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Abstract

A variational wavefunction proposed by Abrikosov is used to express

the (spin-restricted) Hartree-Fock energy as reciprocal lattice suns for

static lattice FCC monatomic hydrogen and diatomic Pa3 molecular hydrogen.

In the monato,- c phase the hydrogenic orbital range is found to closely

parallel the inverse Thomas-Fermi wavevector; the corresponding energy E

has a minimLn of -0.929 Ryd/electron at r s = 1.67. For the diatomic phase

E(rs ) is similar, but the constituent energies, screening, and bond length

all reflect a qualitative change in the nature of the solid at r s = 2.8.

This change is interpreted in terms of a transition from protons as struc-

tural units (at high density) to weakly interacting molecules (at low den-

sity). Insensitivity of the total energy to a rapid fall in the bond length

suggests association with the rotational transition, where the rigid mole-

cular orientations characteristic of high pressures disappear and the mole-

cules rotate freely at low pressure. The importance of phonons (neglected

here) in a correct treatment of the total energy is emphasized, and the

possible connection between the rotational transition and metallization

of the diatomic phase is discussed. It is concluded that methods which

sphericalize the Wigner-Seitz cell may overlook important structural proper-

ties (to which the total energy is relatively insensitive) for the diatomic

phase.
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I: Introduction

Hyd rogen continues to attract attention among condensed matter physicists

because it has the potential to be the simplest of all possible physically

realizable metals. Because of its low nuclear mass and the metallic nature

of the high density condensed phase, metallic hydrogen is expected to exhibit,

interesting electronic ordered states, for example, high temperature super-

conductivity. 
1,2 

Indeed, precisely because dense hydrogen is a quantum

system--one whose ze:o point energy is significant in comparison to the

binding energy of the condensed phase itself--it may not be a solid at all,

but rather a metallic liquid 
3,4 

(and possibly the first known liquid super-

cond uctor 5 ), with associated interesting two-component Fermi liquid effects

at low temperatures. 6 For our purposes we will assume the monatomic phase

to be crystalline, in fact, face centered cubic (in accordance with the

work of Straus and Ashcroft ). This assj..9ption is reasonable since the

energies associated with ordering are exceedingly small compared with the

structural energies that we shall encounter.

The molecular solid observed for low temperatures and pressures exhibits

interesting properties of its own, again associated with the low mass of

the hydrogen atom. 8 At low pressures the remarkable sphericity of para-

hydrogen molecules and their small moment of inertia (a consequence of the

compactness of a molecule) permits them to rotate freely. For f^ra-hydrogen

at higher pressures, where the enhanced electric quadrupole-quadrupole inter-

action between molecules locks them into orientational order, there are

elementary excitations in the form of librons, i.e., quantum mechanical

"zero point motion" associated with the (not always) small amplitude orienta-

tional oscillations of the hydrogen dumbbells about their crystalline

orientations. (The characteristic temperature scale for these excitations

r	
.^



is somewhat lower for ortho-hydrogen.) In what follows we shall assume that

the structure of ortho-hydrogen at low temperatures and pressures $ (the

space group Pa3) is appropriate for both ortho- and para-hydrogen at high

pressures.

The process of metallization of hydrogen may occur in two distinct

ways: 9 (i) As in the case of iodine, 10 another covalently bonded diatomic

solid, the application of pressure may continuously reduce the overall gap

between valence and conduction bands to the extent that, without change in

structure band overlap occurs,thereby giving rise to conduction.. The basic

diatomic order remains, (ii) The hydrogen molecules may be directly

pressure-ionized and dissociated, the associated change in structure giving

rise to a monatomic metallic phase. Part of the work to be described here

is directed toward an understanding of the manner in which this dissociation

occurs.

Many past estimates of the equations of state and the transition pres-

sure from diatomic to monatomic hydrogen have relied on different calculational

techniques for the two phases. Often, for example, the energy of the molecu-

lar phase has been taken from a superposition of pair potentials, while

most recent treatments of metallic hydrogen have used perturbation theory

about the uniform interacting electron gas.
11
 There are, however, funda-

mental reasons for believing that a pair potential approach will lose validity

at high pressures (when the energy of molecular interaction becomes compara-

ble to the lattice binding ener 	
12,13

gy),	 requiring a scheme better suited

to the delocalized nature of the resulting electron wavefunctions.

We shall adopt below an "exact exchange" Hartree-Fock description of

the condensed phases of hydrogen. There are, of course, more realistic

formalisms which are on a firmer footing as regards the incorporation of

L
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many-body (i.e., correlation) effects, chief among these the density-functional

scheme- 14 As usually implemented, these procedures include in an approximate

local exchange-correlation potential the physical effects of electron indis-

tinguishability, All such local approximations are enormously simpler ;.ompu-

tationally than the corresponding Hartree-Fock calculations., with their

characteristic non-local exchange terms.

