202 research outputs found
Cirsium species show disparity in patterns of genetic variation at their range-edge, despite similar patterns of reproduction and isolation
Genetic variation was assessed across the UK geographical range of Cirsium acaule and Cirsium heterophyllum. A decline in genetic diversity and increase in population divergence approaching the range edge of these species was predicted based on parallel declines in population density and seed production reported seperately. Patterns were compared with UK populations of the widespread Cirsium arvense.Populations were sampled along a latitudinal transect in the UK and genetic variation
assessed using microsatellite markers. Cirsium acaule
shows strong isolation by distance, a significant decline in diversity and an increase in divergence among range-edge populations. Geographical structure is also evident in
C. arvense, whereas no such patterns are seen in C.heterophyllum. There is a major disparity between patterns of genetic variation in C. acaule and
C. heterophyllum despite very similar patterns in seed production and population isolation in these species. This suggests it may be misleading to make assumptions
about the geographical structure of genetic variation within species based solely on the present-day reproduction and distribution of populations
Genetic variability and structure of jaguar (Panthera onca) in Mexican zoos
ArtículoGenealogical records of animals (studbook) are
created to avoid reproduction between closely related
individuals, which could cause inbreeding, particularly for
such endangered species as the Panthera onca (Linnaeus,
1758). Jaguar is the largest felid in the Americas and is
considered an important ecological key species. In Mexico,
wild jaguar populations have been significantly reduced in
recent decades, and population decline typically accompany decreases in genetic variation. There is no current
census of captive jaguars in Mexico, and zoos do not follow a standardized protocol in breeding programs based on
genetic studies. Here, we emphasise the importance of
maintaining an adequate level of genetic variation and
propose the implementation of standardised studbooks for
jaguars in Mexico, mainly to avoid inbreeding. In addition,
achieving the aims of studbook registration would provide
a population genetic characterisation that could serve as a
basis for ex situ conservation programmes
Composite likelihood estimation of demographic parameters
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background: Most existing likelihood-based methods for fitting historical demographic models to DNA sequence polymorphism data to do not scale feasibly up to the level of whole-genome data sets. Computational economies can be achieved by incorporating two forms of pseudo-likelihood: composite and approximate likelihood methods. Composite likelihood enables scaling up to large data sets because it takes the product of marginal likelihoods as an estimator of the likelihood of the complete data set. This approach is especially useful when a large number of genomic regions constitutes the data set. Additionally, approximate likelihood methods can reduce the dimensionality of the data by summarizing the information in the original data by either a sufficient statistic, or a set of statistics. Both composite and approximate likelihood methods hold promise for analyzing large data sets or for use in situations where the underlying demographic model is complex and has many parameters. This paper considers a simple demographic model of allopatric divergence between two populations, in which one of the population is hypothesized to have experienced a founder event, or population bottleneck. A large resequencing data set from human populations is summarized by the joint frequency spectrum, which is a matrix of the genomic frequency spectrum of derived base frequencies in two populations. A Bayesia
Patterns of genetic diversity and differentiation in the tsetse fly Glossina morsitans morsitans Westwood populations in East and southern Africa
Genetic diversity and differentiation within and among nine G. morsitans morsitanspopulations from East and southern Africa was assessed by examining variation at seven microsatellite loci and a mitochondrial locus, cytochrome oxidase (COI). Mean COI diversity within populations was 0.63 ± 0.33 and 0.81 taken over all populations. Diversities averaged over microsatellite loci were high (mean number of alleles/locus ≥7.4; mean H E ≥ 65%) in all populations. Diversities averaged across populations were greater in East Africa (mean number of alleles = 22 ± 2.6; mean h e = 0.773 ± 0.033) than in southern Africa (mean number of alleles = 18.7 ± 4.0; mean h e = 0.713 ± 0.072). Differentiation among all populations was highly significant (R ST = 0.25, F ST = 0.132). Nei’s G ij statistics were 0.09 and 0.19 within regions for microsatellites and mitochondria, respectively; between regions, G ij was 0.14 for microsatellites and 0.23 for mitochondria. G ST among populations was 0.23 for microsatellite loci and 0.40 for mitochondria. The F, G and R statistics indicate highly restricted gene flow among G. m. morsitans populations separated over geographic scales of 12–917 km
