398 research outputs found

    Pediatric Bone Age Assessment Using Deep Convolutional Neural Networks

    Full text link
    Skeletal bone age assessment is a common clinical practice to diagnose endocrine and metabolic disorders in child development. In this paper, we describe a fully automated deep learning approach to the problem of bone age assessment using data from Pediatric Bone Age Challenge organized by RSNA 2017. The dataset for this competition is consisted of 12.6k radiological images of left hand labeled by the bone age and sex of patients. Our approach utilizes several deep learning architectures: U-Net, ResNet-50, and custom VGG-style neural networks trained end-to-end. We use images of whole hands as well as specific parts of a hand for both training and inference. This approach allows us to measure importance of specific hand bones for the automated bone age analysis. We further evaluate performance of the method in the context of skeletal development stages. Our approach outperforms other common methods for bone age assessment.Comment: 14 pages, 9 figure

    The epiphyseal scar: changing perceptions in relation to skeletal age estimation.

    Get PDF
    BACKGROUND: It is imperative that all methods applied in skeletal age estimation and the criteria on which they are based have a strong evidential basis. The relationship between the persistence of epiphyseal scars and chronological age, however, has remained largely untested. AIMS: To assess the relationships between the level of persistence of the epiphyseal scar and chronological age, biological sex and side of the body in relation to the interpretation of epiphyseal scars in methods of skeletal age estimation. SUBJECTS AND METHODS: A sample of radiographic images was obtained from the Tayside NHS Trust, Ninewells Hospital, Dundee, UK. This included images of four anatomical regions from living female and male individuals aged between 20-50 years. RESULTS: Some remnant of an epiphyseal scar was found in 78-99% of individuals examined in this study. The level of persistence of epiphyseal scars was also found to vary between anatomical regions. CONCLUSION: The overall relationship between chronological age and the level of persistence or obliteration of the epiphyseal scar was found to be of insufficient strength to support a causative link. It is, therefore, necessary that caution is employed in their interpretation in relation to skeletal age estimation practices

    Automatic determination of Greulich and Pyle bone age in healthy Dutch children

    Get PDF
    Background: Bone age (BA) assessment is a routine procedure in paediatric radiology, for which the Greulich and Pyle (GP) atlas is mostly used. There is rater variability, but the advent of automatic BA determination eliminates this. Objective: To validate the BoneXpert method for automatic determination of skeletal maturity of healthy children against manual GP BA ratings. Materials and methods: Two observers determined GP BA with knowledge of the chronological age (CA). A total of 226 boys with a BA of 3-17 years and 179 girls with a BA of 3-15 years were included in the study. BoneXpert's estimate of GP BA was calibrated to agree on average with the manual ratings based on several studies, including the present study. Results: Seven subjects showed a deviation between manual and automatic BA in excess of 1.9 years. They were re-rated blindly by two raters. After correcting these seven ratings, the root mean square error between manual and automatic rating in the 405 subjects was 0.71 years (range 0.66-0.76 years, 95% CI). BoneXpert's GP BA is on average 0.28 and 0.20 years behind the CA for boys and girls, respectively. Conclusion: BoneXpert is a robust method for automatic determination of BA

    The persistence of epiphyseal scars in the distal radius in adult individuals

    Get PDF
    The use of radiographic imaging in the estimation of chronological age facilitates the analysis of structures not visible on gross morphological inspection. Following the completion of epiphyseal fusion, a thin radio-opaque band, the epiphyseal scar, may be observed at the locus of the former growth plate. The obliteration of this feature has previously been interpreted as the final stage of skeletal maturation and consequently has been included as a criterion in several methods of age estimation, particularly from the distal radius. Due to the recommendations relating to age estimation in living individuals, accurate assessment of age from the distal radius is of great importance in human identification; however, the validity of the interpretation of the obliteration of the epiphyseal scar as an age-related process has not been tested. A study was undertaken to assess the persistence of epiphyseal scars in adults between 20 and 50 years of age through the assessment of 616 radiographs of left and right distal radii from a cross-sectional population. This study found that 86 % of females and 78 % of males retained some remnant of the epiphyseal scar in the distal radius. The relationships between chronological age, biological sex and the persistence of the epiphyseal scar were not statistically significant. The findings of this study indicate that the epiphyseal scars may persist in adult individuals until at least 50 years of age. No maximum age should therefore be applied to the persistence of an epiphyseal scar in the distal radius

    PRSNet: Part Relation and Selection Network for Bone Age Assessment

    Full text link
    Bone age is one of the most important indicators for assessing bone's maturity, which can help to interpret human's growth development level and potential progress. In the clinical practice, bone age assessment (BAA) of X-ray images requires the joint consideration of the appearance and location information of hand bones. These kinds of information can be effectively captured by the relation of different anatomical parts of hand bone. Recently developed methods differ mostly in how they model the part relation and choose useful parts for BAA. However, these methods neglect the mining of relationship among different parts, which can help to improve the assessment accuracy. In this paper, we propose a novel part relation module, which accurately discovers the underlying concurrency of parts by using multi-scale context information of deep learning feature representation. Furthermore, based on the part relation, we explore a new part selection module, which comprehensively measures the importance of parts and select the top ranking parts for assisting BAA. We jointly train our part relation and selection modules in an end-to-end way, achieving state-of-the-art performance on the public RSNA 2017 Pediatric Bone Age benchmark dataset and outperforming other competitive methods by a significant margin

