666 research outputs found
Bandit Models of Human Behavior: Reward Processing in Mental Disorders
Drawing an inspiration from behavioral studies of human decision making, we
propose here a general parametric framework for multi-armed bandit problem,
which extends the standard Thompson Sampling approach to incorporate reward
processing biases associated with several neurological and psychiatric
conditions, including Parkinson's and Alzheimer's diseases,
attention-deficit/hyperactivity disorder (ADHD), addiction, and chronic pain.
We demonstrate empirically that the proposed parametric approach can often
outperform the baseline Thompson Sampling on a variety of datasets. Moreover,
from the behavioral modeling perspective, our parametric framework can be
viewed as a first step towards a unifying computational model capturing reward
processing abnormalities across multiple mental conditions.Comment: Conference on Artificial General Intelligence, AGI-1
Recommended from our members
Dopamine receptor D4 (DRD4) polymorphisms with reduced functional potency intensify atrophy in syndrome-specific sites of frontotemporal dementia.
ObjectiveWe aimed to understand the impact of dopamine receptor D4 (DRD4) polymorphisms on neurodegeneration in patients with dementia. We hypothesized that DRD4dampened-variants with reduced functional potency would be associated with greater atrophy in regions with higher receptor density. Given that DRD4 is concentrated in anterior regions of the limbic and cortical forebrain we anticipated genotype effects in patients with a more rostral pattern of neurodegeneration.Methods337 subjects, including healthy controls, patients with Alzheimer's disease (AD) and frontotemporal dementia (FTD) underwent genotyping, structural MRI, and cognitive/behavioral testing. We conducted whole-brain voxel-based morphometry to examine the relationship between DRD4 genotypes and brain atrophy patterns within and across groups. General linear modeling was used to evaluate relationships between genotype and cognitive/behavioral measures.ResultsDRD4 dampened-variants predicted gray matter atrophy in disease-specific regions of FTD in anterior cingulate, ventromedial prefrontal, orbitofrontal and insular cortices on the right greater than the left. Genotype predicted greater apathy and repetitive motor disturbance in patients with FTD. These results covaried with frontoinsular cortical atrophy. Peak atrophy patterned along regions of neuroanatomic vulnerability in FTD-spectrum disorders. In AD subjects and controls, genotype did not impact gray matter intensity.ConclusionsWe conclude that DRD4 polymorphisms with reduced functional potency exacerbate neuronal injury in sites of higher receptor density, which intersect with syndrome-specific regions undergoing neurodegeneration in FTD
Cognitive reserve in granulin-related frontotemporal dementia: from preclinical to clinical stages
OBJECTIVE
Consistent with the cognitive reserve hypothesis, higher education and occupation attainments may help persons with neurodegenerative dementias to better withstand neuropathology before developing cognitive impairment. We tested here the cognitive reserve hypothesis in patients with frontotemporal dementia (FTD), with or without pathogenetic granulin mutations (GRN+ and GRN-), and in presymptomatic GRN mutation carriers (aGRN+).
METHODS
Education and occupation attainments were assessed and combined to define Reserve Index (RI) in 32 FTD patients, i.e. 12 GRN+ and 20 GRN-, and in 17 aGRN+. Changes in functional connectivity were estimated by resting state fMRI, focusing on the salience network (SN), executive network (EN) and bilateral frontoparietal networks (FPNs). Cognitive status was measured by FTD-modified Clinical Dementia Rating Scale.
RESULTS
In FTD patients higher level of premorbid cognitive reserve was associated with reduced connectivity within the SN and the EN. EN was more involved in FTD patients without GRN mutations, while SN was more affected in GRN pathology. In aGRN+, cognitive reserve was associated with reduced SN.
