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Abstract. The linear stability of tearing modes in a cylindrical plasma subject
to a sub-Alfvénic equilibrium shear flow along the equilibrium magnetic field is
considered. The equations in the resistive boundary layer at the rational surface
are solved numerically using a Fourier transform combined with a finite-element
approach. The behaviour of the growth rate as a function of the flow and the
various parameters (including a perpendicular fluid viscosity) is obtained. Marginal
stability curves showing the dependence of the familiar matching parameter∆′ with
flow and shear are also given.

1. Introduction
The first systematic investigations of resistive instabilities in the high conductivity
limit were carried out in slab (Furth et al. 1963) and cylindrical (Coppi et al. 1966)
geometries for static equilibria. Many laboratory and astrophysical plasmas, how-
ever, are found to be associated with equilibrium flows which can have a significant
effect on the dynamics of the resistive instabilities. Considerable effort in recent
years has been devoted to understanding the interaction between different regimes
of equilibrium flow and the resistive modes.
The presence of a sub-Alfvénic shear flow along the confining magnetic field on

the tearing mode in slab geometry was shown by Paris and Sy (1983) to have a
destabilizing effect. In addition, it was established that the well-known stability
condition ∆′ > 0 (where ∆′ is the stability parameter measuring the free energy
available to drive the mode) can be modified to ∆′ > ∆c, where ∆c � 0. Bondeson
and Persson (1986) subsequently considered the effects of fluid viscosity and shear
flow in the sub-Alfvénic regime and obtained marginal stability states for the
plane tearing mode. More recent calculations in slab geometry, both analytical and
numerical (Chen and Morrison 1990; Einaudi and Rubini 1986), have considered
flows along the magnetic field comparable with the Alfvén speed, where it was found
that in the external, ideal region such equilibrium flows can dramatically modify
the value of the external matching parameter ∆′ to produce a strong stabilization
of the tearing mode. Similar calculations have also been carried out in cylindrical
geometry, both with and without equilibrium flow (Rosenblum 1984; Wessen and
Perrson 1991), which demonstrate that the value of ∆′ in the outer region depends
sensitively on the equilibrium current profile.
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The marginal states of the tearing and resistive interchange modes in cylindrical
geometry, made possible by perpendicular and parallel viscosity, were investigated
for a static equilibrium by Dagazian and Paris (1986) as a prerequisite for the
calculation of anomalous heat transport in weakly nonlinear regimes. Here we
extend these considerations in cylindrical geometry to include the effects of an
equilibrium shear flow on the tearing mode only, as this is the most important
resistive mode in tokomaks. The flow will again be assumed to be in the sub-
Alfvénic regime, so that its effects are comparable with the basic tearing mode
driving mechanism and the pressure gradient term. Our principal results concern
the dependence of the instability growth rate on the various equilibrium parameters
and the existence and nature of marginal stability curves corresponding to ∆′ < 0.
We only retain the perpendicular viscosity, although parallel viscosity is found to
exert a destabilizing influence on the flowless tearing mode (Dagazian and Paris
1986), since its effect is to reduce the stabilizing compressional coupling of sound
wave propagation along the magnetic field (Iacono et al. 1994).

2. The model
We consider the model employed by Coppi et al. (1966) for the diffuse linear
pinch specified by the equilibrium magnetic field B0 = {0, Bθ(r), Bz(r)} and the
equilibrium pressure gradient −p′

0(r)= Bθ(rBθ)′/r + BzB
′
z in cylindrical r, θ, z

coordinates. In the high conductivity limit we neglect the effect of the slow resistive
diffusion in the radial direction and assume the presence of an equilibrium sub-
Alfvénic shear flow V0 = {0, Vθ(r), Vz(r)} directed along B0. The plasma is described
by the resistive magnetohydrodynamic (MHD) set of equations in the limit of small
resistivity η and perpendicular viscosity µ⊥ given by

ρ
dv
dt

= −∇p + J× B− µ⊥

(
∇ × ∇ × v− 4

3
∇∇ · v

)
,

∂B
∂t

= ∇ × (v× B) + η∇2B,

∇ · B = 0, ∇ × B = J,

∂ρ

∂t
+ ∇ · (ρv) = 0,

d

dt
(pρ−γ) = 0.

