 
GO:0072107 Positive Regulation Of Ureteric Bud Formation 0.02160 
GO:0072201 Negative Regulation Of Mesenchymal Cell Proliferation 0.02160 
GO:0086015 Sa Node Cell Action Potential 0.02160 
GO:1900020 Positive Regulation Of Protein Kinase C Activity 0.02160 
GO:1903979 Negative Regulation Of Microglial Cell Activation 0.02160 
GO:2001137 Positive Regulation Of Endocytic Recycling 0.02160 
GO:0042795 Snrna Transcription By Rna Polymerase Ii 0.02262 
GO:0001893 Maternal Placenta Development 0.02486 
GO:0006646 Phosphatidylethanolamine Biosynthetic Process 0.02486 
GO:0016188 Synaptic Vesicle Maturation 0.02486 
GO:0021953 Central Nervous System Neuron Differentiation 0.02486 
GO:0035239 Tube Morphogenesis 0.02486 
GO:0038066 P38Mapk Cascade 0.02486 
GO:0048702 Embryonic Neurocranium Morphogenesis 0.02486 
GO:0060426 Lung Vasculature Development 0.02486 
GO:0060430 Lung Saccule Development 0.02486 
GO:1902732 Positive Regulation Of Chondrocyte Proliferation 0.02486 
GO:2000394 Positive Regulation Of Lamellipodium Morphogenesis 0.02486 
GO:2000810 Regulation Of Bicellular Tight Junction Assembly 0.02486 
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Biological Process GO continued (DvOP5, n=186) FDR (q-value) 

GO:0010719 Negative Regulation Of Epithelial To Mesenchymal Transition 0.02715 
GO:0043542 Endothelial Cell Migration 0.02715 
GO:0060021 Roof Of Mouth Development 0.02750 
GO:0071542 Dopaminergic Neuron Differentiation 0.02893 
GO:0042476 Odontogenesis 0.03172 
GO:0060349 Bone Morphogenesis 0.03172 
GO:0023019 Signal Transduction Involved In Regulation Of Gene Expression 0.03909 
GO:0035050 Embryonic Heart Tube Development 0.03909 
GO:0035909 Aorta Morphogenesis 0.03909 
GO:0045668 Negative Regulation Of Osteoblast Differentiation 0.04003 
GO:0006909 Phagocytosis 0.04030 

 

Cellular Component GO terms enriched in DvOP5 

Cellular Component GO (DvOP5, n=7) FDR (q-value) 

GO:0005610 Laminin-5 Complex 0.00000 
GO:0005899 Insulin Receptor Complex 0.00000 
GO:0031095 Platelet Dense Tubular Network Membrane 0.00000 
GO:0048787 Presynaptic Active Zone Membrane 0.00000 
GO:0065010 Extracellular Membrane-Bounded Organelle 0.00000 
GO:0044309 Neuron Spine 0.04782 
GO:0098839 Postsynaptic Density Membrane 0.04782 

 

Molecular Function GO terms enriched in DvOP5 

Molecular Function GO (DvOP5, n=30) FDR (q-value) 

GO:0008401 Retinoic Acid 4-Hydroxylase Activity 0.00000 
GO:0044323 Retinoic Acid-Responsive Element Binding 0.00000 
GO:0001515 Opioid Peptide Activity 0.00000 
GO:0002153 Steroid Receptor Rna Activator Rna Binding 0.00000 
GO:0003958 Nadph-Hemoprotein Reductase Activity 0.00000 
GO:0004067 Asparaginase Activity 0.00000 
GO:0004144 Diacylglycerol O-Acyltransferase Activity 0.00000 
GO:0004305 Ethanolamine Kinase Activity 0.00000 
GO:0005250 A-Type (Transient Outward) Potassium Channel Activity 0.00000 
GO:0008481 Sphinganine Kinase Activity 0.00000 
GO:0008934 Inositol Monophosphate 1-Phosphatase Activity 0.00000 
GO:0009374 Biotin Binding 0.00000 
GO:0015651 Quaternary Ammonium Group Transmembrane Transporter Activity 0.00000 
GO:0016520 Growth Hormone-Releasing Hormone Receptor Activity 0.00000 
GO:0017050 D-Erythro-Sphingosine Kinase Activity 0.00000 
GO:0034988 Fc-Gamma Receptor I Complex Binding 0.00000 
GO:0050436 Microfibril Binding 0.00000 
GO:0052832 Inositol Monophosphate 3-Phosphatase Activity 0.00000 
GO:0052834 Inositol Monophosphate Phosphatase Activity 0.00000 
GO:0001972 Retinoic Acid Binding 0.00010 
GO:0043565 Sequence-Specific Dna Binding 0.00042 
GO:0005089 Rho Guanyl-Nucleotide Exchange Factor Activity 0.00082 
GO:0004668 Protein-Arginine Deiminase Activity 0.00404 
GO:0032050 Clathrin Heavy Chain Binding 0.00404 
GO:0000981 Dna-Binding Transcription Factor Activity, Rna Polymerase Ii-Specific 0.01688 
GO:0004994 Somatostatin Receptor Activity 0.01688 
GO:0016208 Amp Binding 0.01688 
GO:0038036 Sphingosine-1-Phosphate Receptor Activity 0.01908 
GO:0048185 Activin Binding 0.01908 
GO:0003700 Dna-Binding Transcription Factor Activity 0.02271 
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Biological Process GO terms enriched in LvLFF4 

Biological Process GO (LvLFF4, n=193) FDR (q-value) 

