214 research outputs found

    Cross-platform expression profiling demonstrates that SV40 small tumor antigen activates Notch, Hedgehog, and Wnt signaling in human cells

    Get PDF
    BACKGROUND: We previously analyzed human embryonic kidney (HEK) cell lines for the effects that simian virus 40 (SV40) small tumor antigen (ST) has on gene expression using Affymetrix U133 GeneChips. To cross-validate and extend our initial findings, we sought to compare the expression profiles of these cell lines using an alternative microarray platform. METHODS: We have analyzed matched cell lines with and without expression of SV40 ST using an Applied Biosystems (AB) microarray platform that uses single 60-mer oligonucleotides and single-color quantitative chemiluminescence for detection. RESULTS: While we were able to previously identify only 456 genes affected by ST with the Affymetrix platform, we identified 1927 individual genes with the AB platform. Additional technical replicates increased the number of identified genes to 3478 genes and confirmed the changes in 278 (61%) of our original set of 456 genes. Among the 3200 genes newly identified as affected by SV40 ST, we confirmed 20 by QRTPCR including several components of the Wnt, Notch, and Hedgehog signaling pathways, consistent with SV40 ST activation of these developmental pathways. While inhibitors of Notch activation had no effect on cell survival, cyclopamine had a potent killing effect on cells expressing SV40 ST. CONCLUSIONS: These data show that SV40 ST expression alters cell survival pathways to sensitize cells to the killing effect of Hedgehog pathway inhibitors

    Prevalence and Associated Factors of Dyslipidemia in the Adult Chinese Population

    Get PDF
    To determine the prevalence, associated factors, awareness and control of dyslipidemia in Chinese living in Greater Beijing, we measured the serum cholesterol concentration in 3251 Chinese adults (age: 45 to 89 years) as participants of the population-based Beijing Eye Study 2006. Additional information on treatment of dyslipidemia was obtained using a standard questionnaire. The mean concentrations of total, HDL cholesterol, LDL cholesterol and triglycerides were 4.92±1.01 mmol/L, 1.61±0.36 mmol/L, 2.88±0.85 mmol/L, and 1.76±1.29 mmol/L, respectively. Prevalence of dyslipidemia was 56.1±0.9%%. Presence of dyslipidemia was significantly associated with increasing age (odds ratio (OR):1.02; 95% confidence interval (CI): 1.01, 1.03), female gender (OR:1.51; 95%CI: 1.25, 1.83), urban region (OR:1.82; 95%CI: 1.30, 2.55), body mass index (OR:1.13; 95%CI: 1.10, 1.15), income (OR:1.11; 95%CI:1.02, 1.21), blood glucose concentration (OR:1.10; 95%CI:1.05, 1.16), diastolic blood pressure (OR:1.02; 95%CI: 1.01, 1.03), and smoking (OR:1.23; 1.01, 1.51). Among those who had dyslipidemia, the proportion of subjects who were aware, treated and controlled was 50.9%, 23.8%, and 39.91%, respectively. The awareness rate was associated with urban region (P = 0.001; OR: 6.50), body mass index (P = 0.001; OR:1.06), and income (P = 0.02; OR:1.14). The data suggest that dyslipidemia may be present in about 56% of the population aged 45+ years in Greater Beijing. Factors likely associated with dyslipidemia were higher age, female gender, urban region, higher body mass index, higher income, higher blood concentration of glucose, higher diastolic blood pressure, and smoking. In the examined study population, treatment rate was 24% with about 60% of the treated subjects still having uncontrolled dyslipidemia

    Effects of Dual Targeting of Tumor Cells and Stroma in Human Glioblastoma Xenografts with a Tyrosine Kinase Inhibitor against c-MET and VEGFR2

    Get PDF
    Contains fulltext : 118357.pdf (publisher's version ) (Open Access)Anti-angiogenic treatment of glioblastoma with Vascular Endothelial Growth Factor (VEGF)- or VEGF Receptor 2 (VEGFR2) inhibitors normalizes tumor vessels, resulting in a profound radiologic response and improved quality of life. This approach however does not halt tumor progression by diffuse infiltration, as this phenotype is less angiogenesis dependent. Combined inhibition of angiogenesis and diffuse infiltrative growth would therefore be a more effective treatment approach in these tumors. The HGF/c-MET axis is important in both angiogenesis and cell migration in several tumor types including glioma. We therefore analyzed the effects of the c-MET- and VEGFR2 tyrosine kinase inhibitor cabozantinib (XL184, Exelixis) on c-MET positive orthotopic E98 glioblastoma xenografts, which routinely present with angiogenesis-dependent areas of tumor growth, as well as diffuse infiltrative growth. In cultures of E98 cells, cabozantinib effectively inhibited c-MET phosphorylation, concomitant with inhibitory effects on AKT and ERK1/2 phosphorylation, and cell proliferation and migration. VEGFR2 activation in endothelial cells was also effectively inhibited . Treatment of BALB/c nu/nu mice carrying orthotopic E98 xenografts resulted in a significant increase in overall survival. Cabozantinib effectively inhibited angiogenesis, resulting in increased hypoxia in angiogenesis-dependent tumor areas, and induced vessel normalization. Yet, tumors ultimately escaped cabozantinib therapy by diffuse infiltrative outgrowth via vessel co-option. Of importance, in contrast to the results from experiments, blockade of c-MET activation was incomplete, possibly due to multiple factors including restoration of the blood-brain barrier resulting from cabozantinib-induced VEGFR2 inhibition. In conclusion, cabozantinib is a promising therapy for c-MET positive glioma, but improving delivery of the drug to the tumor and/or the surrounding tissue may be needed for full activity