However, as yet no density-functional ^alculation has been applied to a

system of full thee-dimensional crystalline symmetry, i.e., it has been cus-

tomary to replace the Wigner-Seitz cell of the crystal with a sphere of equal

volume, and the periodic boundary conditions of the crystal with the Wigner-

Seitz boundary condition.
15
 Although in terms of total energy this procedure

typically gives rise to proportional shifts expected to be of the order of the

difference between Madelung energies of different cubic structures (0(10 -4 )), a

great deal of structural information is relinquished in such a description. This

is of relatively little consequence for monatomic phases, but for molecular

hydrogen at high pressures, as has been discussed by Chakravarty et al.,14

phonon energies are quite comparable both to the static energy differences

between different crystal structures and to the solid binding energy per elec-

tron itself. It is therefore of interest to examine calculational schemes in

which such small structural differences are retained. While we shall com-

pletely neglect the effect of lattice vibrations below, we will retain a

complete description of the diatomic crystalline structure, with the hope of

understanding the behavior of the structural and screening properties of the

diatomic phase at high pressures.

Hartree-Fock (HF) theory for solids, as mentioned above, has been com-

paratively rarely implemented,
16,17

 It is useful to keep in mind a number

of limitations of the Hartree-Fock approach: (i) The correlation energy

(bv definition) is omitted. Insofar as we shall be concerned with structural
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details, aria the density dependence of the correlation energy is ►relieved

1:o be weak, we shall not be concerned about tfiis problem; (ii ) Hartree-

Fock calculations for the band structures of metals typically give rise

to bandwidths (i.e., the energy difference between the bottom of the valence

band and the Fermi level) excessively large in comparison to either competing

calculational methods or to experiment. For a total structural energy cal-

culation, such as we perform below, however, the energy per electron generally

is not unsatisfactory.	 (iii) Spin-restricted Hartree-Fock, in which each

electron level has twofold spin-degeneracy, leads to physical curiosities

in the extreme low-density limit ^J a crystal. Instead of reproducing pro-

perties of an isolated atom, spin-restricted H-F typically gives rise to

neutral or even partiily charged pseudo-atoms which, even if neutral, attract

each other at long distances. 
18 

As noted by Stanton, l$ this is essentially

because the entity associated with a pseudo-atom is a fraction of an electron

pair, not a single electron: it is not surprising that the high on-site

correlation energy (the repulsive energy associated with an electron pair

on a pseudo - atom) makes the binding energy of a pseudo - atom anomalously

small. We shall return to this point below in a discussion of the results

for metallic (monatomic) hydrogen.

II: Abrikosov Variational Wavefunction

We will adopt a wavef unction proposed by Abrikosov 19 as a reasonable

choice for a unified description of both molecular and metallic hydrogen

at high pressure. It is
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wi th

F;X^_(r) _ 	 exp(-ar)	 (2)

where we have chosen a (lattice + basis) description of the crystal structure

of interest, with {^) the underlying Bravais: lattice and {b? the set of basis

vectors within a conventional unit cell. The subscript t is intended to indi-

cate the delocalized nature of this wavefunction; it is explicitly of Bloch

form. By the use of a v^.riational parameter a, we have allowed for the possi-

bility that in a condensed environment the shape of a hydrogen wavefunction may

differ from that of an isolated atom. In the molecular phase the protons are

grouped in pairs centered at the sites of the Bravais lattice and both X and

the molecular inter-proton spacing 2D (which enters straightforwardly in the

specification of the Pa3 lattice) will be such variational parameters.

A few remarks about the form of (1) are appropriate. In the standard

tight binding method 20 one constructs the wavefunction by superposing linea;t

combi nati rns of localized atomic wavefuncti ons , i . e. ,

Rb

where

^ (r)	 an(t)i n ( r )	 (4)
n

and the ^n (r) satisfy the Schrodinger equation for an isolated atom; one

hopes that relatively few n are needed in (4). Our choice (1) differs from

(3) in that (i) we are using only one atomic orbital, (ii) the choice of

phase is site ,-independent; this will mean important simplifications later

in the evaluation of, for example, the kinetic energy.

^,	
d
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Point (i) is not a serious approximation if one is specifically inter-

ested in the electronic ground state, The choice of phase (point (ii))

allows for delocalization of conduction electrons while preserving the essen-

tial atomic-like nature of the wavefunctions near the proton sites. We

will see that this choice will mean that free electron behavior will emerge

naturally in the limit of large densities. In connection with the choice

of phase it is also useful to observe that for the molecular solid the scale

of significant variation of the wavefunction (1) is set by the molecular

inter-proton spacing 2D, while the scale of k is such that k ,,- k  where

k  is the Fermi wavevector. For low pressures 2k FD ^, 0.15 << 1 so that

the chosen variational function will tend to preferentially deposit charge

between the protons in the same molecule, i.e., there is relatively little

of the "antibonding" orbital mixed in, and (i) should be satisfactory for

a variational calculation.