GO:0018101 Protein Citrullination 0.00000 
GO:0045199 Maintenance Of Epithelial Cell Apical/Basal Polarity 0.00000 
GO:0051918 Negative Regulation Of Fibrinolysis 0.00000 
GO:0003170 Heart Valve Development 0.00000 
GO:0045061 Thymic T Cell Selection 0.00000 
GO:0006021 Inositol Biosynthetic Process 0.00000 
GO:0021914 Regulation Of Smoothened Signaling Pathway In Ventral Spinal Cord Patterning 0.00000 
GO:0031077 Post-Embryonic Camera-Type Eye Development 0.00000 
GO:0034334 Adherens Junction Maintenance 0.00000 
GO:0045064 T-Helper 2 Cell Differentiation 0.00000 
GO:0045446 Endothelial Cell Differentiation 0.00000 
GO:0048793 Pronephros Development 0.00000 
GO:0060414 Aorta Smooth Muscle Tissue Morphogenesis 0.00000 
GO:0060743 Epithelial Cell Maturation Involved In Prostate Gland Development 0.00000 
GO:0061314 Notch Signaling Involved In Heart Development 0.00000 
GO:0072034 Renal Vesicle Induction 0.00000 
GO:0072676 Lymphocyte Migration 0.00000 
GO:0097553 Calcium Ion Transmembrane Import Into Cytosol 0.00000 
GO:1902255 Positive Regulation Of Intrinsic Apoptotic Signaling Pathway By P53 Class Mediator 0.00000 
GO:1902474 Positive Regulation Of Protein Localization To Synapse 0.00000 
GO:1903936 Cellular Response To Sodium Arsenite 0.00000 
GO:0000294 Nuclear-Transcribed Mrna Catabolic Process, Endonucleolytic Cleavage-Dependent Decay 0.00000 
GO:0001838 Embryonic Epithelial Tube Formation 0.00000 
GO:0002415 Immunoglobulin Transcytosis In Epithelial Cells Mediated  0.00000 
GO:0002418 Immune Response To Tumor Cell 0.00000 
GO:0003253 Cardiac Neural Crest Cell Migration Involved In Outflow Tract Morphogenesis 0.00000 
GO:0003335 Corneocyte Development 0.00000 
GO:0003401 Axis Elongation 0.00000 
GO:0003415 Chondrocyte Hypertrophy 0.00000 
GO:0006222 Ump Biosynthetic Process 0.00000 
GO:0006534 Cysteine Metabolic Process 0.00000 
GO:0006572 Tyrosine Catabolic Process 0.00000 
GO:0006972 Hyperosmotic Response 0.00000 
GO:0008050 Female Courtship Behavior 0.00000 
GO:0010734 Negative Regulation Of Protein Glutathionylation 0.00000 
GO:0010899 Regulation Of Phosphatidylcholine Catabolic Process 0.00000 
GO:0010957 Negative Regulation Of Vitamin D Biosynthetic Process 0.00000 
GO:0015705 Iodide Transport 0.00000 
GO:0015746 Citrate Transport 0.00000 
GO:0016577 Histone Demethylation 0.00000 
GO:0017038 Protein Import 0.00000 
GO:0019100 Male Germ-Line Sex Determination 0.00000 
GO:0021546 Rhombomere Development 0.00000 
GO:0021681 Cerebellar Granular Layer Development 0.00000 
GO:0021740 Principal Sensory Nucleus Of Trigeminal Nerve Development 0.00000 
GO:0021782 Glial Cell Development 0.00000 
GO:0021891 Olfactory Bulb Interneuron Development 0.00000 
GO:0021913 Transcription From RNAP Ii Promoter In Ventral Spinal Cord Interneuron Specification 0.00000 
GO:0021937 Cerebellar Purkinje Regulation Of Granule Cell Precursor Cell Proliferation 0.00000 
GO:0021986 Habenula Development 0.00000 
GO:0030431 Sleep 0.00000 
GO:0030852 Regulation Of Granulocyte Differentiation 0.00000 
GO:0032232 Negative Regulation Of Actin Filament Bundle Assembly 0.00000 
GO:0032286 Central Nervous System Myelin Maintenance 0.00000 
GO:0032401 Establishment Of Melanosome Localization 0.00000 
GO:0032770 Positive Regulation Of Monooxygenase Activity 0.00000 
GO:0032902 Nerve Growth Factor Production 0.00000 
GO:0032912 Negative Regulation Of Transforming Growth Factor Beta2 Production 0.00000 
GO:0032959 Inositol Trisphosphate Biosynthetic Process 0.00000 
GO:0033058 Directional Locomotion 0.00000 
GO:0034616 Response To Laminar Fluid Shear Stress 0.00000 
GO:0035459 Vesicle Cargo Loading 0.00000 
GO:0035926 Chemokine (C-C Motif) Ligand 2 Secretion 0.00000 
GO:0035989 Tendon Development 0.00000 
GO:0036343 Psychomotor Behavior 0.00000 
GO:0036413 Histone H3-R26 Citrullination 0.00000 
GO:0042420 Dopamine Catabolic Process 0.00000 
GO:0043370 Regulation Of Cd4-Positive, Alpha-Beta T Cell Differentiation 0.00000 
GO:0048170 Positive Regulation Of Long-Term Neuronal Synaptic Plasticity 0.00000 
GO:0048194 Golgi Vesicle Budding 0.00000 
GO:0048385 Regulation Of Retinoic Acid Receptor Signaling Pathway 0.00000 
GO:0048562 Embryonic Organ Morphogenesis 0.00000 
GO:0048563 Post-Embryonic Animal Organ Morphogenesis 0.00000 
GO:0048871 Multicellular Organismal Homeostasis 0.00000 
GO:0050779 Rna Destabilization 0.00000 
GO:0051046 Regulation Of Secretion 0.00000 
GO:0051389 Inactivation Of Mapkk Activity 0.00000 
GO:0051656 Establishment Of Organelle Localization 0.00000 
GO:0055005 Ventricular Cardiac Myofibril Assembly 0.00000 
GO:0060023 Soft Palate Development 0.00000 
GO:0060026 Convergent Extension 0.00000 
GO:0060067 Cervix Development 0.00000 
GO:0060073 Micturition 0.00000 
GO:0060157 Urinary Bladder Development 0.00000 
GO:0060214 Endocardium Formation 0.00000 
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Biological Process GO continued (LvLFF4, n=193) FDR (q-value) 

