447 research outputs found

    Can net photosynthesis and water relations provide a clue on the forest decline of Quercus suber in North Tunisia?

    Get PDF
    Net photosynthesis, sap flow density (SFD) and water use efficiency (WUE) were measured in a Quercus suber forest in north Tunisia in an attempt to explain the forest decline. In general, sap flow was positively related to light intensity and water loss, indicating that high light intensities can increase the SFD up to the saturation point in the cork oak. CO2 assimilation of cork oak in this region was light intensity-dependent. Cork oak showed a general increase in photosynthetic rates with increasing light intensity up to the light saturation point. Increased radiation probably increased the photosynthesis and growth above ground in this area, whereas the below-ground soil had insufficient moisture for uptake through the roots because the high light intensity and temperature induced high evapotranspiration.Key words: Decline, evaportranspiration, light intensity, Quercus suber, sap flow density, water use efficiency

    Gene expression and matrix turnover in overused and damaged tendons

    Get PDF
    Chronic, painful conditions affecting tendons, frequently known as tendinopathy, are very common types of sporting injury. The tendon extracellular matrix is substantially altered in tendinopathy, and these changes are thought to precede and underlie the clinical condition. The tendon cell response to repeated minor injuries or “overuse” is thought to be a major factor in the development of tendinopathy. Changes in matrix turnover may also be effected by the cellular response to physical load, altering the balance of matrix turnover and changing the structure and composition of the tendon. Matrix turnover is relatively high in tendons exposed to high mechanical demands, such as the supraspinatus and Achilles, and this is thought to represent either a repair or tissue maintenance function. Metalloproteinases are a large family of enzymes capable of degrading all of the tendon matrix components, and these are thought to play a major role in the degradation of matrix during development, adaptation and repair. It is proposed that some metalloproteinase enzymes are required for the health of the tendon, and others may be damaging, leading to degeneration of the tissue. Further research is required to investigate how these enzyme activities are regulated in tendon and altered in tendinopathy. A profile of all the metalloproteinases expressed and active in healthy and degenerate tendon is required and may lead to the development of new drug therapies for these common and debilitating sports injuries

    The interaction of ultrasound with a partially contacting solid-solid interface in the low frequency regime

    Get PDF
    When real engineering surfaces touch, contact occurs between the asperities of the surface roughness. For this reason the true area of contact between components can be significantly less than the apparent contact area and the stresses at the asperities are considerably higher than the average (nominal) contact pressure. Measurement of the degree of contact between solids is important in a number of applications such as the design of contacting elements (e.g. gears and bearings) [1] and the detection of ‘kissing’ bonds [2]

    Cellular Radiosensitivity: How much better do we understand it?

    Get PDF
    Purpose: Ionizing radiation exposure gives rise to a variety of lesions in DNA that result in genetic instability and potentially tumorigenesis or cell death. Radiation extends its effects on DNA by direct interaction or by radiolysis of H2O that generates free radicals or aqueous electrons capable of interacting with and causing indirect damage to DNA. While the various lesions arising in DNA after radiation exposure can contribute to the mutagenising effects of this agent, the potentially most damaging lesion is the DNA double strand break (DSB) that contributes to genome instability and/or cell death. Thus in many cases failure to recognise and/or repair this lesion determines the radiosensitivity status of the cell. DNA repair mechanisms including homologous recombination (HR) and non-homologous end-joining (NHEJ) have evolved to protect cells against DNA DSB. Mutations in proteins that constitute these repair pathways are characterised by radiosensitivity and genome instability. Defects in a number of these proteins also give rise to genetic disorders that feature not only genetic instability but also immunodeficiency, cancer predisposition, neurodegeneration and other pathologies. Conclusions: In the past fifty years our understanding of the cellular response to radiation damage has advanced enormously with insight being gained from a wide range of approaches extending from more basic early studies to the sophisticated approaches used today. In this review we discuss our current understanding of the impact of radiation on the cell and the organism gained from the array of past and present studies and attempt to provide an explanation for what it is that determines the response to radiation

    Acute wound management: revisiting the approach to assessment, irrigation, and closure considerations

