159 research outputs found

    Reinstating class a structural and developmental study of Hong Kong society

    Get PDF
    published_or_final_versio

    Endoscopic Management of a Primary Duodenal Carcinoid Tumor

    Get PDF
    Carcinoids are rare, slow-growing tumors originating from a variety of different neuroendocrine cell types. They are identified histologically by their affinity for silver salts and by positive reactions to neuroendocrine markers such as neuron-specific enolase, synaptophysin and chromogranin. They can present with various clinical symptoms and are difficult to diagnose. We present the case of a 43-year-old woman who was referred for evaluation of anemia. Upper endoscopy showed a duodenal bulb mass around 1 cm in size. Histopathological and immunohistochemistry staining were consistent with the diagnosis of a carcinoid tumor. Further imaging and endoscopic studies showed no other synchronous carcinoid lesions. Endoscopic ultrasound (EUS) revealed a 1 cm lesion confined to the mucosa and no local lymphadenopathy. Successful endoscopic mucosal resection of the mass was performed. Follow-up surveillance 6 months later with EUS and Octreoscan revealed no new lesions suggestive of recurrence. No consensus guidelines exist for the endoscopic management of duodenal carcinoid tumors. However, endoscopic resection is safe and preferred for tumors measuring 1 cm or less with no evidence of invasion of the muscularis layer

    Assessment of heterologous butyrate and butanol pathway activity by measurement of intracellular pathway intermediates in recombinant Escherichia coli

    Get PDF
    In clostridia, n-butanol production from carbohydrates at yields of up to 76% of the theoretical maximum and at titers of up to 13 g/L has been reported. However, in Escherichia coli, several groups have reported butyric acid or butanol production from recombinant expression of clostridial genes, at much lower titers and yields. To pinpoint deficient steps in the recombinant pathway, we developed an analytical procedure for the determination of intracellular pools of key pathway intermediates and applied the technique to the analysis of three sets of E. coli strains expressing various combinations of butyrate biosynthesis genes. Low expression levels of the hbd-encoded S-3-hydroxybutyryl-CoA dehydrogenase were insufficient to convert acetyl-CoA to 3-hydroxybutyryl-CoA, indicating that hbd was a rate-limiting step in the production of butyryl-CoA. Increasing hbd expression alleviated this bottleneck, but in resulting strains, our pool size measurements and thermodynamic analysis showed that the reaction step catalyzed by the bcd-encoded butyryl-CoA dehydrogenase was rate-limiting. E. coli strains expressing both hbd and ptb-buk produced crotonic acid as a byproduct, but this byproduct was not observed with expression of related genes from non-clostridial organisms. Our thermodynamic interpretation of pool size measurements is applicable to the analysis of other metabolic pathways

    Genetic variants associated with fasting blood lipids in the U.S. population: Third National Health and Nutrition Examination Survey

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The identification of genetic variants related to blood lipid levels within a large, population-based and nationally representative study might lead to a better understanding of the genetic contribution to serum lipid levels in the major race/ethnic groups in the U.S. population.</p> <p>Methods</p> <p>Using data from the second phase (1991-1994) of the Third National Health and Nutrition Examination Survey (NHANES III), we examined associations between 22 polymorphisms in 13 candidate genes and four serum lipids: high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), and triglycerides (TG). Univariate and multivariable linear regression and within-gene haplotype trend regression were used to test for genetic associations assuming an additive mode of inheritance for each of the three major race/ethnic groups in the United States (non-Hispanic white, non-Hispanic black, and Mexican American).</p> <p>Results</p> <p>Variants within <it>APOE </it>(rs7412, rs429358), <it>PON1 </it>(rs854560), <it>ITGB3 </it>(rs5918), and <it>NOS3 </it>(rs2070744) were found to be associated with one or more blood lipids in at least one race/ethnic group in crude and adjusted analyses. In non-Hispanic whites, no individual polymorphisms were associated with any lipid trait. However, the <it>PON1 </it>A-G haplotype was significantly associated with LDL-C and TC. In non-Hispanic blacks, <it>APOE </it>variant rs7412 and haplotype T-T were strongly associated with LDL-C and TC; whereas, rs5918 of <it>ITGB3 </it>was significantly associated with TG. Several variants and haplotypes of three genes were significantly related to lipids in Mexican Americans: <it>PON1 </it>in relation to HDL-C; <it>APOE </it>and <it>NOS3 </it>in relation to LDL-C; and <it>APOE </it>in relation to TC.</p> <p>Conclusions</p> <p>We report the significant associations of blood lipids with variants and haplotypes in <it>APOE</it>, <it>ITGB3, NOS3</it>, and <it>PON1 </it>in the three main race/ethnic groups in the U.S. population using a large, nationally representative and population-based sample survey. Results from our study contribute to a growing body of literature identifying key determinants of plasma lipoprotein concentrations and could provide insight into the biological mechanisms underlying serum lipid and cholesterol concentrations.</p

    Bath Breakfast Project (BBP) - Examining the role of extended daily fasting in human energy balance and associated health outcomes: Study protocol for a randomised controlled trial [ISRCTN31521726]