GO:0060221 Retinal Rod Cell Differentiation 0.00000 
GO:0060421 Positive Regulation Of Heart Growth 0.00000 
GO:0060434 Bronchus Morphogenesis 0.00000 
GO:0060545 Positive Regulation Of Necroptotic Process 0.00000 
GO:0060775 Planar Cell Polarity Pathway Involved In Gastrula Mediolateral Intercalation 0.00000 
GO:0061032 Visceral Serous Pericardium Development 0.00000 
GO:0061146 Peyer'S Patch Morphogenesis 0.00000 
GO:0061771 Response To Caloric Restriction 0.00000 
GO:0070141 Response To Uv-A 0.00000 
GO:0070563 Negative Regulation Of Vitamin D Receptor Signaling Pathway 0.00000 
GO:0071305 Cellular Response To Vitamin D 0.00000 
GO:0071477 Cellular Hypotonic Salinity Response 0.00000 
GO:0071642 Positive Regulation Of Macrophage Inflammatory Protein 1 Alpha Production 0.00000 
GO:0071896 Protein Localization To Adherens Junction 0.00000 
GO:0072086 Specification Of Loop Of Henle Identity 0.00000 
GO:0072179 Nephric Duct Formation 0.00000 
GO:0072190 Ureter Urothelium Development 0.00000 
GO:0072289 Metanephric Nephron Tubule Formation 0.00000 
GO:0072674 Multinuclear Osteoclast Differentiation 0.00000 
GO:0072752 Cellular Response To Rapamycin 0.00000 
GO:0090118 Receptor-Mediated Endocytosis Involved In Cholesterol Transport 0.00000 
GO:0090164 Asymmetric Golgi Ribbon Formation 0.00000 
GO:0097049 Motor Neuron Apoptotic Process 0.00000 
GO:0097340 Inhibition Of Cysteine-Type Endopeptidase Activity 0.00000 
GO:0098698 Postsynaptic Specialization Assembly 0.00000 
GO:0099039 Sphingolipid Translocation 0.00000 
GO:1901228 Regulation Of Transcription From Rna Polymerase Ii Promoter Involved In Heart Development 0.00000 
GO:1901382 Regulation Of Chorionic Trophoblast Cell Proliferation 0.00000 
GO:1901991 Negative Regulation Of Mitotic Cell Cycle Phase Transition 0.00000 
GO:1902513 Regulation Of Organelle Transport Along Microtubule 0.00000 
GO:1902595 Regulation Of Dna Replication Origin Binding 0.00000 
GO:1902991 Regulation Of Amyloid Precursor Protein Catabolic Process 0.00000 
GO:1902995 Positive Regulation Of Phospholipid Efflux 0.00000 
GO:1903401 L-Lysine Transmembrane Transport 0.00000 
GO:1903539 Protein Localization To Postsynaptic Membrane 0.00000 
GO:1903984 Positive Regulation Of Trail-Activated Apoptotic Signaling Pathway 0.00000 
GO:1905167 Positive Regulation Of Lysosomal Protein Catabolic Process 0.00000 
GO:2000276 Negative Regulation Of Oxidative Phosphorylation Uncoupler Activity 0.00000 
GO:2000329 Negative Regulation Of T-Helper 17 Cell Lineage Commitment 0.00000 
GO:2000392 Regulation Of Lamellipodium Morphogenesis 0.00000 
GO:2000563 Positive Regulation Of Cd4-Positive, Alpha-Beta T Cell Proliferation 0.00000 
GO:2000675 Negative Regulation Of Type B Pancreatic Cell Apoptotic Process 0.00000 
GO:2000677 Regulation Of Transcription Regulatory Region Dna Binding 0.00000 
GO:2001257 Regulation Of Cation Channel Activity 0.00000 
GO:0006536 Glutamate Metabolic Process 0.00153 
GO:0010596 Negative Regulation Of Endothelial Cell Migration 0.00495 
GO:0046902 Regulation Of Mitochondrial Membrane Permeability 0.00495 
GO:0051246 Regulation Of Protein Metabolic Process 0.00495 
GO:0072197 Ureter Morphogenesis 0.00495 
GO:1902732 Positive Regulation Of Chondrocyte Proliferation 0.00495 
GO:2000394 Positive Regulation Of Lamellipodium Morphogenesis 0.00495 
GO:0001709 Cell Fate Determination 0.01114 
GO:0001776 Leukocyte Homeostasis 0.01584 
GO:0003337 Mesenchymal To Epithelial Transition Involved In Metanephros Morphogenesis 0.01584 
GO:0009410 Response To Xenobiotic Stimulus 0.01584 
GO:0010757 Negative Regulation Of Plasminogen Activation 0.01584 
GO:0015812 Gamma-Aminobutyric Acid Transport 0.01584 
GO:0060390 Regulation Of Smad Protein Signal Transduction 0.01584 
GO:0061304 Retinal Blood Vessel Morphogenesis 0.01584 
GO:0070100 Negative Regulation Of Chemokine-Mediated Signaling Pathway 0.01584 
GO:0070508 Cholesterol Import 0.01584 
GO:0071371 Cellular Response To Gonadotropin Stimulus 0.01584 
GO:0072189 Ureter Development 0.01584 
GO:0098719 Sodium Ion Import Across Plasma Membrane 0.01584 
GO:2000647 Negative Regulation Of Stem Cell Proliferation 0.01584 
GO:2000669 Negative Regulation Of Dendritic Cell Apoptotic Process 0.01584 
GO:2001046 Positive Regulation Of Integrin-Mediated Signaling Pathway 0.01584 
GO:0014067 Negative Regulation Of Phosphatidylinositol 3-Kinase Signaling 0.02493 
GO:0030836 Positive Regulation Of Actin Filament Depolymerization 0.02493 
GO:0032330 Regulation Of Chondrocyte Differentiation 0.02493 
GO:0034115 Negative Regulation Of Heterotypic Cell-Cell Adhesion 0.02493 
GO:0034383 Low-Density Lipoprotein Particle Clearance 0.02493 
GO:0070166 Enamel Mineralization 0.02493 
GO:2000178 Negative Regulation Of Neural Precursor Cell Proliferation 0.02493 
GO:0032331 Negative Regulation Of Chondrocyte Differentiation 0.02549 
GO:0042474 Middle Ear Morphogenesis 0.02549 
GO:0030878 Thyroid Gland Development 0.04259 
GO:0035115 Embryonic Forelimb Morphogenesis 0.04348 
GO:0045599 Negative Regulation Of Fat Cell Differentiation 0.04707 
GO:0001957 Intramembranous Ossification 0.04941 
GO:0002819 Regulation Of Adaptive Immune Response 0.04941 
GO:0008595 Anterior/Posterior Axis Specification, Embryo 0.04941 
GO:0010172 Embryonic Body Morphogenesis 0.04941 
GO:0010518 Positive Regulation Of Phospholipase Activity 0.04941 
GO:0010907 Positive Regulation Of Glucose Metabolic Process 0.04941 
GO:0021615 Glossopharyngeal Nerve Morphogenesis 0.04941 
GO:0030050 Vesicle Transport Along Actin Filament 0.04941 
GO:0030859 Polarized Epithelial Cell Differentiation 0.04941 
GO:0034653 Retinoic Acid Catabolic Process 0.04941 
GO:0035087 Sirna Loading Onto Risc Involved In Rna Interference 0.04941 
GO:0035456 Response To Interferon-Beta 0.04941 
GO:0035754 B Cell Chemotaxis 0.04941 



University of Nottingham  Appendices  

71 

 

 

Cellular Component GO terms enriched in LvLFF4 

Cellular Component GO (LvLFF4, n=12) FDR (q-value) 

GO:0033093 Weibel-Palade Body 0.00000 
GO:0035976 Transcription Factor Ap-1 Complex 0.00000 
GO:0005608 Laminin-3 Complex 0.00000 
GO:0005899 Insulin Receptor Complex 0.00000 
GO:0017109 Glutamate-Cysteine Ligase Complex 0.00000 
GO:0031095 Platelet Dense Tubular Network Membrane 0.00000 
GO:0036501 Ufd1-Npl4 Complex 0.00000 
GO:0043256 Laminin Complex 0.00000 
GO:0048787 Presynaptic Active Zone Membrane 0.00000 
GO:0062157 Mitochondrial Atp-Gated Potassium Channel Complex 0.00000 
GO:0065010 Extracellular Membrane-Bounded Organelle 0.00000 
GO:0097059 Cntfr-Clcf1 Complex 0.00000 

 

Molecular Function GO terms enriched in LvLFF4 

Molecular Function GO (LvLFF4, n=43) FDR (q-value) 