    Anthropometry and body composition in ethnic Japanese and Caucasian adolescent girls: Considerations on ethnicity and menarche

    Get PDF
    Objective: This study aimed to compare the various anthropometric and body composition parameters based on the ethnicity and the absence or presence of menarche.Design: A cross-sectional study with incomplete sampling, using the subject as the evaluation unit.Subjects: the final sample of 550 subjects was composed of 122 Japanese and 179 Caucasian premenarcheal adolescents, and 72 Japanese and 177 Caucasian postmenarcheal adolescents.Methods: the variables of body composition were measured through the following methods: bioelectrical impedance analysis, near-infrared interactance (NIR), Slaughter cutaneous skinfold equations and body mass index. Weight, height and sitting height were also evaluated.Results: the Japanese pre- and postmenarcheal girls presented lower weight and height values when compared with the Caucasian girls. in general, the Japanese premenarcheal girls presented less fat and fat-free mass than the premenarcheal Caucasian girls. This fact was demonstrated through NIR results. Conversely, the Japanese postmenarcheal adolescents accumulated more fat than their Caucasian counterparts. However, significant differences were solely encountered in the values of cutaneous skinfold percent body fat. With regard to menarche, it was verified that, regardless of ethnicity, all the anthropometric and body composition variables reached higher values among postmenarcheal adolescents when compared with premenarcheal adolescents.Conclusion: Different results of weight and height between the ethnic groups may bring back the discussion concerning separate growth curves for different ethnic groups. the results of the body composition analysis indicated high adiposity levels among postmenarcheal adolescents.Universidade Federal de São Paulo, Escola Paulista Med, Dept Postgrad Nutr, BR-04020060 São Paulo, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, Dept Prevent Med, São Paulo, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, Dept Postgrad Nutr, BR-04020060 São Paulo, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, Dept Prevent Med, São Paulo, BrazilWeb of Scienc

    Inhibitor-Sensitive FGFR1 Amplification in Human Non-Small Cell Lung Cancer

    Get PDF
    Background Squamous cell lung carcinomas account for approximately 25% of new lung carcinoma cases and 40,000 deaths per year in the United States. Although there are multiple genomically targeted therapies for lung adenocarcinoma, none has yet been reported in squamous cell lung carcinoma. Methodology/Principal Findings Using SNP array analysis, we found that a region of chromosome segment 8p11-12 containing three genes–WHSC1L1, LETM2, and FGFR1–is amplified in 3% of lung adenocarcinomas and 21% of squamous cell lung carcinomas. Furthermore, we demonstrated that a non-small cell lung carcinoma cell line harboring focal amplification of FGFR1 is dependent on FGFR1 activity for cell growth, as treatment of this cell line either with FGFR1-specific shRNAs or with FGFR small molecule enzymatic inhibitors leads to cell growth inhibition. Conclusions/Significance These studies show that FGFR1 amplification is common in squamous cell lung cancer, and that FGFR1 may represent a promising therapeutic target in non-small cell lung cancer.Novartis Pharmaceuticals CorporationAmerican Lung AssociationUniting Against Lung CancerSara Thomas Monopoli FundSeaman FoundationIndia. Dept. of BiotechnologyNational Lung Cancer Partnershi

    Expanding the evolutionary explanations for sex differences in the human skeleton

    Get PDF
    While the anatomy and physiology of human reproduction differ between the sexes, the effects of hormones on skeletal growth do not. Human bone growth depends on estrogen. Greater estrogen produced by ovaries causes bones in female bodies to fuse before males\u27 resulting in sex differences in adult height and mass. Female pelves expand more than males\u27 due to estrogen and relaxin produced and employed by the tissues of the pelvic region and potentially also due to greater internal space occupied by female gonads and genitals. Evolutionary explanations for skeletal sex differences (aka sexual dimorphism) that focus too narrowly on big competitive men and broad birthing women must account for the adaptive biology of skeletal growth and its dependence on the developmental physiology of reproduction. In this case, dichotomizing evolution into proximate‐ultimate categories may be impeding the progress of human evolutionary science, as well as enabling the popular misunderstanding and abuse of it

    Presenting features and long-term effects of growth hormone treatment of children with optic nerve hypoplasia/septo-optic dysplasia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Optic nerve hypoplasia (ONH) with/or without septo-optic dysplasia (SOD) is a known concomitant of congenital growth hormone deficiency (CGHD).</p> <p>Methods</p> <p>Demographic and longitudinal data from KIGS, the Pfizer International Growth Database, were compared between 395 subjects with ONH/SOD and CGHD and 158 controls with CGHD without midline pathology.</p> <p>Results</p> <p>ONH/SOD subjects had higher birth length/weight, and mid-parental height SDS. At GH start, height, weight, and BMI SDS were higher in the ONH/SOD group. After 1 year of GH, both groups showed similar changes in height SDS, while weight and BMI SDS remained higher in the ONH/SOD group. The initial height responses of the two groups were similar to those predicted using the KIGS-derived prediction model for children with idiopathic GHD. At near-adult height, ONH/SOD and controls had similar height, weight, and BMI SDS.</p> <p>Conclusions</p> <p>Compared to children with CGHD without midline defects, those with ONH/SOD presented with greater height, weight, and BMI SDS. These differences persisted at 1 year of GH therapy, but appeared to be overcome by long-term GH treatment.</p
    corecore