73 research outputs found

    Mutational analysis of Peroxiredoxin IV: exclusion of a positional candidate for multinodular goitre

    Get PDF
    BACKGROUND: Multinodular goitre (MNG) is a common disorder characterised by an enlargement of the thyroid, occurring as a compensatory response to hormonogenesis impairment. The incidence of MNG is dependent on sex (female:male ratio 5:1) and several reports have documented a genetic basis for the disease. Last year we mapped a MNG locus to chromosome Xp22 in a region containing the peroxiredoxin IV (Prx-IV) gene. Since Prx-IV is involved in the removal of H(2)O(2) in thyroid cells, we hypothesize that mutations in Prx-IV gene are involved in pathogenesis of MNG. METHODS: Four individuals (2 affected, 2 unrelated unaffected) were sequenced using automated methods. All individuals were originated from the original three-generation Italian family described in previous studies. A Southern blot analysis using a Prx-IV full-length cDNA as a probe was performed in order to exclude genomic rearrangements and/or intronic mutations. In addition a RT-PCR of PRX-IV was performed in order to investigate expression alterations. RESULTS: No causative mutations were found. Two adjacent nucleotide substitutions were detected within introns 1 and 4. These changes were also detected in unaffected individuals, suggesting that they were innocuous polymorphisms. No gross genomic rearrangements and/or restriction fragment alterations were observed on Southern analysis. Finally, using RT-PCR from tissue-specific RNA, no differences of PRX-IV expression-levels were detected between affected and unaffected samples. CONCLUSIONS: Based on sequence and genomic analysis, Prx-IV is very unlikely to be the MNG2 gene

    Violation of the transit-time limit toward generation of ultrashort electron bunches with controlled velocity chirp

    Get PDF
    Various methods to generate ultrashort electron bunches for the ultrafast science evolved from the simple configuration of two-plate vacuum diodes to advanced technologies such as nanotips or photocathodes excited by femtosecond lasers. In a diode either in vacuum or of solid-state, the transit-time limit originating from finite electron mobility has caused spatiotemporal bunch-collapse in ultrafast regime. Here, we show for the first time that abrupt exclusion of transit-phase is a more fundamental origin of the bunch-collapse than the transit-time limit. We found that by significantly extending the cathode-anode gap distance, thereby violating the transit-time limit, the conventional transit-time-related upper frequency barrier in diodes can be removed. Furthermore, we reveal how to control the velocity chirp of bunches leading to ballistic bunch-compression. Demonstration of 0.707 THz-, 46.4 femtosecond-bunches from a 50 mu m-wide diode in three-dimensional particle-in-cell simulations shows a way toward simple and compact sources of ultrafast electron bunches for diverse ultrafast sciences.ope

    Recent progress towards development of effective systemic chemotherapy for the treatment of malignant brain tumors

    Get PDF
    Systemic chemotherapy has been relatively ineffective in the treatment of malignant brain tumors even though systemic chemotherapy drugs are small molecules that can readily extravasate across the porous blood-brain tumor barrier of malignant brain tumor microvasculature. Small molecule systemic chemotherapy drugs maintain peak blood concentrations for only minutes, and therefore, do not accumulate to therapeutic concentrations within individual brain tumor cells. The physiologic upper limit of pore size in the blood-brain tumor barrier of malignant brain tumor microvasculature is approximately 12 nanometers. Spherical nanoparticles ranging between 7 nm and 10 nm in diameter maintain peak blood concentrations for several hours and are sufficiently smaller than the 12 nm physiologic upper limit of pore size in the blood-brain tumor barrier to accumulate to therapeutic concentrations within individual brain tumor cells. Therefore, nanoparticles bearing chemotherapy that are within the 7 to 10 nm size range can be used to deliver therapeutic concentrations of small molecule chemotherapy drugs across the blood-brain tumor barrier into individual brain tumor cells. The initial therapeutic efficacy of the Gd-G5-doxorubicin dendrimer, an imageable nanoparticle bearing chemotherapy within the 7 to 10 nm size range, has been demonstrated in the orthotopic RG-2 rodent malignant glioma model. Herein I discuss this novel strategy to improve the effectiveness of systemic chemotherapy for the treatment of malignant brain tumors and the therapeutic implications thereof