GO:0004668 Protein-Arginine Deiminase Activity 0.00000 
GO:0005332 Gamma-Aminobutyric Acid:Sodium Symporter Activity 0.00000 
GO:0016208 Amp Binding 0.00000 
GO:0004704 Nf-Kappab-Inducing Kinase Activity 0.00000 
GO:0016614 Oxidoreductase Activity, Acting On Ch-Oh Group Of Donors 0.00000 
GO:0022849 Glutamate-Gated Calcium Ion Channel Activity 0.00000 
GO:0044323 Retinoic Acid-Responsive Element Binding 0.00000 
GO:0002153 Steroid Receptor Rna Activator Rna Binding 0.00000 
GO:0003958 Nadph-Hemoprotein Reductase Activity 0.00000 
GO:0004067 Asparaginase Activity 0.00000 
GO:0004140 Dephospho-Coa Kinase Activity 0.00000 
GO:0004144 Diacylglycerol O-Acyltransferase Activity 0.00000 
GO:0004305 Ethanolamine Kinase Activity 0.00000 
GO:0004345 Glucose-6-Phosphate Dehydrogenase Activity 0.00000 
GO:0004357 Glutamate-Cysteine Ligase Activity 0.00000 
GO:0004445 Inositol-Polyphosphate 5-Phosphatase Activity 0.00000 
GO:0008481 Sphinganine Kinase Activity 0.00000 
GO:0008934 Inositol Monophosphate 1-Phosphatase Activity 0.00000 
GO:0009374 Biotin Binding 0.00000 
GO:0015111 Iodide Transmembrane Transporter Activity 0.00000 
GO:0016520 Growth Hormone-Releasing Hormone Receptor Activity 0.00000 
GO:0017050 D-Erythro-Sphingosine Kinase Activity 0.00000 
GO:0019911 Structural Constituent Of Myelin Sheath 0.00000 
GO:0030298 Receptor Signaling Protein Tyrosine Kinase Activator Activity 0.00000 
GO:0034188 Apolipoprotein A-I Receptor Activity 0.00000 
GO:0034988 Fc-Gamma Receptor I Complex Binding 0.00000 
GO:0036313 Phosphatidylinositol 3-Kinase Catalytic Subunit Binding 0.00000 
GO:0052832 Inositol Monophosphate 3-Phosphatase Activity 0.00000 
GO:0052834 Inositol Monophosphate Phosphatase Activity 0.00000 
GO:0072345 Naadp-Sensitive Calcium-Release Channel Activity 0.00000 
GO:0090556 Phosphatidylserine Floppase Activity 0.00000 
GO:0098808 Mrna Cap Binding 0.00000 
GO:1905573 Ganglioside Gm1 Binding 0.00000 
GO:0005089 Rho Guanyl-Nucleotide Exchange Factor Activity 0.00228 
GO:0043565 Sequence-Specific Dna Binding 0.00404 
GO:0001972 Retinoic Acid Binding 0.00739 
GO:0005123 Death Receptor Binding 0.01149 
GO:0071889 14-3-3 Protein Binding 0.03797 
GO:0004966 Galanin Receptor Activity 0.03797 
GO:0004972 Nmda Glutamate Receptor Activity 0.03797 
GO:0005222 Intracellular Camp-Activated Cation Channel Activity 0.03797 
GO:0034186 Apolipoprotein A-I Binding 0.03797 
GO:0047961 Glycine N-Acyltransferase Activity 0.03797 

Biological Process GO continued (LvLFF4, n=193) FDR (q-value) 

GO:0043304 Regulation Of Mast Cell Degranulation 0.04941 
GO:0043374 Cd8-Positive, Alpha-Beta T Cell Differentiation 0.04941 
GO:0048341 Paraxial Mesoderm Formation 0.04941 
GO:0055012 Ventricular Cardiac Muscle Cell Differentiation 0.04941 
GO:0060033 Anatomical Structure Regression 0.04941 
GO:0060040 Retinal Bipolar Neuron Differentiation 0.04941 
GO:0060509 Type I Pneumocyte Differentiation 0.04941 
GO:0061309 Cardiac Neural Crest Cell Development Involved In Outflow Tract Morphogenesis 0.04941 
GO:0071376 Cellular Response To Corticotropin-Releasing Hormone Stimulus 0.04941 
GO:0072107 Positive Regulation Of Ureteric Bud Formation 0.04941 
GO:0072207 Metanephric Epithelium Development 0.04941 
GO:0072284 Metanephric S-Shaped Body Morphogenesis 0.04941 
GO:0072383 Plus-End-Directed Vesicle Transport Along Microtubule 0.04941 
GO:0086015 Sa Node Cell Action Potential 0.04941 
GO:0090129 Positive Regulation Of Synapse Maturation 0.04941 
GO:2000391 Positive Regulation Of Neutrophil Extravasation 0.04941 
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Appendix 5.3 Enriched ‘Sequence-specific DNA binding’ GO term 

Common differentially methylated genes enriched in GO:0043565  

GO:0043565 Transcription factor genes in common (n=104) 