CONCLUSIONS
This study suggests that cognitive reserve modulates functional connectivity in patients with FTD, even in monogenic disease. In GRN inherited FTD, cognitive reserve mechanisms operate even in presymptomatic to clinical stages
Longitudinal grey and white matter changes in frontotemporal dementia and Alzheimer's disease
Behavioural variant frontotemporal dementia (bvFTD) and Alzheimer's disease (AD) dementia are characterised by progressive brain atrophy. Longitudinal MRI volumetry may help to characterise ongoing structural degeneration and support the differential diagnosis of dementia subtypes. Automated, observer-independent atlas-based MRI volumetry was applied to analyse 102 MRI data sets from 15 bvFTD, 14 AD, and 10 healthy elderly control participants with consecutive scans over at least 12 months. Anatomically defined targets were chosen a priori as brain structures of interest. Groups were compared regarding volumes at clinic presentation and annual change rates. Baseline volumes, especially of grey matter compartments, were significantly reduced in bvFTD and AD patients. Grey matter volumes of the caudate and the gyrus rectus were significantly smaller in bvFTD than AD. The bvFTD group could be separated from AD on the basis of caudate volume with high accuracy (79% cases correct). Annual volume decline was markedly larger in bvFTD and AD than controls, predominantly in white matter of temporal structures. Decline in grey matter volume of the lateral orbitofrontal gyrus separated bvFTD from AD and controls. Automated longitudinal MRI volumetry discriminates bvFTD from AD. In particular, greater reduction of orbitofrontal grey matter and temporal white matter structures after 12 months is indicative of bvFTD
Mesoscopic organization reveals the constraints governing C. elegans nervous system
One of the biggest challenges in biology is to understand how activity at the
cellular level of neurons, as a result of their mutual interactions, leads to
the observed behavior of an organism responding to a variety of environmental
stimuli. Investigating the intermediate or mesoscopic level of organization in
the nervous system is a vital step towards understanding how the integration of
micro-level dynamics results in macro-level functioning. In this paper, we have
considered the somatic nervous system of the nematode Caenorhabditis elegans,
for which the entire neuronal connectivity diagram is known. We focus on the
organization of the system into modules, i.e., neuronal groups having
relatively higher connection density compared to that of the overall network.
We show that this mesoscopic feature cannot be explained exclusively in terms
of considerations, such as optimizing for resource constraints (viz., total
wiring cost) and communication efficiency (i.e., network path length).
Comparison with other complex networks designed for efficient transport (of
signals or resources) implies that neuronal networks form a distinct class.
This suggests that the principal function of the network, viz., processing of
sensory information resulting in appropriate motor response, may be playing a
vital role in determining the connection topology. Using modular spectral
analysis, we make explicit the intimate relation between function and structure
in the nervous system. This is further brought out by identifying functionally
critical neurons purely on the basis of patterns of intra- and inter-modular
connections. Our study reveals how the design of the nervous system reflects
several constraints, including its key functional role as a processor of
information.Comment: Published version, Minor modifications, 16 pages, 9 figure
Contrasting prefrontal cortex contributions to episodic memory dysfunction in behavioural variant frontotemporal dementia and alzheimer's disease
Recent evidence has questioned the integrity of episodic memory in behavioural variant frontotemporal dementia (bvFTD), where recall performance is impaired to the same extent as in Alzheimer's disease (AD). While these deficits appear to be mediated by divergent patterns of brain atrophy, there is evidence to suggest that certain prefrontal regions are implicated across both patient groups. In this study we sought to further elucidate the dorsolateral (DLPFC) and ventromedial (VMPFC) prefrontal contributions to episodic memory impairment in bvFTD and AD. Performance on episodic memory tasks and neuropsychological measures typically tapping into either DLPFC or VMPFC functions was assessed in 22 bvFTD, 32 AD patients and 35 age- and education-matched controls. Behaviourally, patient groups did not differ on measures of episodic memory recall or DLPFC-mediated executive functions. BvFTD patients were significantly more impaired on measures of VMPFC-mediated executive functions. Composite measures of the recall, DLPFC and VMPFC task scores were covaried against the T1 MRI scans of all participants to identify regions of atrophy correlating with performance on these tasks. Imaging analysis showed that impaired recall performance is associated with divergent patterns of PFC atrophy in bvFTD and AD. Whereas in bvFTD, PFC atrophy covariates for recall encompassed both DLPFC and VMPFC regions, only the DLPFC was implicated in AD. Our results suggest that episodic memory deficits in bvFTD and AD are underpinned by divergent prefrontal mechanisms. Moreover, we argue that these differences are not adequately captured by existing neuropsychological measures
Cerebellar Integrity in the Amyotrophic Lateral Sclerosis - Frontotemporal Dementia Continuum