    The <i>N</i>-myristoylome of <i>Trypanosoma cruzi</i>

    Get PDF
    Protein N-myristoylation is catalysed by N-myristoyltransferase (NMT), an essential and druggable target in Trypanosoma cruzi, the causative agent of Chagas’ disease. Here we have employed whole cell labelling with azidomyristic acid and click chemistry to identify N-myristoylated proteins in different life cycle stages of the parasite. Only minor differences in fluorescent-labelling were observed between the dividing forms (the insect epimastigote and mammalian amastigote stages) and the non-dividing trypomastigote stage. Using a combination of label-free and stable isotope labelling of cells in culture (SILAC) based proteomic strategies in the presence and absence of the NMT inhibitor DDD85646, we identified 56 proteins enriched in at least two out of the three experimental approaches. Of these, 6 were likely to be false positives, with the remaining 50 commencing with amino acids MG at the N-terminus in one or more of the T. cruzi genomes. Most of these are proteins of unknown function (32), with the remainder (18) implicated in a diverse range of critical cellular and metabolic functions such as intracellular transport, cell signalling and protein turnover. In summary, we have established that 0.43–0.46% of the proteome is N-myristoylated in T. cruzi approaching that of other eukaryotic organisms (0.5–1.7%)

    Sedimentary Environment Influences the Effect of an Infaunal Suspension Feeding Bivalve on Estuarine Ecosystem Function

    Get PDF
    The suspension feeding bivalve Austrovenus stutchburyi is a key species on intertidal sandflats in New Zealand, affecting the appearance and functioning of these systems, but is susceptible to several environmental stressors including sedimentation. Previous studies into the effect of this species on ecosystem function have been restricted in space and time, limiting our ability to infer the effect of habitat change on functioning. We examined the effect of Austrovenus on benthic primary production and nutrient dynamics at two sites, one sandy, the other composed of muddy-sand to determine whether sedimentary environment alters this key species' role. At each site we established large (16 m2) plots of two types, Austrovenus addition and removal. In winter and summer we deployed light and dark benthic chambers to quantify oxygen and nutrient fluxes and measured sediment denitrification enzyme activity to assess denitrification potential. Rates of gross primary production (GPP) and ammonium uptake were significantly increased when Austrovenus was added, relative to removed, at the sandy site (GPP, 1.5 times greater in winter and summer; ammonium uptake, 8 times greater in summer; 3-factor analysis of variance (ANOVA), p<0.05). Denitrification potential was also elevated in Austrovenus addition plots at the sandy site in summer (by 1.6 times, p<0.1). In contrast, there was no effect of Austrovenus treatment on any of these variables at the muddy-sand site, and overall rates tended to be lower at the muddy-sand site, relative to the sandy site (e.g. GPP was 2.1 to 3.4 times lower in winter and summer, respectively, p<0.001). Our results suggest that the positive effects of Austrovenus on system productivity and denitrification potential is limited at a muddy-sand site compared to a sandy site, and reveal the importance of considering sedimentary environment when examining the effect of key species on ecosystem function

    Sarcopenia: etiology, clinical consequences, intervention, and assessment

    Get PDF
    The aging process is associated with loss of muscle mass and strength and decline in physical functioning. The term sarcopenia is primarily defined as low level of muscle mass resulting from age-related muscle loss, but its definition is often broadened to include the underlying cellular processes involved in skeletal muscle loss as well as their clinical manifestations. The underlying cellular changes involve weakening of factors promoting muscle anabolism and increased expression of inflammatory factors and other agents which contribute to skeletal muscle catabolism. At the cellular level, these molecular processes are manifested in a loss of muscle fiber cross-sectional area, loss of innervation, and adaptive changes in the proportions of slow and fast motor units in muscle tissue. Ultimately, these alterations translate to bulk changes in muscle mass, strength, and function which lead to reduced physical performance, disability, increased risk of fall-related injury, and, often, frailty. In this review, we summarize current understanding of the mechanisms underlying sarcopenia and age-related changes in muscle tissue morphology and function. We also discuss the resulting long-term outcomes in terms of loss of function, which causes increased risk of musculoskeletal injuries and other morbidities, leading to frailty and loss of independence

    Increased Skeletal Muscle 11βHSD1 mRNA Is Associated with Lower Muscle Strength in Ageing

