323 research outputs found

    Passive mechanical features of single fibers from human muscle biopsies – effects of storage

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study was to investigate the effect of storage of human muscle biopsies on passive mechanical properties.</p> <p>Methods</p> <p>Stress-strain analysis accompanied by laser diffraction assisted sarcomere length measurement was performed on single muscle fibres from fresh samples and compared with single fibres from stored samples (-20°C, 4 weeks) with the same origin as the corresponding fresh sample. Basic morphological analysis, including cross sectional area (CSA) measurement, fibre diameter measurement, fibre occupancy calculation and overall morphology evaluation was done.</p> <p>Results</p> <p>Statistical analysis of tangent values in stress-strain curves, corresponding to the elastic modulus of single muscle fibres, did not differ when comparing fresh and stored samples from the same type of muscle. Regardless of the preparation procedure, no significant differences were found, neither in fibre diameter nor the relation between muscle fibres and extra-cellular matrix measured under light microscopy.</p> <p>Conclusion</p> <p>We conclude that muscle fibre structure and mechanics are relatively insensitive to the storage procedures used and that the different preparations are interchangeable without affecting passive mechanical properties. This provides a mobility of the method when harvesting muscle biopsies away from the laboratory.</p

    Evaluating the use of robotic and virtual reality rehabilitation technologies to improve function in stroke survivors: A narrative review

    Get PDF
    This review evaluates the effectiveness of robotic and virtual reality technologies used for neurological rehabilitation in stroke survivors. It examines each rehabilitation technology in turn before considering combinations of these technologies and the complexities of rehabilitation outcome assessment. There is high-quality evidence that upper-limb robotic rehabilitation technologies improve movement, strength and activities of daily living, whilst the evidence for robotic lower-limb rehabilitation is currently not as convincing. Virtual reality technologies also improve activities of daily living. Whilst the benefit of these technologies over dose-controlled conventional rehabilitation is likely to be small, there is a role for both technologies as part of a broader rehabilitation programme, where they may help to increase the intensity and amount of therapy delivered. Combining robotic and virtual reality technologies in a rehabilitation programme may further improve rehabilitation outcomes and we would advocate randomised controlled trials of these technologies in combination

    The Feasibility of performing resistance exercise with acutely ill hospitalized older adults

    Get PDF
    BACKGROUND: For older adults, hospitalization frequently results in deterioration of mobility and function. Nevertheless, there are little data about how older adults exercise in the hospital and definitive studies are not yet available to determine what type of physical activity will prevent hospital related decline. Strengthening exercise may prevent deconditioning and Pilates exercise, which focuses on proper body mechanics and posture, may promote safety. METHODS: A hospital-based resistance exercise program, which incorporates principles of resistance training and Pilates exercise, was developed and administered to intervention subjects to determine whether acutely-ill older patients can perform resistance exercise while in the hospital. Exercises were designed to be reproducible and easily performed in bed. The primary outcome measures were adherence and participation. RESULTS: Thirty-nine ill patients, recently admitted to an acute care hospital, who were over age 70 [mean age of 82.0 (SD= 7.3)] and ambulatory prior to admission, were randomized to the resistance exercise group (19) or passive range of motion (ROM) group (20). For the resistance exercise group, participation was 71% (p = 0.004) and adherence was 63% (p = 0.020). Participation and adherence for ROM exercises was 96% and 95%, respectively. CONCLUSION: Using a standardized and simple exercise regimen, selected, ill, older adults in the hospital are able to comply with resistance exercise. Further studies are needed to determine if resistance exercise can prevent or treat hospital-related deterioration in mobility and function

    Aberrant Mitochondrial Homeostasis in the Skeletal Muscle of Sedentary Older Adults

    Get PDF
    The role of mitochondrial dysfunction and oxidative stress has been extensively characterized in the aetiology of sarcopenia (aging-associated loss of muscle mass) and muscle wasting as a result of muscle disuse. What remains less clear is whether the decline in skeletal muscle mitochondrial oxidative capacity is purely a function of the aging process or if the sedentary lifestyle of older adult subjects has confounded previous reports. The objective of the present study was to investigate if a recreationally active lifestyle in older adults can conserve skeletal muscle strength and functionality, chronic systemic inflammation, mitochondrial biogenesis and oxidative capacity, and cellular antioxidant capacity. To that end, muscle biopsies were taken from the vastus lateralis of young and age-matched recreationally active older and sedentary older men and women (N = 10/group; ♀  =  ♂). We show that a physically active lifestyle is associated with the partial compensatory preservation of mitochondrial biogenesis, and cellular oxidative and antioxidant capacity in skeletal muscle of older adults. Conversely a sedentary lifestyle, associated with osteoarthritis-mediated physical inactivity, is associated with reduced mitochondrial function, dysregulation of cellular redox status and chronic systemic inflammation that renders the skeletal muscle intracellular environment prone to reactive oxygen species-mediated toxicity. We propose that an active lifestyle is an important determinant of quality of life and molecular progression of aging in skeletal muscle of the elderly, and is a viable therapy for attenuating and/or reversing skeletal muscle strength declines and mitochondrial abnormalities associated with aging