In particular, it should be noted that since HOr , )1 2 is independent
N

of the Bloch wavevector t, we are restricted to the description of a system

with a spherical Fermi surface. It is known from the structural expansion

method, for example, that effects originating from departures from sphericity

of the Fermi surface first occur in fourth order in perturbation theory

about the homogeneous interacting electron gas, the perturbation being

the electron-ion interaction. 11 This therefore suggests that, at least

at high pressures, the assumed absence of a dependence of the energy on

the direction of k will also be a satisfactory approximation. For possible

cubic phases of (monatomic) metallic hydrogen this assumption is quite well

justified;
21-23

 for the insulating molecular phase, where one might imagine

proceeding via a tight-binding calculation, this approximation is probably

Poor at quite low density.
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III; Hartree-Fock Constituent Energies

As noted, in what follows we shall neglect the kinetic energy of the

ions (i.e., phonons) within the framework of the Born -Oppcnh(^imer (adiabatic)

approximation. 24

For our purposes a description in momentum space is convenient. With

7. = 1 and wavefunctions (1) our Hartree-Fock states are specified by the

Block wavevector t and the spin. For a crystal of N cells and volume Q the

wavefunction becomes

(^,) = NIQnb	 e i ( + )•r ls(^)s*(^`)	 (5)
G

and the crystal potential (pure Coulomb for hydrogen) is

V(r) _ 
e 2 N̂ n b 

1
42 e it •r s * (t )	 (6)

G

where n b is the number of sites in the basis, and for reciprocal lattice

vector t, s is the normalized basis structure factor

s (t) = n 1 e i^ • t	 (7)
b+

b

The consti tuent Hartree- Fock energies are kinetic ( <K. E.>) , electron-

Proton (<Ve-p>), 
Plectron-electron (<E e-e>) and exchange (<Eex>). Per

electron, these are, respectively,

<K. E.> = 5 o f + n I G21s(
   )1 2 ^(^) 1 2/[l s (1)1 2 10 (t) 1]:	 (8)
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<V
N. -Non e 2 	s ^O)NG 	(9)

Goo G

2 N.

<Ee-^e - - ^ Q n 4. G22 ^ ^ 2	 (10)

and
G G G	

,

#
2

<EeX a	
- e8^n	

I ►^I 2 fA(G/ kf )	 01)

where in the above

* ( G +G)^ (G' )s (G+G' )S 
*(G, )

I(G')12I(G")12
G'

is the normalized Gth Fourier component of the electron density, e  is the

Fermi energy and k F the Fermi wavevector, and N ion	 Nn b . Here

k 
F 
ff

_	 -

8^rS^ A	 F	 (2 7 r ) 6	
9 (+q + ) 2

with both integrations extending over a spherical Fermi	 surface. Explicitly

fA( x)_ 8{(5;x-2x) Zn I
2 +x
2-xl	 +

,22
5	 '5

x 2 2
+x	 (x20- 1)kn	 4I2-11}.

x	

l
(14)

This function was first evaluated by Abrikosov.19

The total energy also includes the Madelung energy EMad, i.e., the energy

of a lattice of point positive ions (embedded in a uniform background of

compensating negative charge) interacting via the Coulomb potential. The

total energy per electron (neglecting phonons) may thus be written

(13)

l



Etot 2x	 `4 /2/3 ^2 _ T C4^11/3 r.._ + Eel ( o) + Egad 	 (15)
p	 r2

where Fel (t¢0), the electronic energy, is the sup of term, (7)-(ll) except

that we have rev^ritten the G = 0 contributions to the kinetic and exchange

energies in terms of the familiar dimensionless density parameter r s defined by

	

3tt rs = 13
	

(16)
na0

where n is the electron number density and a 0 is the Bohr radius. We then

recognize the terms in brackets above as the kinatic and exchange energies

of a uniform interacting electron gas; the t = 0 Hartree-Fock energy could

be supplemented by an esttiiatc of the correlation energy, e.g., the

Nozi^res-Pines interpolation formula. 29 No t = 0 terms a;--pear in the electro-

static energies because the system as a whole is neutral.

For purposes of computation it is convenient to back-transform into

real space the simple k-space sums appearing in the kinetic energy. This

is expected to be beneficial since our orbital ^(r) decays exponentially

for large distance, so the real space sums we generate should converge well,

at least at low densities where the system is most non-uniform, We find

1 + ^b +	
E^ a-X(1 + X - x2/3)

	

2	 R¢0 bb
<KE>^

#0
 = 2_m ^2

1 + n + 1 	 1 e_X(1 + X +X2/3)

b R¢0 bb'

2

	

= 2a0
	(Xap )2 Dl /D2 . (17)
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where X = %IR + b	 b' I. We find, furthermore, that

nor	
(G' )s (G+G')	 (1$)y N	 2	 g	 22	 2	 X22

Cz + ( gig ) J Cz +	 a

where the normalizing constant is

_ 2n 3	 2 ,i , 5 D21	 . Xa	 ^Ga
Nnor 6 ^Xa/ rib ^^ —Sr 2 g }' .0 -	 (19)