    Get PDF
    Background: Sarcopenia, the loss of muscle mass and function with age, is associated with increased morbidity and mortality. Current understanding of the underlying mechanisms is limited. Glucocorticoids (GC) in excess cause muscle weakness and atrophy. We hypothesized that GC may contribute to sarcopenia through elevated circulating levels or increased glucocorticoid receptor (GR) signaling by increased expression of either GR or the GC-amplifying enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11βHSD1) in muscle. Methods: There were 82 participants; group 1 comprised 33 older men (mean age 70.2years, SD 4.4) and 19 younger men (22.2years, 1.7) and group 2 comprised 16 older men (79.1years, 3.4) and 14 older women (80.1years, 3.7). We measured muscle strength, mid-thigh cross-sectional area, fasting morning plasma cortisol, quadriceps muscle GR and 11βHSD1 mRNA, and urinary glucocorticoid metabolites. Data were analysed using multiple linear regression adjusting for age, gender and body size. Results: Muscle strength and size were not associated with plasma cortisol, total urinary glucocorticoids or the ratio of urinary 5β-tetrahydrocortisol +5α-tetrahydrocortisol to tetrahydrocortisone (an index of systemic 11βHSD activity). Muscle strength was associated with 11βHSD1 mRNA levels (β -0.35, p = 0.04), but GR mRNA levels were not significantly associated with muscle strength or size. Conclusion: Although circulating levels of GC are not associated with muscle strength or size in either gender, increased cortisol generation within muscle by 11βHSD1 may contribute to loss of muscle strength with age, a key component of sarcopenia. Inhibition of 11βHSD1 may have therapeutic potential in sarcopenia

    Neuromechanical response of the upper body to unexpected perturbations during gait initiation in young and older adults

    Get PDF
    Background: Control of upper body motion deteriorates with ageing leading to impaired ability to preserve balance during gait, but little is known on the contribution of the upper body to preserve balance in response to unexpected perturbations during locomotor transitions, such as gait initiation. Aim: To investigate differences between young and older adults in the ability to modify the trunk kinematics and muscle activity following unexpected waist lateral perturbations during gait initiation. Methods: Ten young (25 ± 2 years) and ten older adults (73 ± 5 years) initiated locomotion from stance while a lateral pull was randomly applied to the pelvis. Two force plates were used to define the feet centre-of-pressure displacement. Angular displacement of the trunk in the frontal plane was obtained through motion analysis. Surface electromyography of cervical and thoracic erector spinae muscles was recorded bilaterally. Results: A lower trunk lateral bending towards the stance leg side in the preparatory phase of gait initiation was observed in older participants following perturbation. Right thoracic muscle activity was increased in response to the perturbation during the initial phase of gait initiation in young (+ 68%) but not in older participants (+ 7%). Conclusions: The age-related reduction in trunk movement could indicate a more rigid behaviour of the upper body employed by older compared to young individuals in response to unexpected perturbations preceding the initiation of stepping. Older adults’ delayed activation of thoracic muscles could suggest impaired reactive mechanisms that may potentially lead to a fall in the early stages of the gait initiation

    Scientific Opinion on African swine fever

    Get PDF
    The risk for endemicity of ASF in the eastern neighbouring countries of the EU and spread of ASFV to unaffected areas was updated until 31/01/2014. The assessment was based on a literature review and expert knowledge elicitation. The risk that ASF is endemic in Georgia, Armenia and the Russian Federation has increased from moderate to high, particularly due to challenges in outbreak control in the backyard production sector. The risk that ASFV will spread further into unaffected areas from these countries, mainly through movement of contaminated pork, infected pigs or contaminated vehicles, has remained high. In Ukraine and Belarus, the risk for ASF endemicity was considered moderate. Although only few outbreaks have been reported, which have been stamped out, only limited activities are ongoing to facilitate early detection of secondary spread. Further, there is a continuous risk of ASFV re-introduction from the Russian Federation, due to transboundary movements of people, pork or infected wild boar. The number of backyard farms is greatest in the west of Ukraine and westwards spread of ASFV could result in an infected area near the EU border, difficult to control. In Georgia, Armenia and the Russian Federation, the risk for endemicity of ASF in the wild boar population is considered moderate, mainly due to spill-over from the domestic pig population, whereas in Ukraine and Belarus this was considered to be low. In those areas in the Russian Federation where wild boar density is high, this risk may be higher. Intensive hunting pressure in affected wild boar populations may increase the risk for spread, possibly with severe implications across international borders. The risk for different matrices to be infected/contaminated and maintain infectious ASFV at the moment of transportation into the EU was assessed and ranged from very high for frozen meat, to very low for crops
    corecore