34,821 research outputs found

    Structure and screening in molecular and metallic hydrogen at high pressure

    Get PDF
    A variational wavefunction is used to express the (spin restricted) Hartree-Fock energy as reciprocal lattice sums for static lattice FCC monatomic hydrogen and diatomic Pa3 molecular hydrogen. In the monatomic phase the hydrogenic orbital range closely parallels the inverse Thomas-Fermi wavevector; the corresponding energy E has a minimum of -0.929 Ryd/electron at r sub s = 1.67. For the diatomic phase E(r sub s) is similar, but the constituent energies, screening, and bond length reflect a qualitative change in the nature of the solid at r sub s = 2.8. This change is interpreted in terms of a transition from protons as structural units (at high density) to weakly interacting models (at low density). Insensitivity of the total energy to a rapid fall in the bond length suggests association with the rotational transition where the rapid molecular orientations characteristic of high pressures disappear and the molecules rotate freely at low pressure

    A microcontroller system for investigating the catch effect: Functional electrical stimulation of the common peroneal nerve

    No full text
    Correction of drop foot in hemiplegic gait is achieved by electrical stimulation of the common peroneal nerve with a series of pulses at a fixed frequency. However, during normal gait, the electromyographic signals from the tibialis anterior muscle indicate that muscle force is not constant but varies during the swing phase. The application of double pulses for the correction of drop foot may enhance the gait by generating greater torque at the ankle and thereby increase the efficiency of the stimulation with reduced fatigue. A flexible controller has been designed around the Odstock Drop Foot Stimulator to deliver different profiles of pulses implementing doublets and optimum series. A peripheral interface controller (PIC) microcontroller with some external circuits has been designed and tested to accommodate six profiles. Preliminary results of the measurements from a normal subject seated in a multi-moment chair (an isometric torque measurement device) indicate that profiles containing doublets and optimum spaced pulses look favourable for clinical use

    Marginal states of the resistive tearing mode with flow in cylindrical geometry

    Get PDF
    The linear stability of tearing modes in a cylindrical plasma subject to a sub-AlfvĆ©nic equilibrium shear flow along the equilibrium magnetic field is considered. The equations in the resistive boundary layer at the rational surface are solved numerically using a Fourier transform combined with a finite-element approach. The behaviour of the growth rate as a function of the flow and the various parameters (including a perpendicular fluid viscosity) is obtained. Marginal stability curves showing the dependence of the familiar matching parameter Ī”' with flow and shear are also given

    The Current and Retrospective Intentional Nature Exposure Scales: Development and Factorial Validity

    Get PDF
    Both nature exposure and green exercise (GE) can improve health. However, there are no scales examining frequency of engagement; or that consider interaction with nature. There are also no scales assessing these variables during childhood. The aim of this study was to develop a modified (NES-II) and retrospective (RNES-II) version of the Nature Exposure Scale to incorporate GE and to examine their factor structure and reliability. Exploratory factor analysis (EFA) explored the factor structure of the scales; followed by confirmatory factor analysis to confirm the model fit. Fit indices for the one factor five item NES-II and RNES-II models identified by EFA were poor. Use of modification indices resulted in a good model fit; NES-II: Ļ‡(5, n = 385) = 2.638; Ļ‡normed = 0.879; CFI= 1.000; RMSEA < 0.001 with 90%CI = 0.000ā€“0.082; SRMR = 0.009; AIC = 36.638. RNES-II: Ļ‡(2, n = 385) = 7.149; Ļ‡normed = 3.574; CFI = 0.995; RMSEA = 0.082 with 90%CI = 0.023ā€“0.151; SRMR = 0.015; AIC = 43.149. Both models demonstrated very good reliability (Ī± = 0.84; 89 respectively). These findings indicate that the scales can be used to assess current and retrospective nature exposure. However, due to the removal of item one, the authors recommend that the scales be named the ā€˜intentional nature exposure scaleā€™ and ā€˜retrospective intentional nature exposure scaleā€™

    Physiological Effects of Chronic Copper Exposure to Rainbow Trout (\u3cem\u3eOncorhynchus Mykiss\u3c/em\u3e) in Hard and Soft Water: Evaluation of Chronic Indicators

    Get PDF
    Effects of chronic copper exposure on a suite of indicators were examined: acute toxicity, acclimation, growth, sprint performance, whole-body electrolytes, tissue residues, and gill copper binding characteristics. Juvenile rainbow trout were exposed for 30 d to waterborne copper in hard water (hardness = 120 Ī¼g/L as CaCO3, pH = 8.0, Cu = 20 and 60 Ī¼g/L) and soft water (hardness = 20 Ī¼g/L as CaCO3, pH = 7.2, Cu = 1 and 2 Ī¼g/L). Significant acclimation to the metal occurred only in fish exposed to 60 mg/L, as seen by an approx. twofold increase in 96-h LC50 (153 vs 91 Ī¼g Cu/L). Chronic copper exposure had little or no effect on survival, growth, or swimming performance in either water hardness, nor was there any initial whole-body electrolyte loss (Na+ and Cl-). The present data suggest that the availability of food (3% wet body weight/day, distributed as three 1% meals) prevented growth inhibition and initial ion losses that usually result from Cu exposure. Elevated metal burdens in the gills and livers of exposed fish were measures of chronic copper exposure but not of effect. Initial gill binding experiments revealed the necessity of using radiolabeled Cu (64Cu) to detect newly accumulated Cu against gill background levels. Using this method, we verified the presence of saturable Cu-binding sites in the gills of juvenile rainbow trout and were able to make estimates of copperbinding affinity (log Kgill=Cu) and capacity (Bmax). Furthermore, we showed that both chronic exposure to Cu and to low water calcium had important effects on the Cu-binding characteristics of the gills

    Mixing with the radiofrequency single-electron transistor

    Full text link
    By configuring a radio-frequency single-electron transistor as a mixer, we demonstrate a unique implementation of this device, that achieves good charge sensitivity with large bandwidth about a tunable center frequency. In our implementation we achieve a measurement bandwidth of 16 MHz, with a tunable center frequency from 0 to 1.2 GHz, demonstrated with the transistor operating at 300 mK. Ultimately this device is limited in center frequency by the RC time of the transistor's center island, which for our device is ~ 1.6 GHz, close to the measured value. The measurement bandwidth is determined by the quality factor of the readout tank circuit.Comment: Submitted to APL september 200

    Two blowing concepts for roll and lateral control of aircraft

    Get PDF
    Two schemes to modulate aerodynamic forces for roll and lateral control of aircraft have been investigated. The first scheme, called the lateral blowing concept, consists of thin jets of air exiting spanwise, or at small angle with the spanwise direction, from slots at the tips of straight wings. For this scheme, in addition to experimental measurements, a theory was developed showing the analytical relationship between aerodynamic forces and jet and wing parameters. Experimental results confirmed the theoretically derived scaling laws. The second scheme, which was studied experimentally, is called the jet spoiler concept and consists of thin jets exiting normally to the wing surface from slots aligned with the spanwise direction
    • ā€¦
    corecore