Note that for C = a (i ,j,k), g	 (I J Q. Ta ken toge.cher the total energy

for hydrogen is

tot ^ `Mad	 `Eel (G=J ) a	 ` Eel (t-rD )'

°M/rs 
+ [-5' y2/rs 2 _ 2^r r/rs1 

+

2
+ {WO)2D1/D2	

32 s R2	 s*(^)Nt 12 + 32 S I INGl2 12

	

2^r	 s	
GAD	

g	 S r	 s 
G#D	

g

` 4	 } Y IN 2 fq(r/k )} 9	 (20)
s G#D

with

Y = (4 )1 /3 ,	 = O7Tinb1/3(21)
)

We have used the general form of the Madelunn energy

E M a d	 °^MZ2/3/rs '	 (22)
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In the spirit of the structural expansion mentioned above, we may now

identify the "band structure energy." It is t hat portion of the total energy

due to nun- u iformity of the electronic system, To all orders in the

electron-ion interaction in this model, it is the term in { ) above.

IV	 Computational Details

Equation (20) is the basis for a Hartree-Fock calculation of the zero

temperature equation of state of both, monatomic and molecular (diatomic)

hydrogen, resul ts of which are presented below. Inspection of Eqs. (20) and

(18) indicat? that the inhomogeneous (G ¢ 0) contributions to the energy

involve a sixfold summation over the reciprocal lattice indices (i,,j,k) and

(i ' ,j' ;k' ).	 i t i s thus impe rative to exploit such symmetries as may be

present to facilitate evaluation of the sums. Further details are given

in Appendix A.

A unit cell of the PO structure, believed to be appropriate 'to solid

diatomic hydrogen at low temperatures and high pressures for both the ortho

and para phases 2 5,26 is shown in Figure 1. It is most simply described as

a simple cubic conventional ce'I1 (of side a) with an eight-point basis,

with ions at the points

b l  2 = +ar

X3,4 ^ 
a^(0, ^,^) * r(1,-1,1)^

(23)
b5,6 = a[(i3O,1) *- r(1,1,-1)1

b, 8 = a[(j,f,0)

where r = D/ (tea) and 2D is the "bond length" of a given molecule. (The

structure is FCC with molecules at each site, each oriented along a

different body diagonal. ) This is a highly unsymmetrical structure; its

normalized basis structure factor for a simple cubic reciprocal lattice

kk
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vector G = a2 (i ,j,k) is

S (i ,j ,k) = 2[cosa(i + j + k) + (-1) i+j cosa(-i + j + k)
(24)

+ (-1)j+kcosa(i - j + k) + (-1)'+kcosa( + j	 k)7

where a = 27rD
	

For D/a = y'-3/4 the ions are equally spaced along the body
vla

diagonals, and the structure becomes simple cubic with a lattice constant

a/2. The Madelung energy per electron for this structure may be computed

using the usual Ewald expression

a 2 Z2/3	 1	 2 -g2
/P 2
	1
	 erfc(2IxI)

M	 2a0 rs	
00 92	

nb bb
	 (xI

(p2 ^. ^)	 (25)

where P is the free parameter resulting from the Ewald process (i.e., EM

should be numerically independent of P for P of order 1), erfc is the com-

plementary error function, g = Ga/(27r), and the prime indicates omission

of the R	 O, b = b' term, i .e. ,

+	 +n

Rbb' R 0 bib' R=0 b#b'	 R¢0

The Madelung constant am for the Pa3 structure, as a function of the

parameter D/a, is displayed in Figure 2 also shown for comparison is the

Madelung constant for a "rotationally averaged Pa3" structure, discussed

in Appendix B. The latter, denoted <Pa3>, results from taking the orienta-

tion of the molecules on the underlying FCC sites to be random. The
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remarkable insensitivity of the Madelung energy (indeed, the total energy)

to the orientation of the molecules for small values of ? 1/a will be dis-

cussed below. Further do ails are given in Appendix A.

V: Metallic Hydrogen

The total static Hartree-Fock energy in Ryd/electron for FCC monatomic

hydrogen using the Abrikosov wavefunction is shown as a function of the

electron density parameter r .- in Figure 3. Also displayed in this figure

are the constituent energies--the non-uniform parts of the kinetic,

electron- proton, electron-electron and exchange energies. For comparison

a curve showing the , homogeneous interacting electron gas Hartree-Fock

terms and the Wigner-Seitz sphere electron-proton energy (i.e., the analog

of the Madelung energy), is also displayed. Perhaps the most striking

feature of the H-F curve is how 'little it departs from this simple estimate:

the value of rs at the minimum is essentially unchanged by inclusion of the

non-uniform terms (the "band structure energy"). It is also noteworthy

that the two terms in principle hardest to compute--the electron-electron

and exchange energ';es--are very small (and their sum even more so) over

most of the region of interest. An identical calculation using the

Abrikosov wavefunction for FCC monatomic hydrogen was performed, but over a

limited range of r s, by Ross and McMahan. 27 We will be interested, however,

in a discussion of screening over a large density range. At very low density

(large rs ) we find 28

lim Eeo t = E(aa C ) 2 - 2Xaoj + C8
	 16^ Aa0	 (26)r +^

S

where the terms are, respectively, the kinetic, electron-proton,
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j

elec" oon-electron, and exchange energies. The minimum, for ^a 0 = 27/32,

gives a Hartree-Fock energy

2
1im 

Emin = - C27	
_ -0.7119 Ryd/electron	 (27)

r s 
+W

to wh'ch the total energy in Figure 3 tends asymptotically (and rather

quickly). As mentioned above, the fact that this value is not that of an

isolated hydrogen atom reflects the restricted Hartree-Fock substitution

of a pseudo-atom (an equal mixture of spin-up and spin-down states) for

the genuine spin-po l arized atom,and the total absence of correlation

energy . As is typical of variational calculations, the energy approaches

its asymptotic variational minimum faster than do i ts variational parameters,

here only aa0.

The inclusion of the correlation energy in the electron gas portion of

the energy via, for example, the Nozieres-Pines interpolation formula,29

will barely bind FCC metallic hydrogen; the Hartree-Fock minimum energy,

at r s = 1.67 and ^a 0 = 1.24, is -0.929 Ryd/electron: the inclusion of this

correlation estimate brings the total energy to -1.028 Ryd/electron. The

H-F energy thus compares very well with other recent H-F calculations for

metallic hydrogen,
30-32

 for example, that of Tua and Mahan, 
31 

who found

(using a similar basis of functions but with three variational parameters)

a H-F energy of -0.9327 Ryd/electron. In addition, Harris et al. 
30 

found

a minimizing value of -0.931 R ,yd/electron with aa 0 = 1.25, using a more

complicated wavefunction. Ross and McMahan 
27 

naturally found restfIts

identical to ours in the density range where comparison can be made.

Of considerable interest is the density dependence of the wavefunction

decay parameter a, shown in Figure 4; the original result of Abrikosov,19

k
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F_

and the Thomas-Fermi prediction

=C12\1/3 
1

kT F
a 0	 ,iFs (28) .

are also displayed for comparison. We may interpret this figure as an indica-

tion of the metallic nature of the monatomic solid as follows. If we con-

sider the response of the electrons in metallic hydrogen to the fields of

the protons, then in the Thomas-Fermi model of metallic screening (valid

as rs+0) we would expect the induced electron charge density to be

2
TF +	 RkTF -kTFr
pind(r) _ - 4

—e

On the other hand, around an isolated hydrogen atom the charge density is

pH (r	 3
) _ -e X 

e-2Xr	
(30)

with a = 1/a0 . In a condensed metallic phase we would expect X and kTF to

scale similarly as a function of the density r s . What is remarkable,

ho4 giver, is the range of density over which the H-F and Thomas-Fermi screen-

ing parameters actually do track one another; the charge density in this

model of monatomic hydrogen bears little resemblance to that of an isolated

atom, and we conclude *',at the system is genuinely metallic. In this con-

text Abrikosov's original calculation is inappropriate for densities of

physical interest. 33

VI: Pa3 Molecular Hydrogen

In Figure 5 are shown the curves for Pa3 molecular hydrogen analogous

to those in Figure 3 for the monatomic phase. Here, ,)nce again, we display

a comparison curve, consisting of the interacting electron gas energy and

(29)
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the minimized Madelung energy for the <Pa3> structure, Eq. g5. While there

is a superficial resemblance to their metallic counterparts, all the

constituent energies show a remarkable transition at r s R^ 2.8, although

the total energy is quite insensitive to these rather precipitous changes.

The density dependence of 1a 0 (Figure 6) again closely follows the

Thomas-Fermi wavevector, as expected for the spherical Fermi surface

resulting from the use of wavefunction (1). Changes in Xa 0 near rs = 2.8

are relatively slight, but a marked flattening-out of X(r s ) beyond rs

2.8 is to be noted.

The density dependence of the interproton spacing (here D/a, i.e.,

the ratio of half the molecular bond length to the lattice constant of the

conventional simple cubic cell) is shown in Figure 7, and it is clear that

the abrupt drop in D/a for rs = 2.6-3.0 is the origin of the pronounced

changes in the constituent energies in Figure 5. Shown in the same figure

are ('i) the curves expected if the molecular bond length is frozen at its

zero pressure value, (ii) the results of the recent density functional

calculation of Chakravarty et al., 
34 

(iii) the results of Liberman, 35 who

used a modified density functional procedure with a sphericalized potential,

and (iv) the results of Ramaker, Kumar and Harris 36 for simple cubic oriented

molecular hydrogen.

