34 research outputs found

    Vascular endothelial growth factor (VEGF) upregulates BCL-2 and inhibits apoptosis in human and murine mammary adenocarcinoma cells

    Get PDF
    Tumour progression is regulated by the balance of proliferation and apoptosis in the tumour cell population. To date, the role of vascular endothelial growth factor (VEGF) in tumour growth has been attributed to the induction of angiogenesis. VEGF has been shown to be a survival factor for endothelial cells, preventing apoptosis by inducing Bcl-2 expression. In both murine (4T1) and human (MDA-MB-231) metastatic mammary carcinoma cell lines, we found that VEGF upregulated Bcl-2 expression and anti-VEGF antibodies reduced Bcl-2 expression. These alterations in Bcl-2 expression were reflected by the levels of tumour cell apoptosis. VEGF resulted in reduced tumour cell apoptosis, whereas its inhibition with anti-VEGF neutralizing antibodies induced apoptosis directly in tumour cells. Therefore, in addition to its role in angiogenesis and vessel permeability, VEGF acts as a survival factor for tumour cells, inducing Bcl-2 expression and inhibiting tumour cell apoptosis. © 2001 Cancer Research Campaign http://www.bjcancer.co

    A fuzzy recurrent neural network for driver fatigue detection based on steering-wheel angle sensor data

    No full text
    The study of the robust fatigue feature learning method for the driver’s operational behavior is of great significance for improving the performance of the real-time detection system for driver’s fatigue state. Aiming at how to extract more abstract and deep features in the driver’s direction operation data in the robust feature learning, this article constructs a fuzzy recurrent neural network model, which includes input layer, fuzzy layer, hidden layer, and output layer. The steering-wheel direction sensing time series sends the time series to the input layer through a fixed time window. After the fuzzification process, it is sent to the hidden layer to share the weight of the hidden layer, realize the memorization of the fatigue feature, and improve the feature depth capability of the steering wheel angle time sequence. The experimental results show that the proposed model achieves an average recognition rate of 87.30% in the fatigue sample database of real vehicle conditions, which indicates that the model has strong robustness to different subjects under real driving conditions. The model proposed in this article has important theoretical and engineering significance for studying the prediction of fatigue driving under real driving conditions

    Histone H3K23-specific acetylation by MORF is coupled to H3K14 acylation

    Get PDF
    Acetylation of histone H3K23 has emerged as an essential posttranslational modification associated with cancer and learning and memory impairment, yet our understanding of this epigenetic mark remains insufficient. Here, we identify the native MORF complex as a histone H3K23-specific acetyltransferase and elucidate its mechanism of action. The acetyltransferase function of the catalytic MORF subunit is positively regulated by the DPF domain of MORF (MORFDPF). The crystal structure of MORFDPF in complex with crotonylated H3K14 peptide provides mechanistic insight into selectivity of this epigenetic reader and its ability to recognize both histone and DNA. ChIP data reveal the role of MORFDPF in MORF-dependent H3K23 acetylation of target genes. Mass spectrometry, biochemical and genomic analyses show co-existence of the H3K23ac and H3K14ac modifications in vitro and co-occupancy of the MORF complex, H3K23ac, and H3K14ac at specific loci in vivo. Our findings suggest a model in which interaction of MORFDPF with acylated H3K14 promotes acetylation of H3K23 by the native MORF complex to activate transcription

    A Sensing Role of the Glutamine Synthetase in the Nitrogen Regulation Network in Fusarium fujikuroi

    Get PDF
    Contains fulltext : 125173.pdf (publisher's version ) (Open Access)In the plant pathogenic ascomycete Fusarium fujikuroi the synthesis of several economically important secondary metabolites (SM) depends on the nitrogen status of the cells. Of these SMs, gibberellin and bikaverin synthesis is subject to nitrogen catabolite repression (NCR) and is therefore only executed under nitrogen starvation conditions. How the signal of available nitrogen quantity and quality is sensed and transmitted to transcription factors is largely unknown. Earlier work revealed an essential regulatory role of the glutamine synthetase (GS) in the nitrogen regulation network and secondary metabolism as its deletion resulted in total loss of SM gene expression. Here we present extensive gene regulation studies of the wild type, the Deltagln1 mutant and complementation strains of the gln1 deletion mutant expressing heterologous GS-encoding genes of prokaryotic and eukaryotic origin or 14 different F. fujikuroi gln1 copies with site-directed mutations. All strains were grown under different nitrogen conditions and characterized regarding growth, expression of NCR-responsive genes and biosynthesis of SM. We provide evidence for distinct roles of the GS in sensing and transducing the signals to NCR-responsive genes. Three site directed mutations partially restored secondary metabolism and GS-dependent gene expression, but not glutamine formation, demonstrating for the first time that the catalytic and regulatory roles of GS can be separated. The distinct mutant phenotypes show that the GS (1) participates in NH4 (+)-sensing and transducing the signal towards NCR-responsive transcription factors and their subsequent target genes; (2) affects carbon catabolism and (3) activates the expression of a distinct set of non-NCR GS-dependent genes. These novel insights into the regulatory role of the GS provide fascinating perspectives for elucidating regulatory roles of GS proteins of different organism in general
    corecore