    A first generation BAC-based physical map of the rainbow trout genome

    Get PDF
    Background: Rainbow trout (Oncorhynchus mykiss) are the most-widely cultivated cold freshwater fish in the world and an important model species for many research areas. Coupling great interest in this species as a research model with the need for genetic improvement of aquaculture production efficiency traits justifies the continued development of genomics research resources. Many quantitative trait loci (QTL) have been identified for production and life-history traits in rainbow trout. A bacterial artificial chromosome (BAC) physical map is needed to facilitate fine mapping of QTL and the selection of positional candidate genes for incorporation in marker-assisted selection (MAS) for improving rainbow trout aquaculture production. This resource will also facilitate efforts to obtain and assemble a whole-genome reference sequence for this species.[br/] Results: The physical map was constructed from DNA fingerprinting of 192,096 BAC clones using the 4-color high-information content fingerprinting (HICF) method. The clones were assembled into physical map contigs using the finger-printing contig (FPC) program. The map is composed of 4,173 contigs and 9,379 singletons. The total number of unique fingerprinting fragments (consensus bands) in contigs is 1,185,157, which corresponds to an estimated physical length of 2.0 Gb. The map assembly was validated by 1) comparison with probe hybridization results and agarose gel fingerprinting contigs; and 2) anchoring large contigs to the microsatellite-based genetic linkage map.[br/] Conclusion: The production and validation of the first BAC physical map of the rainbow trout genome is described in this paper. We are currently integrating this map with the NCCCWA genetic map using more than 200 microsatellites isolated from BAC end sequences and by identifying BACs that harbor more than 300 previously mapped markers. The availability of an integrated physical and genetic map will enable detailed comparative genome analyses, fine mapping of QTL, positional cloning, selection of positional candidate genes for economically important traits and the incorporation of MAS into rainbow trout breeding programs

    Type 2 Diabetes in Xinjiang Uygur Autonomous Region, China

    Get PDF
    BACKGROUND: The aim of this study was to estimate the prevalence and distribution of type 2 diabetes and to determine the status of type 2 diabetes awareness, treatment, and control in Xinjiang, China. Our data came from the Cardiovascular Risk Survey (CRS) study designed to investigate the prevalence and risk factors for cardiovascular diseases in Xinjiang from October 2007 to March 2010. A total of 14 122 persons (5583 Hans, 4620 Uygurs, and 3919 Kazaks) completed the survey and examination. Diabetes was defined by the American Diabetes Association 2009 criteria. METHODOLOGY/PRINCIPAL FINDINGS: Overall, 9.26% of the Han, 6.23% of the Uygur, and 3.65% of the Kazak adults aged ≥35 years had diabetes. Among diabetes patients, only 53.0% were aware of their blood glucose level, 26.7% were taking hypoglycemic agents, and 10.4% achieved blood glucose control in Han, 35.8% were aware of their blood glucose level, 7.3% were taking hypoglycemic agents, and 3.13% achieved blood glucose control in Uygur, and 23.8% were aware of their blood glucose level, 6.3% were taking hypoglycemic agents, and 1.4% achieved blood glucose control in Kazak, respectively. CONCLUSIONS/SIGNIFICANCE: Our results indicate that diabetes is highly prevalent in Xinjiang. The percentages of those with diabetes who are aware, treated, and controlled are unacceptably low. These results underscore the urgent need to develop national strategies to improve prevention, detection, and treatment of diabetes in Xinjiang, the west China

    MiR-128 Inhibits Tumor Growth and Angiogenesis by Targeting p70S6K1

    Get PDF
    MicroRNAs are a class of small noncoding RNAs that function as critical gene regulators through targeting mRNAs for translational repression or degradation. In this study, we showed that miR-128 expression levels were decreased in glioma, and identified p70S6K1 as a novel direct target of miR-128. Overexpression of miR-128 suppressed p70S6K1 and its downstream signaling molecules such as HIF-1 and VEGF expression, and attenuated cell proliferation, tumor growth and angiogenesis. Forced expression of p70S6K1 can partly rescue the inhibitory effect of miR-128 in the cells. Taken together, these findings will shed light to the role and mechanism of miR-128 in regulating glioma tumor angiogenesis via miR-128/p70S6K1 axis, and miR-128 may serve as a potential therapeutic target in glioma in the future