ENSOARG00000000046 LHX1 Lim Homeobox 1  

ENSOARG00000000266 BCL11B Baf Chromatin Remodeling Complex Subunit Bcl11B  

ENSOARG00000000544 ELF3 E74 Like Ets Transcription Factor 3  

ENSOARG00000000992 VSX2 Visual System Homeobox 2  

ENSOARG00000002241 CSRNP1 Cysteine And Serine Rich Nuclear Protein 1  

ENSOARG00000002366 RXRA Retinoid X Receptor Alpha  

ENSOARG00000002449 SP5 Sp5 Transcription Factor  

ENSOARG00000002613 SHOX2 Short Stature Homeobox 2  

ENSOARG00000002740 HSF4 Heat Shock Transcription Factor 4  

ENSOARG00000002778   

ENSOARG00000003151 FOXI1 Forkhead Box I1  

ENSOARG00000003363   

ENSOARG00000003437 PITX2 Paired Like Homeodomain 2  

ENSOARG00000003669 ZFHX3 Zinc Finger Homeobox 3  

ENSOARG00000003822 IRF4 Interferon Regulatory Factor 4  

ENSOARG00000003928 HNF4A Hepatocyte Nuclear Factor 4 Alpha  

ENSOARG00000004153 NKX2-5 Nk2 Homeobox 5  

ENSOARG00000004347 MSX2 Msh Homeobox 2  

ENSOARG00000004745 USF2 Upstream Transcription Factor 2, C-Fos Interacting  

ENSOARG00000004750 LHX3 Lim Homeobox 3  

ENSOARG00000004863 TBXT T-Box Transcription Factor T  

ENSOARG00000005070 FOXA2 Forkhead Box A2  

ENSOARG00000005301 HLF Hlf Transcription Factor, Par Bzip Family Member  

ENSOARG00000005572 DLX4 Distal-Less Homeobox 4  

ENSOARG00000005637 ETV4 Ets Variant Transcription Factor 4  

ENSOARG00000006012   

ENSOARG00000006034 SIX2 Six Homeobox 2  

ENSOARG00000006249 TBX3 T-Box Transcription Factor 3  

ENSOARG00000006262 BCL2 Bcl2 Apoptosis Regulator  

ENSOARG00000006541 LONP1 Lon Peptidase 1, Mitochondrial  

ENSOARG00000006553 SPI1 Spi-1 Proto-Oncogene  

ENSOARG00000006704 ETV3 Ets Translocation Variant 3  

ENSOARG00000007034 HOXB5 Homeobox B5  

ENSOARG00000007078 LHX5 Lim Homeobox 5  

ENSOARG00000007106 HOXB3 Homeobox B3  

ENSOARG00000007140 HNF4G Hepatocyte Nuclear Factor 4 Gamma  

ENSOARG00000007388 MSX1 Msh Homeobox 1  

ENSOARG00000007984 NR4A2 Nuclear Receptor Subfamily 4 Group A Member 2  

ENSOARG00000008034 MAF Maf Bzip Transcription Factor  

ENSOARG00000008192 FOXA1 Forkhead Box A1  

ENSOARG00000008269 GATA6 Gata Binding Protein 6  

ENSOARG00000008350 ISL1 Isl Lim Homeobox 1  

ENSOARG00000008922 ANHX Anomalous Homeobox  

ENSOARG00000009439 EVX1 Even-Skipped Homeobox 1  

ENSOARG00000009717   

ENSOARG00000009789   

ENSOARG00000009797 HOXA3 Homeobox A3  

ENSOARG00000009842 HOXA2 Homeobox A2  

ENSOARG00000009878 MEF2A Myocyte Enhancer Factor 2A  

ENSOARG00000010006 POU5F1 Pou Class 5 Homeobox 1  

ENSOARG00000010167   

ENSOARG00000010199 EGR3 Early Growth Response 3  
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GO:0043565 Transcription factor genes in common continued (n=104) 

ENSOARG00000010587 PAX7 Paired Box 7  

ENSOARG00000010741 FOXO3 Forkhead Box O3  

ENSOARG00000010751 SPDEF Sam Pointed Domain Containing Ets Transcription Factor  

ENSOARG00000011193 FOXE1 Forkhead Box E1  

ENSOARG00000011249 VAX2 Ventral Anterior Homeobox 2  

ENSOARG00000011324 LMX1A Lim Homeobox Transcription Factor 1 Alpha  

ENSOARG00000011785 PPARD Peroxisome Proliferator Activated Receptor Delta  

ENSOARG00000012314   

ENSOARG00000012459   

ENSOARG00000012571 SOX30 Sry-Box Transcription Factor 30  

ENSOARG00000013030 SNAI2 Snail Family Transcriptional Repressor 2  

ENSOARG00000013052 GLI2 Gli Family Zinc Finger 2  

ENSOARG00000013102 ETS1 Ets Proto-Oncogene 1, Transcription Factor  

ENSOARG00000013174 SNAI1 Snail Family Transcriptional Repressor 1  

ENSOARG00000013206   

ENSOARG00000013245 DMRT2 Doublesex And Mab-3 Related Transcription Factor 2  

ENSOARG00000013693   

ENSOARG00000013742 LHX2 Lim Homeobox 2  

ENSOARG00000013779 SOX9 Sry-Box Transcription Factor 9  

ENSOARG00000013941 GATA3 Gata Binding Protein 3  

ENSOARG00000014119 RARA Retinoic Acid Receptor Alpha  

ENSOARG00000014239 NFATC2 Nuclear Factor Of Activated T Cells 2  

ENSOARG00000014473 SOX8 Sry-Box Transcription Factor 8  

ENSOARG00000014532 ETS2 Ets Proto-Oncogene 2, Transcription Factor  

ENSOARG00000014667 PITX1 Paired Like Homeodomain 1  

ENSOARG00000015228 GATA4 Gata Binding Protein 4  

ENSOARG00000015328 MTA2 Metastasis Associated 1 Family Member 2  

ENSOARG00000015356 ELF4 E74 Like Ets Transcription Factor 4  

ENSOARG00000015439 LHX9 Lim Homeobox 9  

ENSOARG00000015662 BARHL2 Barh Like Homeobox 2  

ENSOARG00000015980 NR5A2 Nuclear Receptor Subfamily 5 Group A Member 2  

ENSOARG00000016041 FOXN4 Forkhead Box N4  

ENSOARG00000016067 MKX Mohawk Homeobox  

ENSOARG00000016074 ZNF281 Zinc Finger Protein 281  

ENSOARG00000016191 PAX6 Paired Box 6  

ENSOARG00000016331 HOXC10 Homeobox C10  

ENSOARG00000017214 NR4A1 Nuclear Receptor Subfamily 4 Group A Member 1  

ENSOARG00000017237 PRDM16 Pr/Set Domain 16  

ENSOARG00000017472 HOXD3 Homeobox D3  

ENSOARG00000017581 KDM6B Lysine Demethylase 6B  

ENSOARG00000017630 NR2F6 Nuclear Receptor Subfamily 2 Group F Member 6  

ENSOARG00000017964 IRX3 Iroquois Homeobox 3  

ENSOARG00000018027 IRX6 Iroquois Homeobox 6  

ENSOARG00000018238 TEF Tef Transcription Factor, Par Bzip Family Member  

ENSOARG00000018550 EMX2 Empty Spiracles Homeobox 2  

ENSOARG00000018722 HDAC4 Histone Deacetylase 4  

ENSOARG00000018997 GSX2 Gs Homeobox 2  

ENSOARG00000019395 ALX3 Alx Homeobox 3  

ENSOARG00000019427 PPARA Peroxisome Proliferator Activated Receptor Alpha  

ENSOARG00000020097 OTX1 Orthodenticle Homeobox 1  

ENSOARG00000021060 RORC Rar Related Orphan Receptor C  

ENSOARG00000021129 SIX1 Six Homeobox 1  

ENSOARG00000000046 LHX1 Lim Homeobox 1  

ENSOARG00000000266 BCL11B Baf Chromatin Remodeling Complex Subunit Bcl11B  

ENSOARG00000000544 ELF3 E74 Like Ets Transcription Factor 3  

ENSOARG00000000992 VSX2 Visual System Homeobox 2  

ENSOARG00000002241 CSRNP1 Cysteine And Serine Rich Nuclear Protein 1  
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GO:0043565 Transcription factor genes in common continued (n=104) 

