3,348 research outputs found

    Neural Dynamics in Parkinsonian Brain:The Boundary Between Synchronized and Nonsynchronized Dynamics

    Full text link
    Synchronous oscillatory dynamics is frequently observed in the human brain. We analyze the fine temporal structure of phase-locking in a realistic network model and match it with the experimental data from parkinsonian patients. We show that the experimentally observed intermittent synchrony can be generated just by moderately increased coupling strength in the basal ganglia circuits due to the lack of dopamine. Comparison of the experimental and modeling data suggest that brain activity in Parkinson's disease resides in the large boundary region between synchronized and nonsynchronized dynamics. Being on the edge of synchrony may allow for easy formation of transient neuronal assemblies

    Review of QSAR Models and Software Tools for predicting Biokinetic Properties

    Get PDF
    In the assessment of industrial chemicals, cosmetic ingredients, and active substances in pesticides and biocides, metabolites and degradates are rarely tested for their toxicologcal effects in mammals. In the interests of animal welfare and cost-effectiveness, alternatives to animal testing are needed in the evaluation of these types of chemicals. In this report we review the current status of various types of in silico estimation methods for Absorption, Distribution, Metabolism and Excretion (ADME) properties, which are often important in discriminating between the toxicological profiles of parent compounds and their metabolites/degradation products. The review was performed in a broad sense, with emphasis on QSARs and rule-based approaches and their applicability to estimation of oral bioavailability, human intestinal absorption, blood-brain barrier penetration, plasma protein binding, metabolism and. This revealed a vast and rapidly growing literature and a range of software tools. While it is difficult to give firm conclusions on the applicability of such tools, it is clear that many have been developed with pharmaceutical applications in mind, and as such may not be applicable to other types of chemicals (this would require further research investigation). On the other hand, a range of predictive methodologies have been explored and found promising, so there is merit in pursuing their applicability in the assessment of other types of chemicals and products. Many of the software tools are not transparent in terms of their predictive algorithms or underlying datasets. However, the literature identifies a set of commonly used descriptors that have been found useful in ADME prediction, so further research and model development activities could be based on such studies.JRC.DG.I.6-Systems toxicolog

    The experiences of patients and carers in the daily management of care at the end of life

    Get PDF
    Background Home is the preferred location for most people with an advanced disease and at the end of life. A variety of care professionals work in community settings to provide support to this population. Patients and their spouses, who also care for them (spouse-carers), are rarely accompanied by these sources of support at all times, and have to manage independently between their contact with care professionals. Aim To explore how patients and spouse-carers manage their involvement with care professionals in the community setting. Method Interpretive phenomenology informs the design of the research, whereby 16 interviews were conducted with the patients and spouse-carers. Interviews were recorded and transcribed verbatim. Data were analysed using phenomenological techniques including template analysis. Findings Patients and spouse-carers were interdependent and both parties played a role in co-ordinating care and managing relationships with professional care providers. The patients and spouse-carers actively made choices about how to manage their situation, and develop and modify managing strategies based on their experiences. Conclusions When daily management is effective and care professionals acknowledge the dyadic nature of the patient and spouse-carer relationship, people have confidence in living with advanced disease

    Excitations of attractive 1-D bosons: Binding vs. fermionization

    Full text link
    The stationary states of few bosons in a one-dimensional harmonic trap are investigated throughout the crossover from weak to strongly attractive interactions. For sufficient attraction, three different classes of states emerge: (i) N-body bound states, (ii) bound states of smaller fragments, and (iii) gas-like states that fermionize, that is, map to ideal fermions in the limit of infinite attraction. The two-body correlations and momentum spectra characteristic of the three classes are discussed, and the results are illustrated using the soluble two-particle model.Comment: 7 pages, 5 figure

    Contemporary medical television and crisis in the NHS

    Get PDF
    This article maps the terrain of contemporary UK medical television, paying particular attention to Call the Midwife as its centrepiece, and situating it in contextual relation to the current crisis in the NHS. It provides a historical overview of UK and US medical television, illustrating how medical television today has been shaped by noteworthy antecedents. It argues that crisis rhetoric surrounding healthcare leading up to the passing of the Health and Social Care Act 2012 has been accompanied by a renaissance in medical television. And that issues, strands and clusters have emerged in forms, registers and modes with noticeable regularity, especially around the value of affective labour, the cultural politics of nostalgia and the neoliberalisation of healthcare

    In silico modelling of microbial and human metabolism: a case study with the fungicide carbendazim