    Effects of Water and Nitrogen Addition on Species Turnover in Temperate Grasslands in Northern China

    Get PDF
    Global nitrogen (N) deposition and climate change have been identified as two of the most important causes of current plant diversity loss. However, temporal patterns of species turnover underlying diversity changes in response to changing precipitation regimes and atmospheric N deposition have received inadequate attention. We carried out a manipulation experiment in a steppe and an old-field in North China from 2005 to 2009, to test the hypothesis that water addition enhances plant species richness through increase in the rate of species gain and decrease in the rate of species loss, while N addition has opposite effects on species changes. Our results showed that water addition increased the rate of species gain in both the steppe and the old field but decreased the rates of species loss and turnover in the old field. In contrast, N addition increased the rates of species loss and turnover in the steppe but decreased the rate of species gain in the old field. The rate of species change was greater in the old field than in the steppe. Water interacted with N to affect species richness and species turnover, indicating that the impacts of N on semi-arid grasslands were largely mediated by water availability. The temporal stability of communities was negatively correlated with rates of species loss and turnover, suggesting that water addition might enhance, but N addition would reduce the compositional stability of grasslands. Experimental results support our initial hypothesis and demonstrate that water and N availabilities differed in the effects on rate of species change in the temperate grasslands, and these effects also depend on grassland types and/or land-use history. Species gain and loss together contribute to the dynamic change of species richness in semi-arid grasslands under future climate change

    Neonatal CD8 T-cell Hierarchy Is Distinct from Adults and Is Influenced by Intrinsic T cell Properties in Respiratory Syncytial Virus Infected Mice

    Get PDF
    Following respiratory syncytial virus infection of adult CB6F1 hybrid mice, a predictable CD8+ T cell epitope hierarchy is established with a strongly dominant response to a Kd-restricted peptide (SYIGSINNI) from the M2 protein. The response to KdM282-90 is ∼5-fold higher than the response to a subdominant epitope from the M protein (NAITNAKII, DbM187-195). After infection of neonatal mice, a distinctly different epitope hierarchy emerges with codominant responses to KdM282-90 and DbM187-195. Adoptive transfer of naïve CD8+ T cells from adults into congenic neonates prior to infection indicates that intrinsic CD8+ T cell factors contribute to age-related differences in hierarchy. Epitope-specific precursor frequency differs between adults and neonates and influences, but does not predict the hierarchy following infection. Additionally, dominance of KdM282-90 –specific cells does not correlate with TdT activity. Epitope-specific Vβ repertoire usage is more restricted and functional avidity is lower in neonatal mice. The neonatal pattern of codominance changes after infection at 10 days of age, and rapidly shifts to the adult pattern of extreme KdM282- 90 -dominance. Thus, the functional properties of T cells are selectively modified by developmental factors in an epitope-specific and age-dependent manner

    Magnetic and Photoluminescent Sensors Based on Metal-Organic Frameworks Built up from 2-aminoisonicotinate

    Get PDF
    Red Guipuzcoana de Ciencia, Tecnologia e Innovacion OF218/2018 University of Basque Country GIU 17/13 Basque Government IT1005-16 IT1291-19 IT1310-19 Junta de Andalucia FQM-394 Spanish Ministry of Science, Innovation and Universities (MCIU/AEI/FEDER, UE) PGC2018-102052-A-C22 PGC2018-102052-B-C21 MAT2016-75883-C2-1-P European Union (EU) ESFIn this work, three isostructural metal-organic frameworks based on frst row transition metal ions and 2-aminoisonicotinate (2ain) ligands, namely, {[M(μ-2ain)2]·DMF}n [MII=Co (1), Ni (2), Zn (3)], are evaluated for their sensing capacity of various solvents and metal ions by monitoring the modulation of their magnetic and photoluminescence properties. The crystal structure consists of an open diamond-like topological 3D framework that leaves huge voids, which allows crystallizing two-fold interpenetrated architecture that still retains large porosity. Magnetic measurements performed on 1 reveal the occurrence of feld-induced spin-glass behaviour characterized by a frequency-independent relaxation. Solvent-exchange experiments lead successfully to the replacement of lattice molecules by DMSO and MeOH, which, on its part, show dominating SIM behaviour with low blocking temperatures but substantially high energy barriers for the reversal of the magnetization. Photoluminescence studied at variable temperature on compound 3 show its capacity to provide bright blue emission under UV excitation, which proceeds through a ligand-centred charge transfer mechanism as confrmed by timedependent DFT calculations. Turn-of and/or shift of the emission is observed for suspensions of 3 in diferent solvents and aqueous solutions containing metal ions
    corecore