The computed dependence of D/a on density may be understood in terms

of a qualitative change in the nature of the solid molecular phase around

rs = 2.8. For extremely high densities (small r s ) Figure 2 shows that to

minimize the Madelung energy, D/a should asymptotically approach a constant

value R^ 0.27, as we observe in Figure 7. At extremely low densities

on the other hand (rs-), one should recover in an exact treatment a

k
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lattice of non-interacting hydrogen molecules with fixed 2D/a 0 = 1.401• For

Pa3 structure this would imply D/a ti 0.217/rs.

The static Ha rtree-Fock calculation clearly does rather poorly

in giving the expected quatitative behavior for low density. However,

the rather sudden change in behavior does clearly reflect a transition from

a solid whose essential structural units are "locked into" the unit cell

as a whole (so that all intracellular distances scale together, correspond-

ing to D/a = constant) to one whose structural units are the molecules

themselves, with fixed bond length (i . e. , D/a = const/r 2 ) . The roughly

flat dependence of 1 on r s beyond rs ti 2.8 in Figure 6 is also charac-

teristic of weakly interacting molecules. This qualitative change is present,

in an attenuated form (at a much smaller value of rs ) in simple second-order

structural expansion results.37

The calculations of Liberman 35 and Chakravarty et al. 34 use the

Wigner-Seitz method of sphericalizing the crystalline cell containing one

molecule and, as such, discard detailed information about the lattice to

which the total eiiergy is relatively insensitive (though structural parameters

like D/a may depend sensitively on the approximation). For this reason,

neither of these calculations exhibit any feature which may be identified as

the qualitative change we observe. The calculation of Ramaker et al. 36 does

keep a crystalline cell and predicts (at a much higher density) a rapid

plunge of D/a, but it is for a structure which has not been observed for

hydrogen.

It is reasonable to associate the 'transition' at rs Rj 2.8 with the

"rotational transition" 38 marking the onset of free rotation of the hydrogen

molecules about their centers of mass (ignoring, as usual, the distinction

between para- and ortho-hydrogen) from the hindered angular oscillation or

libration characteristic of higher pressures. It is clear that the closer
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the two protons of a given molecule approach the more nearly spherical is the

associated charge cloud, so the less important are the configurations of

other such molecules in 'she same (or other) unit cells. Hence merely on the

basis of energetics (this insensitivity of the total energy, Figure 5, to

variation in D/a beyond r s ti 2.8) and proximity (the rapid reduction of the

bond length shown in Figure 7 around rs = 2.8), any tendency toward free

rotation will be markedly increased beyond r s = 2.8.

The scaling together of intracellular dimensions below r s P̂  2.8 is

typical of metallic systems, where it is the volume-dependent electron gas

contributions and the interactions of individual ions with the electron gas

which stabilize the system. In a molecular insulating solid the essential

entities (the molecules) are neutral and it is fluctuating dipole or higher

multipolar interactions which stabilize the solid. Simple arguments of Mott

and others 39,40 indicate that for a system with long-range Coulomb interac-

tions a metal-insulator transition will occur; the system will be metallic

for an average number- density n if

1/3	 3 11/3	 1n	 a0 = C47r/	 rS /a 0 ti 0.2

for which the transition density is r s ^, 3.1. Using the simple cubic

monatomic hydrogen lattice as a model for such a transition, Rose, Shore

and Sander41 do indeed find a metal-insulator transition (from a paramag-

netic metal for higher density to a ferromagnetic insulator at low density)

at rs = 2.84. The precise relevance of results for the monatomic phase to

the diatomic phase is unclear, but it should be remembered that both systems

are described by the same Hamiltonian, with an instability toward molecular

pairing as a structural symmetry breaking. It is believed that as a function

(31)

W.
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of increasing pressure the diatomic phase will first become coi

(indirect) band overlap, 42 and only at higher pressure 34 will the diatomic

order disappear. The actual onset of free rotation in (para) hydrogen

may also be assisted by a Peierls distortion.

In this context it is important to note that for molecular hydrogen

the inclusion of lattice dynamics is crucial to obtain a quantitative under-

standing of the equation of state for low pressures. This problem occurs

for the monatomic case as well, where the preference of static structural

expansion calculations for anisotropic planar structures is no longer present

when a careful self-consistent phonon calculation is made. ? It may be under-

stood qualitatively by observing that we expect phonon energies per electron

in the condensed phase to scale roughly as the ionic plasma frequency

3m

_Zf1^'phonon 
1 fiw

plasma	 M 

el	
3/2	 (Ryd)	 (32)

proton rs

for m and M the electron and proton masses, respectivA y. This quantity

ranges from about 0.04 Ryd at rs = 1 to 0.005 Ryd at r s = 4. For compari-

son, the zero pressure binding energy per electron for solid molecular

hydrogen is only about 0.0006 Ryd. The importance of a unified treatment

of phonons together with the electronic system has been stressed by Chak-

ravarty et al. 
34 

For the molecular phase they used a Wigner-Seitz approxi-

mation; within the W-S sphere around a given molecule they sphericalized

the ionic potential by smearing the protons out on a shell of radius D,

reintroducing deviations from spherical symmetry of the total potential within

the spherical cell by perturbation theory. They found good a greement for molecular

hydrogen at low density for the binding energy, in'erproton spacing and
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optic mode ("stretch") frequency. The phonon problem manifests itself,

however, in the fact that the computed equation of state E(rs ) showed an

overall shallow minimLP at r s	2.1, even when an estimate of the effects

of phonons was included; the experimental P 	 0 density for diatomic

hydrogen corresponds to r s = 3.10.