ENSOARG00000002366 RXRA Retinoid X Receptor Alpha  

ENSOARG00000002449 SP5 Sp5 Transcription Factor  

ENSOARG00000002613 SHOX2 Short Stature Homeobox 2  

ENSOARG00000002740 HSF4 Heat Shock Transcription Factor 4  

ENSOARG00000002778   

ENSOARG00000003151 FOXI1 Forkhead Box I1  

ENSOARG00000003363 FOXN3 Forkhead box N3 

ENSOARG00000003437 PITX2 Paired Like Homeodomain 2  

ENSOARG00000003669 ZFHX3 Zinc Finger Homeobox 3  

ENSOARG00000003822 IRF4 Interferon Regulatory Factor 4  

ENSOARG00000003928 HNF4A Hepatocyte Nuclear Factor 4 Alpha  

ENSOARG00000004153 NKX2-5 Nk2 Homeobox 5  

ENSOARG00000004347 MSX2 Msh Homeobox 2  

ENSOARG00000004745 USF2 Upstream Transcription Factor 2, C-Fos Interacting  

ENSOARG00000004750 LHX3 Lim Homeobox 3  

ENSOARG00000004863 TBXT T-Box Transcription Factor T  

ENSOARG00000005070 FOXA2 Forkhead Box A2  

ENSOARG00000005301 HLF Hlf Transcription Factor, Par Bzip Family Member  

ENSOARG00000005572 DLX4 Distal-Less Homeobox 4  

ENSOARG00000005637 ETV4 Ets Variant Transcription Factor 4  

ENSOARG00000006012 FOXO1 Forkhead box O1 

ENSOARG00000006034 SIX2 Six Homeobox 2  

ENSOARG00000006249 TBX3 T-Box Transcription Factor 3  

ENSOARG00000006262 BCL2 Bcl2 Apoptosis Regulator  

ENSOARG00000006541 LONP1 Lon Peptidase 1, Mitochondrial  

ENSOARG00000006553 SPI1 Spi-1 Proto-Oncogene  

ENSOARG00000006704 ETV3 Ets Translocation Variant 3  

ENSOARG00000007034 HOXB5 Homeobox B5  

ENSOARG00000007078 LHX5 Lim Homeobox 5  

ENSOARG00000007106 HOXB3 Homeobox B3  

ENSOARG00000007140 HNF4G Hepatocyte Nuclear Factor 4 Gamma  

ENSOARG00000007388 MSX1 Msh Homeobox 1  

ENSOARG00000007984 NR4A2 Nuclear Receptor Subfamily 4 Group A Member 2  

ENSOARG00000008034 MAF Maf Bzip Transcription Factor  

ENSOARG00000008192 FOXA1 Forkhead Box A1  

ENSOARG00000008269 GATA6 Gata Binding Protein 6  

ENSOARG00000008350 ISL1 Isl Lim Homeobox 1  

ENSOARG00000008922 ANHX Anomalous Homeobox  

ENSOARG00000009439 EVX1 Even-Skipped Homeobox 1  

ENSOARG00000009717 HOXA5 Homeobox protein Hox-A5 

ENSOARG00000009789 HOXA4 Homeobox A4 

ENSOARG00000009797 HOXA3 Homeobox A3  

ENSOARG00000009842 HOXA2 Homeobox A2  

ENSOARG00000009878 MEF2A Myocyte Enhancer Factor 2A  

ENSOARG00000010006 POU5F1 Pou Class 5 Homeobox 1  

ENSOARG00000010167 NR2F2 Nuclear receptor subfamily 2, group F, member 2 

ENSOARG00000010199 EGR3 Early Growth Response 3  

ENSOARG00000010587 PAX7 Paired Box 7  

ENSOARG00000010741 FOXO3 Forkhead Box O3  

ENSOARG00000010751 SPDEF Sam Pointed Domain Containing Ets Transcription Factor  

ENSOARG00000011193 FOXE1 Forkhead Box E1  

ENSOARG00000011249 VAX2 Ventral Anterior Homeobox 2  

ENSOARG00000011324 LMX1A Lim Homeobox Transcription Factor 1 Alpha  

ENSOARG00000011785 PPARD Peroxisome Proliferator Activated Receptor Delta  

ENSOARG00000012314 EN1 Engrailed homeobox 1 

ENSOARG00000012459 PDX1 Pancreatic and duodenal homeobox 1 

ENSOARG00000012571 SOX30 Sry-Box Transcription Factor 30  
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GO:0043565 Transcription factor genes in common continued (n=104) 

ENSOARG00000013030 SNAI2 Snail Family Transcriptional Repressor 2  

ENSOARG00000013052 GLI2 Gli Family Zinc Finger 2  

ENSOARG00000013102 ETS1 Ets Proto-Oncogene 1, Transcription Factor  

ENSOARG00000013174 SNAI1 Snail Family Transcriptional Repressor 1  

ENSOARG00000013206 HLX H2.0-like homeobox 

ENSOARG00000013245 DMRT2 Doublesex And Mab-3 Related Transcription Factor 2  

ENSOARG00000013693   

ENSOARG00000013742 LHX2 Lim Homeobox 2  

ENSOARG00000013779 SOX9 Sry-Box Transcription Factor 9  

ENSOARG00000013941 GATA3 Gata Binding Protein 3  

ENSOARG00000014119 RARA Retinoic Acid Receptor Alpha  

ENSOARG00000014239 NFATC2 Nuclear Factor Of Activated T Cells 2  

ENSOARG00000014473 SOX8 Sry-Box Transcription Factor 8  

ENSOARG00000014532 ETS2 Ets Proto-Oncogene 2, Transcription Factor  

ENSOARG00000014667 PITX1 Paired Like Homeodomain 1  
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PIPS Reflective Statement  

Note to examiners: 

This statement is included as an appendix to the thesis in order that the thesis 
accurately captures the PhD training experienced by the candidate as a BBSRC 
Doctoral Training Partnership student. 

The Professional Internship for PhD Students is a compulsory 3-month 
placement which must be undertaken by DTP students. It is usually centred on 
a specific project and must not be related to the PhD project. This reflective 
statement is designed to capture the skills development which has taken place 
during the student’s placement and the impact on their career plans it has had. 

My statement: 

From June to September 2019, I undertook my professional internship at Delft 
University of Technology (TU Delft). My project aimed to publicise the efforts 
and achivements of the ‘Data Champions’. The Data Champions are members 
of the research community at TU Delft who share a passion for knowledge 
exchange and a desire to build a collaborative and researcher-led community 
to drive the uptake of Open Science within their departments and institutes. 

Currently, there are more than 50 Data Champions who volunteer their 
discipline-specific expertise, promote ‘FAIR data’ principles, advocate for good 
research data management (RDM) and advise academics about the proper 
handling of research data. In order to reward and recognise their exemplary 
work, I conducted one-to-one interviews with 11 Data Champions to learn about: 
i) their personal research; ii) how they effectively engage with researchers; iii) 
their motivations for joining the Data Champions programme; and, iv) their 
future goals and aspirations. Following each interview, I wrote, illustrated and 
published their personal stories as written case studies on the ‘Open Working’ 
blog. 

The case studies were shared on social media channels (Twitter and LinkedIn), 
and after receiving positive feedback from my colleagues I was asked to write a 
‘toolkit’ to inspire and educate other institutions about how to implement a 
community-based model for RDM support. In collaboration with research 
support staff from TU Delft, the Univeristy of Cambridge (UK) and EPFL 
(Switzerland), the case studies and toolkit were published as an open access 
book titled ‘The Real World of Research Data’. 

During my internship, I was invited to participate in a booksprint; a 3-day writing 
exercise alongside seven authors and editors. ‘Engaging Researchers with 
Data Management: The Cookbook’ is a collection of 24 case studies drawn from 
institutions across the globe that demonstrate how to engage the research 
community with RDM. These case studies illustrate the variety of innovative 
strategies that institutions have developed to engage with their researchers 
about data management. To share our collective experience of the booksprint, 
I published a blog article to the Research Data Alliance (RDA) website. 