We project all vectors in the three orthogonal directions er, b and er × b, where
b=B0/B, B = |B0|, and write linearized quantities such as B̃ in the form B̃= erB̃r+
bB̃‖ + er × bB̃⊥ and similarly for ṽ. Each component is assumed to vary like the
single Fourier harmonic exp{i(mθ+kz)+ωt}, with k= {0,m/r, k} and ω the growth
rate. To simulate a large aspect ratio torus of major radius R0, we take k = −n/R0,
where m, n are integers. The rational surface r = a is determined by q(a)= m/n,
where q(r)= rBz(r)/R0Bθ(r). The quantity F =k · B0 near the rational surface
then takes the form F � F ′(a)(r − a) with F ′(a)= −nBθ(a)q′(a)/a.
In terms of the resistive layer thickness δR, we introduce the variablesX = (r−a)/

δR, ωR = η/(aδR) andQ= ω/ωR. The introduction of a perpendicular viscosity gives
rise to two possible orderings: the first is the ‘weak’ viscous ordering associated with
the scalings η ∼ ε5, µ⊥ ∼ ε7, V0 ∼ ε (where ε is a small dummy parameter) and

δR = (ρη2/aF ′2)1/5, Γ = µ⊥a/(ρηδR),
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where ρ ≡ ρ(a) and F ′ ≡ F ′(a). The radial component of the linearized magnetic
field then has the scaling B̃r = ε4B̃

(0)
r + ε6B̃

(1)
r + . . . , where B̃

(0)
r is constant across

the resistive layer. We employ the standard scaled linearized variables

Ξ ≡ ṽr
ωR

, Ψ0 ≡ iB̃
(0)
r

δRF ′ , Ψ1 ≡ iaB̃
(1)
r

δ2
RF ′ ,

Υ ≡ − 2k2B

δR(F ′)2
B̃‖, W ≡ −2ik2Bδ2

R

ηF ′ ṽ‖

and the parameters

S ≡ 4
R2

0q
′2 , D ≡ −2q2p′

0(a)
aB2

zq′2 , D̂ ≡ D
a

δR
,

R ≡ (k · V0)′ δR
ωR

, J ≡ − 2σ

aR0q′ , Jp ≡ − a2

R0B2
θq′ (J0 · B0)′,

where β ≡ 2p(a)/B2, σ ≡ J0 · B0/B2, B ≡ |B0(a)|, q ≡ q(a), q′ ≡ q′(a), the
equilibrium current terms, J and Jp, are evaluated at r = a and primes denote
derivatives with respect to r.
The effect of the equilibrium shear flow in the resistive layer is to produce a

Doppler shift on linearized quantities represented by

∂

∂t
+ V0 · ∇ ≡ ω + ik · V0 � ωRQ∗, Q∗ = Q + iRX.

The resistive-layer equations about r = a in the ‘weak’ viscous ordering then take
the form (cf. Coppi et al. (1966, Appendix F)):

Ψ0 = constant, Ψ′′
1 = XΞ + Q∗Ψ0, (1)

ΓΞiv = Q∗Ξ′′ − X2Ξ + Υ − Q∗XΨ0 + JpΨ0, (2)

Υ′′ = (S − 2D̂/γβ)Ξ − XW, (3)

ΓW ′′ = Q∗W + XΥ + (D̂ − JX)Ψ0, (4)

where the primes now denote differentiation with respect toX. The ‘strong’ viscous
ordering is associated with the scalings η ∼ µ⊥ ∼ ε3, V0 ∼ ε and