    Get PDF
    A major source of uncertainty when assessing the human health and environmental risks of chemicals is the paucity of experimental information on the metabolic and (bio)degradation pathways of parent compounds and the toxicological properties of their metabolites and (bio)degradation products. Taking into account animal welfare and cost-effectiveness considerations, the only practical means of obtaining the information needed to reduce this uncertainty, is to use alternative (non-animal) methods, such as in vitro tests and in silico models. In this report, we explore the usefulness of in silico metabolic simulation tools (expert systems) as a means of supporting the regulatory assessment of chemicals. In particular, we investigate the use of selected in silico tools to: (i) simulate microbial and mammalian metabolic pathways; (ii) identify potential metabolites resulting from biotransformation; and (iii) gain insights into the mechanistic rationale of simulated metabolic reactions and the likelihood of their occurrence. For illustrative purposes, the microbial and mammalian biotransformation pathways of a case study compound, the fungicide carbendazim, were generated by using the CRAFT Explorer 1.0 (Molecular Networks GmbH) and Meteor 12.0.0 (Lhasa Ltd.) software tools. Additionally, the set of potential metabolites resulting from microbial and mammalian metabolism was predicted with the OECD QSAR Application Toolbox 2.0 (beta version). Comparison of the in silico predictions with existing experimental data on carbendazim metabolism showed the potential usefulness of using software tools for metabolite prediction. However, the results are strongly dependent on the software constraints specified by the user, and require careful interpretation, taking into account the needs of the exercise and the availability of existing information. Further efforts are needed to develop guidance on the use of in silico metabolic simulation tools for the purposes of regulatory risk assessments.JRC.DG.I.6 - Systems toxicolog

    Binding between two-component bosons in one dimension

    Full text link
    We investigate the ground state of one-dimensional few-atom Bose-Bose mixtures under harmonic confinement throughout the crossover from weak to strong inter-species attraction. The calculations are based on the numerically exact multi-configurational time-dependent Hartree method. For repulsive components we detail the condition for the formation of a molecular Tonks-Girardeau gas in the regime of intermediate inter-species interactions, and the formation of a molecular condensate for stronger coupling. Beyond a critical inter-species attraction, the system collapses to an overall bound state. Different pathways emerge for unequal particle numbers and intra-species interactions. In particular, for mixtures with one attractive component, this species can be viewed as an effective potential dimple in the trap center for the other, repulsive component.Comment: 10 pages, 10 figure

    The Rules of Human T Cell Fate in vivo.

    Get PDF
    The processes governing lymphocyte fate (division, differentiation, and death), are typically assumed to be independent of cell age. This assumption has been challenged by a series of elegant studies which clearly show that, for murine cells in vitro, lymphocyte fate is age-dependent and that younger cells (i.e., cells which have recently divided) are less likely to divide or die. Here we investigate whether the same rules determine human T cell fate in vivo. We combined data from in vivo stable isotope labeling in healthy humans with stochastic, agent-based mathematical modeling. We show firstly that the choice of model paradigm has a large impact on parameter estimates obtained using stable isotope labeling i.e., different models fitted to the same data can yield very different estimates of T cell lifespan. Secondly, we found no evidence in humans in vivo to support the model in which younger T cells are less likely to divide or die. This age-dependent model never provided the best description of isotope labeling; this was true for naïve and memory, CD4+ and CD8+ T cells. Furthermore, this age-dependent model also failed to predict an independent data set in which the link between division and death was explored using Annexin V and deuterated glucose. In contrast, the age-independent model provided the best description of both naïve and memory T cell dynamics and was also able to predict the independent dataset

    Severe EBV Infection In Primary Immunodeficiency And The Normal Host

    Get PDF
    Epstein–Barr virus (EBV) infection is ubiquitous in humans, but the majority of infections have an asymptomatic or self-limiting clinical course. Rarely, individuals may develop a pathological EBV infection with a variety of life threatening complications (including haemophagocytosis and malignancy) and others develop asymptomatic chronic EBV viraemia. Although an impaired ability to control EBV infection has long been recognised as a hallmark of severe T-cell immunodeficiency, the advent of next generation sequencing has identified a series of Primary Immunodeficiencies in which EBV-related pathology is the dominant feature. Chronic active EBV infection is defined as chronic EBV viraemia associated with systemic lymphoproliferative disease, in the absence of immunodeficiency. Descriptions of larger cohorts of patients with chronic active EBV in recent years have significantly advanced our understanding of this clinical syndrome. In this review we summarise the current understanding of the pathophysiology and natural history of these diseases and clinical syndromes, and discuss approaches to the investigation and treatment of severe or atypical EBV infection

    A Framework for assessing in silico Toxicity Predictions: Case Studies with selected Pesticides

    Get PDF
    In the regulatory assessment of chemicals, the use of in silico prediction methods such as (quantitative) structure-activity relationship models ([Q]SARs), is increasingly required or encouraged, in order to increase the efficiency and effectiveness of the risk assessment process, and to minimise the reliance on animal testing. The main question for the assessor concerns the usefulness of the prediction approach, which can be broken down into the practical applicability of the method and the adequacy of the predictions. A framework for assessing and documenting (Q)SAR models and their predictions has been established at the European and international levels. Exactly how the framework is applied in practice will depend on the provisions of the specific legislation and the context in which the non-testing data are being used. This report describes the current framework for documenting (Q)SAR models and their predictions, and discuses how it might be built upon to provide more detailed guidance on the use of (Q)SAR predictions in regulatory decision making. The proposed framework is illustrated by using selected pesticide active compounds as examples.JRC.DG.I.6-Systems toxicolog
    corecore