The Effect of Recurrent Floods on Genetic Composition of Marble Trout Populations
A changing global climate can threaten the diversity of species and ecosystems. We explore the consequences of catastrophic disturbances in determining the evolutionary and demographic histories of secluded marble trout populations in Slovenian streams subjected to weather extremes, in particular recurrent flash floods and debris flows causing massive mortalities. Using microsatellite data, a pattern of extreme genetic differentiation was found among populations (global FST of 0.716), which exceeds the highest values reported in freshwater fish. All locations showed low levels of genetic diversity as evidenced by low heterozygosities and a mean of only 2 alleles per locus, with few or no rare alleles. Many loci showed a discontinuous allele distribution, with missing alleles across the allele size range, suggestive of a population contraction. Accordingly, bottleneck episodes were inferred for all samples with a reduction in population size of 3–4 orders of magnitude. The reduced level of genetic diversity observed in all populations implies a strong impact of genetic drift, and suggests that along with limited gene flow, genetic differentiation might have been exacerbated by recurrent mortalities likely caused by flash flood and debris flows. Due to its low evolutionary potential the species might fail to cope with an intensification and altered frequency of flash flood events predicted to occur with climate change
Phonotactic response of female crickets on the Kramer treadmill: methodology, sensory and behavioural implications
Since population-level variation in female mating preferences can shape intraspecific communication systems within the context of sexual selection it is essential to quantify these preferences and their sources of variation. We calculated individual female response functions for four male calling song traits in the field cricket Gryllus bimaculatus, by performing untethered phonotaxis measurements on a spherical locomotor compensator (Kramer treadmill). Firstly, we quantify the population-level sources of phonotactic variation and correct for factors that adversely affect this measurement. Secondly, we develop methodology for the characterisation of individual female phonotactic response functions suitable for population-level analyses and demonstrate the applicability of our method with respect to recent literature on Orthopteran acoustic communication. Phonotaxis towards a preferred stimulus on different occasions is highly repeatable, with lower repeatabilities away from the most preferred signal traits. For certain male signal traits, female preference and selectivity are highly repeatable. Although phonotactic response magnitude deteriorated with age, preference functions of females remained the same during their lifetimes. Finally, the limitations of measuring phonotaxis using a spherical locomotor compensator are described and discussed with respect to the estimation of the selectivity of female response
Microsatellite Support for Active Inbreeding in a Cichlid Fish
In wild animal populations, the degree of inbreeding differs between species and within species between populations. Because mating with kin often results in inbreeding depression, observed inbreeding is usually regarded to be caused by limited outbreeding opportunities due to demographic factors like small population size or population substructuring. However, theory predicts inclusive benefits from mating with kin, and thus part of the observed variation in inbreeding might be due to active inbreeding preferences. Although some recent studies indeed report kin mating preferences, the evidence is still highly ambiguous. Here, we investigate inbreeding in a natural population of the West African cichlid fish Pelvicachromis taeniatus which showed clear kin mating preferences in standardized laboratory experiments but no inbreeding depression. The presented microsatellite analysis reveals that the natural population has, in comparison to two reference populations, a reduced allelic diversity (A = 3) resulting in a low heterozygosity (Ho = 0.167) pointing to a highly inbred population. Furthermore, we found a significant heterozygote deficit not only at population (Fis = 0.116) but also at subpopulation level (Fis = 0.081) suggesting that inbreeding is not only a by-product of population substructuring but possibly a consequence of behavioral kin preferences
Splitting or lumping? A conservation dilemma exemplified by the critically endangered Dama Gazelle (Nanger dama)