    Get PDF
    Abstract Background As millions of emergency department (ED) visits each year include wound care, emergency care providers must remain experts in acute wound management. The variety of acute wounds presenting to the ED challenge the physician to select the most appropriate management to facilitate healing. A complete wound history along with anatomic and specific medical considerations for each patient provides the basis of decision making for wound management. It is essential to apply an evidence‐based approach and consider each wound individually in order to create the optimal conditions for wound healing. Aims A comprehensive evidence‐based approach to acute wound management is an essential skill set for any emergency physician or acute care practitioner. This review provides an overview of current evidence and addresses frequent pitfalls. Methods A systematic review of the literature for acute wound management was performed. Results A structured MEDLINE search was performed regarding acute wound management including established wound care guidelines. The data obtained provided the framework for evidence‐based recommendations and current best practices for wound care. Conclusion Acute wound management varies based on the wound location and characteristics. No single approach can be applied to all wounds; however, a systematic approach to acute wound care integrated with current best practices provides the framework for exceptional wound management

    Molecular Modeling Study for Inhibition Mechanism of Human Chymase and Its Application in Inhibitor Design

    Get PDF
    Human chymase catalyzes the hydrolysis of peptide bonds. Three chymase inhibitors with very similar chemical structures but highly different inhibitory profiles towards the hydrolase function of chymase were selected with the aim of elucidating the origin of disparities in their biological activities. As a substrate (angiotensin-I) bound crystal structure is not available, molecular docking was performed to dock the substrate into the active site. Molecular dynamics simulations of chymasecomplexes with inhibitors and substrate were performed to calculate the binding orientation of inhibitors and substrate as well as to characterize conformational changes in the active site. The results elucidate details of the 3D chymase structure as well as the importance of K40 in hydrolase function. Binding mode analysis showed that substitution of a heavier Cl atom at the phenyl ring of most active inhibitor produced a great deal of variation in its orientation causing the phosphinate group to interact strongly with residue K40. Dynamics simulations revealed the conformational variation in region of V36-F41upon substrate and inhibitor binding induced a shift in the location of K40 thus changing its interactions with them. Chymase complexes with the most activecompound and substrate were used for development of a hybrid pharmacophore model which was applied in databases screening. Finally, hits which bound well at the active site, exhibited key interactions and favorable electronic properties were identified as possible inhibitors for chymase. This study not only elucidates inhibitorymechanism of chymase inhibitors but also provides key structural insights which will aid in the rational design of novel potent inhibitors of the enzyme. In general, the strategy applied in the current study could be a promising computational approach and may be generally applicable to drug design for other enzymes

    Numerical comparison of the closing dynamics of a new trileaflet and a bileaflet mechanical aortic heart valve

    Get PDF
    [[abstract]]The closing velocity of the leaflets of mechanical heart valves is excessively rapid and can cause the cavitation phenomenon. Cavitation bubbles collapse and produce high pressure which then damages red blood cells and platelets. The closure mechanism of the trileaflet valve uses the vortices in the aortic sinus to help close the leaflets, which differs from that of the monoleaflet or bileaflet mechanical heart valves which mainly depends on the reverse flow. We used the commercial software program Fluent to run numerical simulations of the St. Jude Medical bileaflet valve and a new trileaflet mechanical heart valve. The results of these numerical simulations were validated with flow field experiments. The closing velocity of the trileaflet valve was clearly slower than that of the St. Jude Medical bileaflet valve, which would effectively reduce the occurrence of cavitation. The findings of this study are expected to advance the development of the trileaflet valve.[[incitationindex]]SCI[[booktype]]電子版[[booktype]]紙

    Status report on emerging photovoltaics

    Get PDF
    \ua9 2023 Society of Photo-Optical Instrumentation Engineers (SPIE).This report provides a snapshot of emerging photovoltaic (PV) technologies. It consists of concise contributions from experts in a wide range of fields including silicon, thin film, III-V, perovskite, organic, and dye-sensitized PVs. Strategies for exceeding the detailed balance limit and for light managing are presented, followed by a section detailing key applications and commercialization pathways. A section on sustainability then discusses the need for minimization of the environmental footprint in PV manufacturing and recycling. The report concludes with a perspective based on broad survey questions presented to the contributing authors regarding the needs and future evolution of PV
    corecore