We may gain a qualitative feeling for the importance of phonons in

the present calculations of the molecular phase by examining Figure 8, which

shows (for fixed overall density r s = 2.8) the dependence of the second

order structural expansion total energy for the Pa3 and rotationally averaged

<Pa3> structures (see Appendix B for a brief description of the second

order structural expansion and the rotationally averaged <Pa3> structure).

Although the detailed values of D/a and energy are not reliable, we note

that (i) the Pa3 curve is extraordinarily flat over a very large range of

D/a out to the simple cubic value D/a = /3-/4 (using Hubbard- Geldart-Vosko

screening--see Appendix B); (ii) the rotationally averaged <Pa3> curve

falls bel ow the Pa3 curve, indicating a possible preference for a lattice

of free rotators. Moreover, both the splitting between the two curves

and the "flatness" of the Pa3 curve are of the order of a typical phonon

energy, indicating that only the inclusion of phonons can specify

reliably the density-dependence of the molecular inter-proton spacing, the

onset of the putative rotational solid, and ultimately the low-pressure

molecular equation of state.

VII: Summary and Conclusions

The main emphasis,here has been on the Pa3 molecular hydrogen structure.

For this case screening is found to be quite metallic-like below r s % 2.8;

IL
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A

for larger rs both the screening parameter and the molecular 'bonU ir-FIV611

cease to depend strongly on density, suggesting a transition to a solid of

weakly interacting molecules. The detailed nature of this transition has

yet to be established but a rotational transition and a metal-insulator

transition at rS ^ 2.8 are possible candidates. In making the connection,J

it is important to include the effect of phonons.

Our principal conclusion is that cellular methods which discard

information about the details of the lattice may do very well when used to

compute total energies, at the expense, however, of possibly missing

important structural changes to which the total energy is relatively

insensitive. We have confirmed once more that it is the difficulty of

obtaining a reliable first principles molecular equation of state which

remains the primary obstacle to the understanding of hydrogen at high

pressure.
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Appendix A	 Computational Details

In the FCC metallic phase (c^ = -1,7917472304) the only variational

parameter is the quantity X characterizing the shape of the hydrogen wave-

function. In practice for each value of r s e gh',- values of Xa O straddling

the minimum (as a function of Xa O ) were scanned, a polynomial was fit to

the resulting energy values, and she appro,^ri ate zero of the deri vativeve

was used as the physically relevant value of Xa D . The energy was then

evaluated using the curve fit.

The computational problem for the Pa3 moiecular hydrogen phase is of

a different order of inagm tude than for the monatomic phase, not only are

there two variational parameters, but the lattice itself is of a symmetry

low enough that systematic exploitation of symmetry is difficult. In order

to scan a reasonable range of X and D/a in permissible computer time for

each value of r s , five values of Xa O and eight of D/a were selected to

encompass the energy minimum. The resulting table of numbers (from k-space

summations extending only far out enough to reflect the essential dependence

on the variational parameters) was interpolated using a bicubic spline

method, and the minimum found by a two-dimensional Newton-like method. The

electronic energy was then re-evaluated at the corresponding values of Xa0

and D/a, summing out as far as possible in k-space to improve the accuracy

of the total energies.

For several large values of rs , where the total energy is a more

rapidly varying function of the parameters D/a and XaO , computer runs with

a mesh about twice as fine were made to give more reliable values for the

structural parameters. Even though we feel the variational parameters to

be accurate (within the limitations of the model), the absolute energies



for the molecular- phase still contain small uncertainties that make compari-

son of the equations of state of the molecular and metallic hydrogen diffi-

cult, especially if the intent is to extract, for example, the transition

pressure from one phase to the other. Indeed, only the availability of the

Floating Point systems Array Processor (and its associated Cornell Fortran

compiler) made the Pa3 calculation feasible at all in its present form.

Fluctuations evident in the computed points are due tc, the sensitive

dependence of the structural energy on the parameter D/a, and associated

uncertainty in the output of the fitting and minimization programs. For

several values of large r  finer-grid computer runs, indicated by triangles,

were made. As usual for variational calculations, 'noise' of order 6 in the

variational parameters emerges as noise in the energy of order 6 2 . The

error bars in Figure 6, for example, are indicative of the worst variation

in results from normal-length computer runs straddling the minimum in

parameter space in different ways.