Based on the success of my internship at TU Delft, I was invited to give a 
keynote talk about ‘Community-based models to engage researchers with data 
management’ at the Univeristy of Vienna (Austria) in September 2019. In 
addition, I received an early career researcher grant to present my work at the 
‘RDA 14th Plenary’ held in Helsinki (Finland) the following month (https://rd-
alliance.org/). After writing about my internship in a Springer Nature article, 
‘Open Science Opens Doors: How #SciData18 helped me unlock career 

https://openworking.wordpress.com/data-champions/
https://www.openbookpublishers.com/reader/1080
https://www.openbookpublishers.com/reader/1080
https://www.rd-alliance.org/blogs/book-sprint-success-team-writing-exercise-win.html
https://doi.org/10.5281/zenodo.3457080
https://doi.org/10.5281/zenodo.3457080
https://rd-alliance.org/
https://rd-alliance.org/
https://www.springernature.com/gp/researchers/the-source/blog/blogposts-open-research/open-science-opens-doors-/17102750
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opportunities’, I was invited to the ‘Better Science through Better Data’ 
#SciData19 Conference’ held in London in Novermber to give a lightning talk.  

I developed many personal and professional skills during my internship. Whilst 
both exhilarating and daunting, the opportunity to travel and work in the 
Netherlands for three months enabled me to leave my comfort zone and 
experience a new culture (although cycling and learning the Dutch language 
weren’t my forte!) 

I enjoyed the social aspect of my role in science communication and took great 
satisfaction in helping academic researchers share their personal stories with a 
wider audience. I developed my verbal and written skills whilst interviewing 
researchers, and was able to gather and assimilate relevant information to write 
articles to meet strict deadlines. I also found my creative confidence to produce 
illustrations to accompany my written articles.  

I realised the importance of building collaborative networks and cooperating as 
part of a multidisciplinary team. Scientific research can often be lonely and 
isolating, with many academics working in silos. By working with the grass roots 
community of Data Champions, I learned ways to lure researchers from their 
disciplinary comfort zones and encourage them to work together, and to share 
knowledge and resources in order to achieve the common goal of ‘Better 
Science’.  

From October 2020, I look forward to starting my new position as 
4TU.ResearchData Community Manager at TU Delft. The primary focus of my 
role will be to promote the use of the 4TU.ResearchData repository nationally 
and internationally, and to stimulate the creation and reuse of research data in 
specific subject areas. 

https://www.springernature.com/gp/researchers/the-source/blog/blogposts-open-research/open-science-opens-doors-/17102750
https://www.youtube.com/watch?v=zzbrz-J8-Hg;%20https://www.springernature.com/gp/researchers/the-source/blog/blogposts-open-research/open-science-opens-doors-/17102750
https://data.4tu.nl/info/en/
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Pérez Mato I, Sanchez del Pino MM, Chamberlin ME, Mudd SH, Mato JM, et al. 
(2001) Biochemical basis for the dominant inheritance of hypermethioninemia 
associated with the R264H mutation of the MAT1A gene. A monomeric methionine 
adenosyltransferase with tripolyphosphatase activity. J Biol Chem. 276: 13803-9 

Pérez-Miguelsanz J, Vallecillo N, Garrido F, Reytor E, Pérez-Sala D, et al. (2017) 
Betaine homocysteine S-methyltransferase emerges as a new player of the nuclear 
methionine cycle. Biochim Biophys Acta Mol Cell Res. 1864(7): 1165-1182 

Perry C, Yu S, Chen J, Matharu KS and Stover PJ (2007) Effect of vitamin B6 
availability on serine hydroxymethyltransferase in MCF-7 cells. Arch Biochem 
Biophys. 462(1):21-27 

Piedrahita JA, Oetama B, Bennett GD, van Waes J, Kamen BA, et al. (1999) Mice 
lacking the folic acid-binding protein Folbp1 are defective in early embryonic 
development. Nat Genet. 23: 228-32 

Pouteau E, Meirim I, Métairon S and Fay LB (2001) Acetate, propionate and butyrate 
in plasma: determination of the concentration and isotopic enrichment by gas 
chromatography/mass spectrometry with positive chemical ionization. J Mass 
Spectrom. 36(7): 798-80 

Powers HJ (2003) Riboflavin (vitamin B-2) and health. Am J Clin Nutr. 77(6): 1352-
1360 

Prasoona KR, Sunitha T, Srinadh B, Deepika ML, Kumari TM, et al. (2016) Paternal 
transmission of MTHFD1 G1958A variant predisposes to neural tube defects in the 
offspring. Dev Med Child Neurol. 58: 625-31 

Prasoona KR, Tella S, Buragadda S, Tiruvatturu MK and Akka J (2017) Interaction 
between Maternal and Paternal SHMT C1420T Predisposes to Neural Tube Defects in 



University of Nottingham  Appendix references  

84 

 

the Fetus: Evidence from Case-Control and Family-Based Triad Approaches. Birth 
Defects Res. 109: 1020-29 

Rouillon A, Surdin-Kerjan Y and Thomas D (1999) Transport of sulfonium compounds. 
Characterization of the s-adenosylmethionine and s-methylmethionine permeases 
from the yeast Saccharomyces cerevisiae. J Biol Chem. 274(40): 28096-105 

Rubini M, Brusati R, Garattini G, Magnani C, Liviero F, et al. (2005) Cystathionine 
beta-synthase c.844ins68 gene variant and non-syndromic cleft lip and palate. Am J 
Med Genet A. 136A: 368-72 

Sabri MI, Soiefer AI, Kisby GE and Spencer PS (1989) Determination of polyamines 
by precolumn derivatization with 9-fluorenylmethyl chloroformate and reverse-phase 
high-performance liquid chromatography. J Neurosci Methods. 29(1): 27-31 

Sakurai T, Asakura T, Mizuno A, Matsuda M (1992) Absorption and metabolism of 
pyridoxamine in mice. II. Transformation of pyridoxamine to pyridoxal in intestinal 
tissues. J Nutr Sci Vitaminol (Tokyo). 38(3): 227-233 

Shane B (2008) Folate and vitamin B12 metabolism: overview and interaction with 
riboflavin, vitamin B6, and polymorphisms. Food Nutr Bull. 29(2): S5-16 

Shibata K, Shimizu A and Fukuwatari T (2013) Vitamin B1 Deficiency Does not Affect 
the Liver Concentrations of the Other Seven Kinds of B-Group Vitamins in Rats. Nutr 
Metab Insights. 6: 1–10 

Shirohzu H, Kubota T, Kumazawa A, Sado T, Chijiwa T, et al. (2002) Three novel 
DNMT3B mutations in Japanese patients with ICF syndrome. Am J Med Genet. 112: 
31-7 

Sinclair KD, Allegrucci C, Singh R, Gardner DS, Sebastian S, et al. (2007) DNA 
methylation, insulin resistance, and blood pressure in offspring determined by 
maternal periconceptional B vitamin and methionine status. Proc Natl Acad Sci U S A. 
104(49): 19351-6 