Managers of threatened species often face the dilemma of whether to keep populations separate to conserve local adaptations and minimize the risk of outbreeding, or whether to manage populations jointly to reduce loss of genetic diversity and minimise inbreeding. In this study we examine genetic relatedness and diversity in three of the five last remaining wild populations of dama gazelle and a number of captive populations, using mtDNA control region and cytochrome b data. Despite the sampled populations belonging to the three putative subspecies, which are delineated according to phenotypes and geographical location, we find limited evidence for phylogeographical structure within the data and no genetic support for the putative subspecies. In the light of these data we discuss the relevance of inbreeding depression, outbreeding depression, adaptive variation, genetic drift, and phenotypic variation to the conservation of the dama gazelle and make some recommendations for its future conservation management. The genetic data suggest that the best conservation approach is to view the dama gazelle as a single species without subspecific divisions
Estimates of linkage disequilibrium and effective population size in rainbow trout
<p>Abstract</p> <p>Background</p> <p>The use of molecular genetic technologies for broodstock management and selective breeding of aquaculture species is becoming increasingly more common with the continued development of genome tools and reagents. Several laboratories have produced genetic maps for rainbow trout to aid in the identification of loci affecting phenotypes of interest. These maps have resulted in the identification of many quantitative/qualitative trait loci affecting phenotypic variation in traits associated with albinism, disease resistance, temperature tolerance, sex determination, embryonic development rate, spawning date, condition factor and growth. Unfortunately, the elucidation of the precise allelic variation and/or genes underlying phenotypic diversity has yet to be achieved in this species having low marker densities and lacking a whole genome reference sequence. Experimental designs which integrate segregation analyses with linkage disequilibrium (LD) approaches facilitate the discovery of genes affecting important traits. To date the extent of LD has been characterized for humans and several agriculturally important livestock species but not for rainbow trout.</p> <p>Results</p> <p>We observed that the level of LD between syntenic loci decayed rapidly at distances greater than 2 cM which is similar to observations of LD in other agriculturally important species including cattle, sheep, pigs and chickens. However, in some cases significant LD was also observed up to 50 cM. Our estimate of effective population size based on genome wide estimates of LD for the NCCCWA broodstock population was 145, indicating that this population will respond well to high selection intensity. However, the range of effective population size based on individual chromosomes was 75.51 - 203.35, possibly indicating that suites of genes on each chromosome are disproportionately under selection pressures.</p> <p>Conclusions</p> <p>Our results indicate that large numbers of markers, more than are currently available for this species, will be required to enable the use of genome-wide integrated mapping approaches aimed at identifying genes of interest in rainbow trout.</p
Turtle Carapace Anomalies: The Roles of Genetic Diversity and Environment
Background: Phenotypic anomalies are common in wild populations and multiple genetic, biotic and abiotic factors might contribute to their formation. Turtles are excellent models for the study of developmental instability because anomalies are easily detected in the form of malformations, additions, or reductions in the number of scutes or scales. Methodology/Principal Findings: In this study, we integrated field observations, manipulative experiments, and climatic and genetic approaches to investigate the origin of carapace scute anomalies across Iberian populations of the European pond turtle, Emys orbicularis. The proportion of anomalous individuals varied from 3 % to 69 % in local populations, with increasing frequency of anomalies in northern regions. We found no significant effect of climatic and soil moisture, or climatic temperature on the occurrence of anomalies. However, lower genetic diversity and inbreeding were good predictors of the prevalence of scute anomalies among populations. Both decreasing genetic diversity and increasing proportion of anomalous individuals in northern parts of the Iberian distribution may be linked to recolonization events from the Southern Pleistocene refugium. Conclusions/Significance: Overall, our results suggest that developmental instability in turtle carapace formation might be caused, at least in part, by genetic factors, although the influence of environmental factors affecting the developmental stability of turtle carapace cannot be ruled out. Further studies of the effects of environmental factors, pollutants an
- …