Appendix B: The Structural Expansion and the Rotationally Averaged <Pa3>

Structure

Within the structural expansion formalism one begins with a lattice

of positive ions in the presence of a uniform compensating negative back-

ground and, in the same volume, a uniform interacting electron gas of

identic a l overall charge density, together with its uniform compensating

positive background (so that each system is separately neutral). One

then introduces the electron-ion interaction using perturbation theory.11

To lowest order in the electron-ion interaction one finds

kL
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E( 2 ) = E(0)(rs) + EMad ({ l*),rs )	 EBS)({ ,bl ' rs }	 (B1)

+

where Ee(0) is the energy of the uniform interacting electron gas at the

appropriate density, 
EMad 

is the Madelung energy, given by

22

EMad - Z2SP +1 Cpq'p-qN ion ] 42	
(62)

9 ^0	 q

(where pq 1 is the q-th Fourier component of the ion density), and the

'"second order band structure energy" E (2) is

2	 Ion 1^n
E (2)	 1 /NionZ	

(47re

vei (q)	 1	 l^ A	 p

BS	 2 ` SZ )i	 2^ Z	 +	 2
q 0	

(B3)
e (+q)	 J	 N i on

where vei is the electron-ion interaction potential (or pseudopotential)

with c(q) the dielectric function of the uniform interacting electron gas.

For our calculations we used the Hubbard dielectric function as modified

by Geldart and Vosko, 43 and the bare Coulomb potential appropriate to

hydrogen.

In both expressions above the quantity of interest is the combination

pq p^q. In the context of an FCC lattice of Freely rotating hydrogen
molecules it is useful to consider an FCC lattice for which the molecular

bond orientation is a random function of position. One must distinguish

between the contribution to pq pi^ from the two protons associated with a

given FCC site (which are perfectly correlated in the molecule there) and

those associated with other (randomly oriented) molecules. We find

I
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<pk n_ k}>=	 }2N 1 + s
in 	 N(N	 r 1) 4	 b

	

J	 kp

where the ^ are the reciprocal lattice vectors for the real space FCC

lattice, the expression above readily divides into discrete reciprocal

lattice contributions and a continuous part, which will give rise to integrals

in the Madelung and band structure energies. Here N is the number of FCC sites.

Provided the "charged spherical shells" resulting from the rotational

averaging process do not overlap (for the FCC case this is value for 0 <

D/a < YI2_/4) the Madelung energy can then be written

	

e 2 l 22/3	 1	 2
EM(<Pa3>) _ ^T_ rS /a o IaFCC + 4z + 

z ,

	where aFCC is the Madelung constant of the FCC structure and z = GX137r\1/3

The band structure energy, to second order, becomes

	 J

(a4)

(65)

EBS ) (<Pa3>) =	
2

11 e
2

4 ( 1 _	 ) sin GD 2

G2 
E	

1 
^ G2D2

G^0

(Q6)

+ e 2	 d k 47r	 1	 _ 1	 1+ sin 2 k D _ 2 sin

(27r)3 k2 E( K) 	 2kD	
k2D; kD

These expressions were used in the evaluation of the <Pa3> curves (Figures 2 and 8).

IL
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Figure Captions

Fig. 1. The a-N2 or Pa3 structure assumed for the calculation of diatomically

ordered dense hydrogen.

Fig. 2. The Madelung constant as a function of interproton spacing (D)' (as

a fraction of conventional cubic cell dimension a). Full line:

Pa3 structure. Dotted line: rotationally averaged Pa3 (see text).

Fi g. 3. The total sty ti c Hartree-Fock energy (per electron) for monatomic

hydrogen obtained with the Abrikosov trial state (1) (lower curve).

The component parts of the energy are discussed in the text.

Fig. 4. Density dependence of the variational orbital range parameter A

in the Abrikosov state (1) for FCC monatomic hydrogen .(solid curve).

The dashed line  i s the corresponding range in Thomas-Fermi linear

screening model. The dotted curve is Abrikosov's original cal-

cula t.'ion. The numerical details a're found in Appendix.A.

Fig. 5. The total static Hartree-Fock energy (per electron) for diatomically

ordered hydrogen, minimized with respect to D/a and X. The component

parts of the energy and their rapid changes near r s = 2.8 are dis-

cussed in the text. Note that the 'total energy is relatively

featureless at r  ti 2.8.

Fig. 6. Density dependence of the variational orbital range parameter x for

diatomic hydrogen (solid line). Again the dashed line gives the

linear-screening result in the Thomas-Fermi approximation (see Fig.

4).
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Fig. 7. Minimizing v4i ues of D/a for the diatomically ordered phase of

hydrogen (solid line and points). Also shown is the curve expected

if the interproton spacing is held constant at its zero pressure

value (D = (P = 0) value), the results of Chakravarty et al.

(Ref. 14), Liberman (Ref. 35), and Ramaker et al. (Ref. 17).

Fig. 8. Second order structural expansion energies (at r s = 2.8) for a

Pa3 structure (solid line) and rotationally averaged Pa3 structure

(dash3d line). Note the extreme insensitivity to D/a (see text).
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