    Use of a Cybex NORM dynamometer to assess muscle function in patients with thoracic cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cachexia-anorexia syndrome impacts on patients' physical independence and quality of life. New treatments are required and need to be evaluated using acceptable and reliable outcome measures, e.g. the assessment of muscle function. The aims of this study were to: (i) examine the acceptability and reliability of the Cybex NORM dynamometer to assess muscle function in people with non-small cell lung cancer or mesothelioma; (ii) compare muscle function in this group with healthy volunteers and; (iii) explore changes in muscle function over one month.</p> <p>Methods</p> <p>The test consisted of 25 repetitions of isokinetic knee flexion and extension at maximal effort while seated on a Cybex NORM dynamometer. Strength and endurance for the quadriceps and hamstrings were assessed as peak torque and total work and an endurance ratio respectively. Thirteen patients and 26 volunteers completed the test on three separate visits. Acceptability was assessed by questionnaire, reliability by intraclass correlation coefficients (ICC) and tests of difference compared outcomes between and within groups.</p> <p>Results</p> <p>All subjects found the test acceptable. Peak torque and work done were reliable measures (ICC >0.80), but the endurance ratio was not. Muscle function did not differ significantly between the patient and a matched volunteer group or in either group when repeated after one month.</p> <p>Conclusion</p> <p>For patients with non-small cell lung cancer or mesothelioma, the Cybex NORM dynamometer provides an acceptable and reliable method of assessing muscle strength and work done. Muscle function appears to be relatively well preserved in this group and it appears feasible to explore interventions which aim to maintain or even improve this.</p

    Understanding human functioning using graphical models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Functioning and disability are universal human experiences. However, our current understanding of functioning from a comprehensive perspective is limited. The development of the International Classification of Functioning, Disability and Health (ICF) on the one hand and recent developments in graphical modeling on the other hand might be combined and open the door to a more comprehensive understanding of human functioning. The objective of our paper therefore is to explore how graphical models can be used in the study of ICF data for a range of applications.</p> <p>Methods</p> <p>We show the applicability of graphical models on ICF data for different tasks: Visualization of the dependence structure of the data set, dimension reduction and comparison of subpopulations. Moreover, we further developed and applied recent findings in causal inference using graphical models to estimate bounds on intervention effects in an observational study with many variables and without knowing the underlying causal structure.</p> <p>Results</p> <p>In each field, graphical models could be applied giving results of high face-validity. In particular, graphical models could be used for visualization of functioning in patients with spinal cord injury. The resulting graph consisted of several connected components which can be used for dimension reduction. Moreover, we found that the differences in the dependence structures between subpopulations were relevant and could be systematically analyzed using graphical models. Finally, when estimating bounds on causal effects of ICF categories on general health perceptions among patients with chronic health conditions, we found that the five ICF categories that showed the strongest effect were plausible.</p> <p>Conclusions</p> <p>Graphical Models are a flexible tool and lend themselves for a wide range of applications. In particular, studies involving ICF data seem to be suited for analysis using graphical models.</p

    Factors Underlying the Early Limb Muscle Weakness in Acute Quadriplegic Myopathy Using an Experimental ICU Porcine Model

    Get PDF
    The basic mechanisms underlying acquired generalized muscle weakness and paralysis in critically ill patients remain poorly understood and may be related to prolonged mechanical ventilation/immobilization (MV) or to other triggering factors such as sepsis, systemic corticosteroid (CS) treatment and administration of neuromuscular blocking agents (NMBA). The present study aims at exploring the relative importance of these factors by using a unique porcine model. Piglets were all exposed to MV together with different combinations of endotoxin-induced sepsis, CS and NMBA for five days. Peroneal motor nerve conduction velocity and amplitude of the compound muscle action potential (CMAP) as well as biceps femoris muscle biopsy specimens were obtained immediately after anesthesia on the first day and at the end of the 5-day experimental period. Results showed that peroneal nerve motor conduction velocity is unaffected whereas the size of the CMAP decreases independently of the type of intervention, in all groups after 5 days. Otherwise, despite a preserved size, muscle fibre specific force (maximum force normalized to cross-sectional area) decreased dramatically for animals exposed to MV in combination with CS or/and sepsis. These results suggest that the rapid declines in CMAP amplitude and in force generation capacity are triggered by independent mechanisms with significant clinical and therapeutic implications

    A New Method for Non-Invasive Estimation of Human Muscle Fiber Type Composition

    Get PDF
    Background: It has been established that excellence in sports with short and long exercise duration requires a high proportion of fast-twitch (FT) or type-II fibers and slow-twitch (ST) or type-I fibers, respectively. Until today, the muscle biopsy method is still accepted as gold standard to measure muscle fiber type composition. Because of its invasive nature and high sampling variance, it would be useful to develop a non-invasive alternative.status: publishe
    corecore