Smith RM and Osborne-White WS (1973) Folic acid metabolism in vitamin B12-
deficient sheep. Depletion of liver folates. Biochem J. 136(2): 279-93 

Song J, da Costa KA, Fischer LM, Kohlmeier M, Kwock L, et al. (2005) Polymorphism 
of the PEMT gene and susceptibility to nonalcoholic fatty liver disease (NAFLD). 
FASEB J. 19: 1266-71 

Spiegelstein O, Mitchell LE, Merriweather MY, Wicker NJ, Zhang Q, et al. (2004) 
Embryonic development of folate binding protein-1 (Folbp1) knockout mice: Effects of 
the chemical form, dose, and timing of maternal folate supplementation. Dev Dyn. 
231: 221-31 

Stangl GI, Roth-Maier DA and Kirchgessner M (2000) Vitamin B-12 deficiency and 
hyperhomocysteinemia are partly ameliorated by cobalt and nickel supplementation in 
pigs. J Nutr. 130(12): 3038-44 

Steele W, Allegrucci C, Singh R, Lucas E, Priddle H, et al. (2005) Human embryonic 
stem cell methyl cycle enzyme expression: modelling epigenetic programming in 
assisted reproduction? Reprod Biomed Online. 10(6): 755-66 

Sun S, Gui Y, Jiang Q and Song H (2011) Dihydrofolate reductase is required for the 
development of heart and outflow tract in zebrafish. Acta Biochim Biophys Sin 
(Shanghai). 43: 957-69 

Swanson DA, Liu ML, Baker PJ, Garrett L, Stitzel M, et al. (2001) Targeted disruption 
of the methionine synthase gene in mice. Mol Cell Biol. 21: 1058-65 

Szegedi SS, Castro CC, Koutmos M and Garrow TA (2008) Betaine-homocysteine S-
methyltransferase-2 is an S-methylmethionine-homocysteine methyltransferase. J Biol 
Chem. 283(14): 8939-45 



University of Nottingham  Appendix references  

85 

 

Tang Q, Chen Y, Wu W, Ding H, Xia Y, et al. (2017) Idiopathic male infertility and 
polymorphisms in the DNA methyltransferase genes involved in epigenetic marking. 
Sci Rep. 7: 11219 

Teng YW, Mehedint MG, Garrow TA and Zeisel SH (2011) Deletion of betaine-
homocysteine S- methyltransferase in mice perturbs choline and 1-carbon 
metabolism, resulting in fatty liver and hepatocellular carcinomas. J Biol Chem. 286: 
36258-67 

Tiwari D, Das CR, Bose PD and Bose S (2017) Associative role of TYMS6bpdel 
polymorphism and resulting hyperhomocysteinemia in the pathogenesis of preterm 
delivery and associated complications: A study from Northeast India. Gene. 627: 129-
36 

Tremain-Boon SG, Hart JC, Wilson PR and Lopez-Villalobos N (2002) Liver copper, 
selenium and vitamin B12 concentrations in farmed and feral red deer (Cervus 
elaphus). N Z Vet J. 50(3): 111-4 

Vasantha Rao P, Garrow TA, John F, Garland D, Millian NS, et al. (1998) Betaine-
homocysteine methyltransferase is a developmentally regulated enzyme crystallinn in 
rhesus monkey lens. J. Biol. Chem. 46(3): 30669-30674 

Vugrek O, Beluzić R, Nakić N and Mudd SH (2009) S-adenosylhomocysteine 
hydrolase (AHCY) deficiency: two novel mutations with lethal outcome. Hum Mutat. 
30: E555-65 

Walkey CJ, Donohue LR, Bronson R, Agellon LB and Vance DE (1997) Disruption of 
the murine gene encoding phosphatidylethanolamine N-methyltransferase. Proc Natl 
Acad Sci U S A. 94: 12880-5 

Watanabe M, Osada J, Aratani Y, Kluckman K, Reddick R, et al. (1995) Mice deficient 
in cystathionine beta-synthase: animal models for mild and severehomocyst(e)inemia. 
Proc Natl Acad Sci U S A. 92: 1585-9 

Watkins SM, Zhu X and Zeisel SH (2003) Phosphatidylethanolamine-N-
methyltransferase activity and dietary choline regulate liver-plasma lipid flux and 
essential fatty acid metabolism in mice. J Nutr. 1333: 3386-91 

Williams DV, G. Levy G and Stobaus T (2007) Composition of Australian red meat 
2002. 3. Nutrient profile Food Aust. 59(7): 331-341 

Xu J, Clare CE, Brassington AH, Sinclair KD and Barrett DA (2020) Comprehensive 
and quantitative profiling of B vitamins and related compounds in the mammalian liver. 
J Chromatogr B Analyt Technol Biomed Life Sci. 1136: 121884 

Yang G, Wu L, Jiang B, Yang W, Qi J, et al. (2008) H2S as a physiologic 
vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. 
Science. 322: 587-90 

Zhang B, Denomme MM, White CR, Leung KY, Lee MB, et al. (2015) Both the folate 
cycle and betaine-homocysteine methyltransferase contribute methyl groups for DNA 
methylation in mouse blastocysts. FASEB J. 29(3): 1069-79 

Zhang Q, Bai B, Liu X, Miao C and Li H (2014) Association of folate metabolism genes 
MTHFR and MTRR with multiple complex congenital malformation risk in Chinese 
population of Shanxi. Transl Pediatr. 3: 259-67 

Zhao JY, Yang XY, Shi KH, Sun SN, Hou J, et al. (2013) A functional variant in the 
cystathionine β-synthase gene promoter significantly reduces congenital heart disease 
susceptibility in a Han Chinese population. Cell Res. 23: 242-53 

Zhao R, Russell RG, Wang Y, Liu L, Gao F, et al. (2001) Rescue of embryonic 
lethality in reduced folate carrier-deficient mice by maternal folic acid supplementation 
reveals early neonatal failure of hematopoietic organs. J Biol Chem. 276: 10224-8 

Zhu H, Wlodarczyk BJ, Scott M, Yu W, Merriweather M, et al. (2007) Cardiovascular 
abnormalities in Folr1 knockout mice and folate rescue. Birth Defects Res A Clin Mol 
Teratol. 79: 257-68 



University of Nottingham  Appendix references  

86 

 

 

Zhu X, Mar MH, Song J and Zeisel SH (2004) Deletion of the Pemt gene increases 
progenitor cell mitosis, DNA and protein methylation and decreases calretinin 
expression in embryonic day 17 mouse hippocampus. Brain Res Dev Brain Res. 149: 
121-9 

Zhu X, Song J, Mar MH, Edwards LJ and Zeisel SH (2003) Phosphatidylethanolamine 
N- methyltransferase (PEMT) knockout mice have hepatic steatosis and abnormal 
hepatic choline metabolite concentrations despite ingesting a recommended dietary 
intake of choline. Biochem J. 370: 987-93 

 