Amyotrophic lateral sclerosis (ALS) and behavioural variant frontotemporal dementia (bvFTD) are multisystem neurodegenerative disorders that manifest overlapping cognitive, neuropsychiatric and motor features. The cerebellum has long been known to be crucial for intact motor function although emerging evidence over the past decade has attributed cognitive and neuropsychiatric processes to this structure. The current study set out i) to establish the integrity of cerebellar subregions in the amyotrophic lateral sclerosis-behavioural variant frontotemporal dementia spectrum (ALS-bvFTD) and ii) determine whether specific cerebellar atrophy regions are associated with cognitive, neuropsychiatric and motor symptoms in the patients. Seventy-eight patients diagnosed with ALS, ALS-bvFTD, behavioural variant frontotemporal dementia (bvFTD), most without C9ORF72 gene abnormalities, and healthy controls were investigated. Participants underwent cognitive, neuropsychiatric and functional evaluation as well as structural imaging using voxel-based morphometry (VBM) to examine the grey matter subregions of the cerebellar lobules, vermis and crus. VBM analyses revealed: i) significant grey matter atrophy in the cerebellum across the whole ALS-bvFTD continuum; ii) atrophy predominantly of the superior cerebellum and crus in bvFTD patients, atrophy of the inferior cerebellum and vermis in ALS patients, while ALS-bvFTD patients had both patterns of atrophy. Post-hoc covariance analyses revealed that cognitive and neuropsychiatric symptoms were particularly associated with atrophy of the crus and superior lobule, while motor symptoms were more associated with atrophy of the inferior lobules. Taken together, these findings indicate an important role of the cerebellum in the ALS-bvFTD disease spectrum, with all three clinical phenotypes demonstrating specific patterns of subregional atrophy that associated with different symptomology
Imbalanced functional link between executive control network and reward network explain the online-game seeking behaviors in Internet gaming disorder
Literatures have shown that Internet gaming disorder (IGD) subjects show impaired executive control and enhanced reward sensitivities than healthy controls. However, how these two networks jointly affect the valuation process and drive IGD subjects' online-game-seeking behaviors remains unknown. Thirty-five IGD and 36 healthy controls underwent a resting-states scan in the MRI scanner. Functional connectivity (FC) was examined within control and reward network seeds regions, respectively. Nucleus accumbens (NAcc) was selected as the node to find the interactions between these two networks. IGD subjects show decreased FC in the executive control network and increased FC in the reward network when comparing with the healthy controls. When examining the correlations between the NAcc and the executive control/reward networks, the link between the NAcc - executive control network is negatively related with the link between NAcc - reward network. The changes (decrease/increase) in IGD subjects' brain synchrony in control/reward networks suggest the inefficient/overly processing within neural circuitry underlying these processes. The inverse proportion between control network and reward network in IGD suggest that impairments in executive control lead to inefficient inhibition of enhanced cravings to excessive online game playing. This might shed light on the mechanistic understanding of IGD
Mindful Aging: The Effects of Regular Brief Mindfulness Practice on Electrophysiological Markers of Cognitive and Affective Processing in Older Adults
There is growing interest in the potential benefits of mindfulness meditation practices in terms of counteracting some of the cognitive effects associated with aging. Pursuing this question, the aim of the present study was to investigate the influence of mindfulness training on executive control and emotion regulation in older adults, by means of studying behavioral and electrophysiological changes. Participants, 55 to 75 years of age, were randomly allocated to an 8-week mindful breath awareness training group or an active control group engaging in brain training exercises. Before and after the training period, participants completed an emotional-counting Stroop task, designed to measure attentional control and emotion regulation processes. Concurrently, their brain activity was measured by means of 64-channel electroencephalography. The results show that engaging in just over 10 min of mindfulness practice five times per week resulted in significant improvements in behavioral (response latency) and electrophysiological (N2 event-related potential) measures related to general task performance. Analyses of the underlying cortical sources (Variable Resolution Electromagnetic Tomography, VARETA) indicate that this N2-related effect is primarily associated with changes in the right angular gyrus and other areas of the dorsal attention network. However, the study did not find the expected specific improvements in executive control and emotion regulation, which may be due to the training instructions or the relative brevity of the intervention. Overall, the results indicate that engaging in mindfulness meditation training improves the maintenance of goal-directed visuospatial attention and may be a useful strategy for counteracting cognitive decline associated with aging
Impaired recognition and regulation of disgust is associated with distinct but partially overlapping patterns of decreased gray matter volume in the ventroanterior insula
Background The ventroanterior insula is implicated in the experience, expression, and recognition of disgust; however, whether this brain region is required for recognizing disgust or regulating disgusting behaviors remains unknown. Methods We examined the brain correlates of the presence of disgusting behavior and impaired recognition of disgust using voxel-based morphometry in a sample of 305 patients with heterogeneous patterns of neurodegeneration. Permutation-based analyses were used to determine regions of decreased gray matter volume at a significance level p <=.05 corrected for family-wise error across the whole brain and within the insula. Results Patients with behavioral variant frontotemporal dementia and semantic variant primary progressive aphasia were most likely to exhibit disgusting behaviors and were, on average, the most impaired at recognizing disgust in others. Imaging analysis revealed that patients who exhibited disgusting behaviors had significantly less gray matter volume bilaterally in the ventral anterior insula. A region of interest analysis restricted to behavioral variant frontotemporal dementia and semantic variant primary progressive aphasia patients alone confirmed this result. Moreover, impaired recognition of disgust was associated with decreased gray matter volume in the bilateral ventroanterior and ventral middle regions of the insula. There was an area of overlap in the bilateral anterior insula where decreased gray matter volume was associated with both the presence of disgusting behavior and impairments in recognizing disgust. Conclusions These findings suggest that regulating disgusting behaviors and recognizing disgust in others involve two partially overlapping neural systems within the insula. Moreover, the ventral anterior insula is required for both processes
- …