δR = (ρη2/F ′2)1/6, Γ = µ⊥/ρη

together with the radial magnetic field given by B̃r = ε2B̃
(0)
r + ε3B̃

(1)
r + · · ·. In this

case, the resulting set of equations in the resistive layer is described by (1)–(4) with
the omission of the inertial terms Q∗Ξ′′ and Q∗W on the right-hand sides of (2) and
(4), respectively.
We note that when R = 0, the parameters J and Jp can be set to zero as these

terms only affect the shape of the eigenfunctions and not the instability growth
rate. When R 	= 0, however, these terms play a significant role in the calculation
of the growth rate Q. In the following we assume that the pressure gradient term
D ∼ ε2 with β kept finite, so that the term involving D̂/γβ in (3) may be neglected.



158 A. D. Wood et al.

3. Numerical solution
To solve the system (1)–(4) we introduce the Fourier transforms

ξ(k) =
∫ ∞

−∞
Ξ(X)e−ikX dX, ŷ(k) =

∫ ∞

−∞
Υ(X)e−ikX dX,

w(k) = −i

∫ ∞

−∞
W (X)e−ikX dX,

together with the new variables

h(k) = ξ(k) + 2πiRδ(k), y(k) = ŷ(k) − 2πJδ(k),

where δ(k) denotes the delta function. We then obtain the system

L[h] + y = 2πĴδ(k) + 2πiQδ′(k), (5)

w′ + k2y + Sh = 2πiRSδ(k), (6)

y′ + Rk2y + (Q + Γk2)w + RSh = 2πiDRδ(k), (7)

where

DR ≡ D̂ + SR2, Ĵ ≡ −(J + Jp) � aB2q

BθBzq′ σ
′

and L denotes the viscous-tearing operator (Bondeson and Persson 1986; Hou et al.
1996):

L[h] ≡ d2h

dk2
+ R

d

dk
(k2h) − (Qk2 + Γk4)h.

The calculation of the logarithmic jump ∆(Q) in the derivative of Ψ across
the resistive layer is obtained from (1) through use of the familiar constant-Ψ
approximation in the form

∆(Q) =
∫ ∞

−∞
(XΞ + Q∗Ψ0) dX,

where without loss of generality we set Ψ0 = 1. The transformed version of this
matching condition then becomes

∆(Q) = 1
2 i{h′(0−) + h′(0+)}, (8)

where use has been made of the fact that the jump in h(k) across k = 0 is 2πiQ.
The requirement ∆(Q) = ∆′, where ∆′ (which is regarded as a parameter here) is
the logarithmic jump in the derivative of Ψ across r = a from the outer solution,
then determines the growth rate Q.
The eigenvalue Q ≡ Q(R, Ĵ) satisfies the symmetry relations Q(−R, Ĵ)=

Q(R, −Ĵ)= Q(R, Ĵ), whereQ denotes the complex conjugate, so that it is sufficient
in the numerical calculations to consider R � 0 and Ĵ � 0. The combination of (6)
and (7) enables us to eliminate w and to write the system (5)–(7) as the two coupled
second-order differential equations

L[h] + y = 2πĴδ(k) + 2πiQδ′(k), (9)

M [y] + SN [h] = −2πiQ2RSδ(k) + 2πiQDRδ′(k), (10)
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Figure 1. The behaviour of Re(Q) as a function of R for Γ=0.05 and: (a) S =1, D̂ =0, Ĵ =0

with varying ∆′; (b) S =0.25, Ĵ =0, ∆′ = −1 with varying D̂; (c) D̂ =0.25, Ĵ =1, ∆′ =1

with varying S; and (d) S =0.25, D̂ = −1, ∆′ = −1 with varying Ĵ .

where M and N denote the operators

M [y] ≡ A
d2y

dk2
+ (k2AR − 2Γk)

dy

dk
+ (2kRQ − k2A2)y,

N [h] ≡ RA
dh

dk
− (A2 + 2kΓR)h, A ≡ Q + Γk2.