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Current guidance regarding the role of daily breakfast in human health is largely grounded in cross-sectional observations. However, the causal nature of these relationships has not been fully explored and what limited information is emerging from controlled laboratory-based experiments appears inconsistent with much existing data. Further progress in our understanding therefore requires a direct examination of how daily breakfast impacts human health under free-living conditions.</p> <p>Methods/Design</p> <p>The Bath Breakfast Project (BBP) is a randomised controlled trial comparing the effects of daily breakfast consumption relative to extended fasting on energy balance and human health. Approximately 70 men and women will undergo extensive laboratory-based assessments of their acute metabolic responses under fasted and post-prandial conditions, to include: resting metabolic rate, substrate oxidation, dietary-induced thermogenesis and systemic concentrations of key metabolites/hormones. Physiological and psychological indices of appetite will also be monitored both over the first few hours of the day (i.e. whether fed or fasted) and also following a standardised test lunch used to assess voluntary energy intake under controlled conditions. Baseline measurements of participants' anthropometric characteristics (e.g. DEXA) will be recorded prior to intervention, along with an oral glucose tolerance test and acquisition of adipose tissue samples to determine expression of key genes and estimates of tissue-specific insulin action. Participants will then be randomly assigned either to a group prescribed an energy intake of ≥3000 kJ before 1100 each day or a group to extend their overnight fast by abstaining from ingestion of energy-providing nutrients until 1200 each day, with all laboratory-based measurements followed-up 6 weeks later. Free-living assessments of energy intake (via direct weighed food diaries) and energy expenditure (via combined heart-rate/accelerometry) will be made during the first and last week of intervention, with continuous glucose monitors worn both to document chronic glycaemic responses to the intervention and to verify compliance.</p> <p>Trial registration</p> <p>Current Controlled Trials <a href="http://www.controlled-trials.com/ISRCTN31521726">ISRCTN31521726</a>.</p

    Targeting HER2/neu with a fully human IgE to harness the allergic reaction against cancer cells

    Get PDF
    Breast and ovarian cancer are two of the leading causes of cancer deaths among women in the United States. Overexpression of the HER2/neu oncoprotein has been reported in patients affected with breast and ovarian cancers, and is associated with poor prognosis. To develop a novel targeted therapy for HER2/neu expressing tumors, we have constructed a fully human IgE with the variable regions of the scFv C6MH3-B1 specific for HER2/neu. This antibody was expressed in murine myeloma cells and was properly assembled and secreted. The Fc region of this antibody triggers in vitro degranulation of rat basophilic cells expressing human FcεRI (RBL SX-38) in the presence of murine mammary carcinoma cells that express human HER2/neu (D2F2/E2), but not the shed (soluble) antigen (ECDHER2) alone. This IgE is also capable of inducing passive cutaneous anaphylaxis in a human FcεRIα transgenic mouse model, in the presence of a cross-linking antibody, but not in the presence of soluble ECDHER2. Additionally, IgE enhances antigen presentation in human dendritic cells and facilitates cross-priming, suggesting that the antibody is able to stimulate a secondary T-cell anti-tumor response. Furthermore, we show that this IgE significantly prolongs survival of human FcεRIα transgenic mice bearing D2F2/E2 tumors. We also report that the anti-HER2/neu IgE is well tolerated in a preliminary study conducted in Macaca fascicularis (cynomolgus) monkeys. In summary, our results suggest that this IgE should be further explored as a potential therapeutic against HER2/neu overexpressing tumors, such as breast and ovarian cancers.Fil: Daniels, Tracy R.. University of California at Los Angeles; Estados UnidosFil: Leuchter, Richard K.. University of California at Los Angeles; Estados UnidosFil: Quintero, Rafaela. University of California; Estados UnidosFil: Helguera, Gustavo Fernando. University of California at Los Angeles; Estados Unidos. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rodríguez, José A.. University of California at Los Angeles; Estados UnidosFil: Martínez Maza, Otoniel. University of California at Los Angeles; Estados UnidosFil: Schultes, Birgit C.. Advanced Immune Therapeutics, Inc.; Estados Unidos. Momenta Pharmaceuticals, Inc.; Estados UnidosFil: Nicodemus, Christopher F.. Advanced Immune Therapeutics, Inc.; Estados UnidosFil: Penichet, Manuel L.. University of California at Los Angeles; Estados Unido

    Rationalization and Design of the Complementarity Determining Region Sequences in an Antibody-Antigen Recognition Interface

    Get PDF
    Protein-protein interactions are critical determinants in biological systems. Engineered proteins binding to specific areas on protein surfaces could lead to therapeutics or diagnostics for treating diseases in humans. But designing epitope-specific protein-protein interactions with computational atomistic interaction free energy remains a difficult challenge. Here we show that, with the antibody-VEGF (vascular endothelial growth factor) interaction as a model system, the experimentally observed amino acid preferences in the antibody-antigen interface can be rationalized with 3-dimensional distributions of interacting atoms derived from the database of protein structures. Machine learning models established on the rationalization can be generalized to design amino acid preferences in antibody-antigen interfaces, for which the experimental validations are tractable with current high throughput synthetic antibody display technologies. Leave-one-out cross validation on the benchmark system yielded the accuracy, precision, recall (sensitivity) and specificity of the overall binary predictions to be 0.69, 0.45, 0.63, and 0.71 respectively, and the overall Matthews correlation coefficient of the 20 amino acid types in the 24 interface CDR positions was 0.312. The structure-based computational antibody design methodology was further tested with other antibodies binding to VEGF. The results indicate that the methodology could provide alternatives to the current antibody technologies based on animal immune systems in engineering therapeutic and diagnostic antibodies against predetermined antigen epitopes
    corecore