Dominant balance arguments applied to this coupled system show that h(k) and
y(k) possess the leading behaviour exp[b±k3/3+ ck] as k → ±∞, where b± = (−R ∓
(R2 + 4Γ)1/2)/2 and c= Q/(R2 + 4Γ)1/2. The numerical solution of (9) and (10) is
achieved by a standard finite-element method subject to the condition that h(k)
and y(k) have finite norm. The infinite interval is replaced by the finite interval
[−L,L], for suitably chosen L, and the boundary conditions which are applied are

h′(±L)/h(±L)= y′(±L)/y(±L) = α±,

α± = 1
2

(
− R ∓ (R2 + 4Γ)1/2

)
L2 + Q/(R2 + 4Γ)1/2,

respectively, thus enabling the finite-element approximations to match onto the
correct asymptotic behaviour of the solutions at the endpoints.

4. Results and discussion
We are primarily interested in situations with D̂ � 0 for which the interchange
mode is suppressed. This can result either from peaked equilibrium current profiles
or by the replacement of D̂ > 0 in (7) by D̂(1−q2) (in a standard tokomak expansion)
which is usually negative. We note that a key effect of the flow is to replace the
pressure gradient term D̂ by DR = D̂ + SR2; a similar flow-induced modification
to the interchange driving term has been found in the ideal MHD stability of
cylindrical equilibria with mass flows (Bondeson et al. 1987).
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Figure 2. The marginal curves showing the behaviour of ∆′ when Re(Q)=0 as a function
of R and S for different values of the parameters D̂ and Ĵ when Γ=0.05: (a) D̂ = −1,
Ĵ =0; (b) D̂ = −1, Ĵ =1; (c) D̂ =0, Ĵ =0; (d) D̂ =0, Ĵ =1; (e) D̂ =1, Ĵ =0; and (f) D̂ =1,
Ĵ =1.
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We summarize the numerical results on the behaviour of Re(Q) as a function of
the flowR in Fig. 1, where the typical dependence on the parameters∆′, D̂, S and Ĵ
is displayed. In all cases it can be seen that the presence of the flow is destabilizing.
In Fig. 1(a) and (b) we show the variation in Re(Q) for a range of values of ∆′ that
corresponds to the tearing mode in the absence of flow being unstable (∆′ > 0) or
stable (∆′ < 0), and in situations in which the pressure gradient term D̂ is either
stabilizing or destabilizing. In Fig. 1(c) it can be seen that the growth rate sensitively
depends on the shear parameter S (due to the dependence of DR), while in Fig. 1(d)
once R � 2, where the effective pressure gradient term DR changes sign, Re(Q)
is relatively insensitive to the current parameter Ĵ . Although not displayed, the
variation of the growth rate curves on the viscosity parameter Γ was found to be
small.
In Fig. 2 we present a set of marginal curves in theR−S plane showing the critical

value of∆′ for onset of instability Re(Q) = 0when the viscosity parameter Γ = 0.05.
For the pure tearingmode (D̂ = 0), the marginal condition whenR = 0 in the inviscid
limit is the well-known value ∆′ = 0, independent of S, which corresponds to the
S-axis; the modification of the curve ∆′ = 0 in Fig. 2(c) and (d) is due to Γ 	= 0. For
R > 0, we require∆′ < 0 to yield a marginal state reflecting the destabilizing nature
of the flow. In situations with D̂ < 0 in Fig. 2(a) and (b), the curves of constant ∆′

are displaced to the right where, for small values of R, marginal states can exist for
∆′ > 0. When D̂ > 0 the reverse situation is the case, see Fig. 2(e) and (f). For larger
values of R and S � 1, the marginal curves are seen to possess a similar structure
on account of the dominance of the term SR2 in the flow-induced pressure gradient
term DR.
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